{ "metadata": { "name": "", "signature": "sha256:ae5c10cebc67e59fefae332eaff3aec21c49c3c4a8e87dfaab8a18fadc8340a5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16: Kinetic Theory of Gases" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 16.2, Page Number 400" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "\n", "#Variable Declaration\n", "R = 8.314 #Ideal Gas Constant, J/(mol.K)\n", "T = 298 #Temperatureof Gas, K\n", "MNe = 0.020 #Molecular wt of Ne, kg/mol\n", "MKr = 0.083 #Molecular wt of Kr, kg/mol\n", "\n", "#Calculations\n", "vmpNe = sqrt(2*R*T/MNe)\n", "vmpKr = sqrt(2*R*T/MKr)\n", "\n", "#Results\n", "print 'Most probable speed of Ne and Krypton at 298 K are %4.0f, %4.0f m/s'%(vmpNe,vmpKr)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Most probable speed of Ne and Krypton at 298 K are 498, 244\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 16.2, Page Number 401" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "R = 8.314 #Ideal Gas Constant, J/(mol.K)\n", "T = 298 #Temperatureof Gas, K\n", "M = 0.040 #Molecular wt of Ar, kg/mol\n", "\n", "\n", "#Calculations\n", "vmp = sqrt(2*R*T/M)\n", "vave = sqrt(8*R*T/(M*pi))\n", "vrms = sqrt(3*R*T/M)\n", "\n", "#Results\n", "print 'Maximum, average, root mean square speed of Ar\\nat 298 K are %4.0f, %4.0f, %4.0f m/s'%(vmp,vave,vrms)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum, average, root mean square speed of Ar\n", "at 298 K are 352, 397, 431 m/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 16.4, Page Numbe 403" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt,pi\n", "\n", "#Variable Declaration\n", "R = 8.314 #Ideal Gas Constant, J/(mol.K)\n", "T = 298 #Temperature of Gas, K\n", "M = 0.040 #Molecular wt of Ar, kg/mol\n", "P = 101325 #Pressure, N/m2\n", "NA = 6.022e23 #Number of particles per mol\n", "V = 1.0 #Volume of Container, L\n", "\n", "#Calculations\n", "Zc = P*NA/sqrt(2*pi*R*T*M)\n", "Nc = Zc*A\n", "#Results\n", "print 'Number of Collisions %4.2e per s'%(Nc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of Collisions 2.45e+27 per s\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 16.5, Page Number 404" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "\n", "#Variable Declaration\n", "R = 8.314 #Ideal Gas Constant, J/(mol.K)\n", "T = 298 #Temperature of Gas, K\n", "M = 0.040 #Molecular wt of Ar, kg/mol\n", "P0 = 1013.25 #Pressure, N/m2\n", "NA = 6.022e23 #Number of particles per mol\n", "V = 1.0 #Volume of Container, L\n", "k = 1.38e-23 #Boltzman constant, J/K\n", "t = 3600 #time of effusion, s\n", "A = 0.01 #Area, um2\n", "\n", "#Calculations\n", "A = A*1e-12\n", "V = V*1e-3\n", "expo = (A*t/V)*(k*T/(2*pi*M/NA))\n", "P = P0*exp(-expo)\n", "#Results\n", "print 'Pressure after 1 hr of effusion is %4.3e Pa'%(P/101325)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure after 1 hr of effusion is 1.00e-02 Pa\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 16.6, Page Number 407" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "\n", "#Variable Declaration\n", "R = 8.314 #Ideal Gas Constant, J/(mol.K)\n", "T = 298 #Temperature of Gas, K\n", "M = 0.044 #Molecular wt of CO2, kg/mol\n", "P = 101325 #Pressure, N/m2\n", "NA = 6.022e23 #Number of particles per mol\n", "sigm = 5.2e-19 #m2\n", "\n", "#Calculations\n", "zCO2 = (P*NA/(R*T))*sigm*sqrt(2)*sqrt(8*R*T/(pi*M)) \n", "#Results\n", "print 'Single particle collisional frequency is %4.1e per s'%(zCO2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Single particle collisional frequency is 6.9e+09 per s\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 16.7, Page Number 407" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "\n", "#Variable Declaration\n", "R = 8.314 #Ideal Gas Constant, J/(mol.K)\n", "T = 298 #Temperature of Gas, K\n", "MAr = 0.04 #Molecular wt of Ar, kg/mol\n", "MKr = 0.084 #Molecular wt of Kr, kg/mol\n", "pAr = 360 #Partial Pressure Ar, torr\n", "pKr = 400 #Partial Pressure Kr, torr\n", "rAr = 0.17e-9 #Hard sphere radius of Ar, m\n", "rKr = 0.20e-9 #Hard sphere radius of Kr, m\n", "NA = 6.022e23 #Number of particles per mol\n", "k = 1.38e-23 #Boltzman constant, J/K\n", "\n", "#Calculations\n", "pAr = pAr*101325/760\n", "pKr = pKr*101325/760\n", "p1 = pAr*NA/(R*T)\n", "p2 = pKr*NA/(R*T)\n", "sigm = pi*(rAr+rKr)**2\n", "mu = MAr*MKr/((MAr+MKr)*NA)\n", "p3 = sqrt(8*k*T/(pi*mu)) \n", "zArKr = p1*p2*sigm*p3\n", "\n", "#Results\n", "print 'Collisional frequency is %4.2e m-3s-1'%(zArKr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Collisional frequency is 3.14e+34 m-3s-1\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }