{
 "metadata": {
  "name": "",
  "signature": "sha256:f8110fb6016a142f9c7bb6eab2fb7171930a565929eb5cb2f65ff0d315425e0a"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 15: Statistical Thermodyanamics"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem 15.2, Page Number 362"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import log\n",
      "\n",
      "#Variable Declaration\n",
      "hnu = 1.00e-20\n",
      "NA = 6.023e23\n",
      "k = 1.38e-23\n",
      "U = 1.00e3\n",
      "n = 1\n",
      "#Calcualtions\n",
      "T = hnu/(k*log(n*NA*hnu/U-1.))\n",
      "\n",
      "#Results\n",
      "print 'For Internal energy to be %4.1f J temperature will be %4.1f K'%(U,T)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For Internal energy to be 1000.0 J temperature will be 449.0 K\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem 15.3, Page Number 367"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import exp\n",
      "\n",
      "#Variable Declaration\n",
      "g0 = 3.0\n",
      "c = 3.00e8\n",
      "h = 6.626e-34\n",
      "NA = 6.023e23\n",
      "k = 1.38e-23\n",
      "labda = 1263e-9\n",
      "T = 500.\n",
      "n = 1.0\n",
      "#Calcualtions\n",
      "beta = 1./(k*T)\n",
      "eps = h*c/labda\n",
      "qE = g0 + exp(-beta*eps)\n",
      "UE = n*NA*eps*exp(-beta*eps)/qE\n",
      "\n",
      "#Results\n",
      "print 'Energy of excited state is %4.2e J'%eps\n",
      "print 'Electronic partition function qE is %4.3e'%qE\n",
      "print 'Electronic partition function UE is %4.3e J'%UE"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Energy of excited state is 1.57e-19\n",
        "Electronic partition function qE is 3.000e+00\n",
        "Electronic partition function UE is 3.922e-06 J\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem 15.5, Page Number 376"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import log, pi, sqrt\n",
      "\n",
      "#Variable Declaration\n",
      "Mne = 0.0201797\n",
      "Mkr = 0.0837980\n",
      "Vmne = 0.0224\n",
      "Vmkr = 0.0223\n",
      "h = 6.626e-34\n",
      "NA = 6.023e23\n",
      "k = 1.38e-23\n",
      "T = 298\n",
      "R = 8.314\n",
      "n = 1.0\n",
      "\n",
      "#Calcualtions\n",
      "mne = Mne/NA\n",
      "mkr = Mkr/NA\n",
      "Labdane = sqrt(h**2/(2*pi*mne*k*T))\n",
      "Labdakr = sqrt(h**2/(2*pi*mkr*k*T))\n",
      "Sne = 5.*R/2 + R*log(Vmne/Labdane**3)-R*log(NA)\n",
      "Skr = 5.*R/2 + R*log(Vmkr/Labdakr**3)-R*log(NA)\n",
      "\n",
      "#Results\n",
      "print 'Thermal wave lengths for Ne is %4.2e m3'%Labdane\n",
      "print 'Std. Molar entropy for Ne is %4.2f J/(mol.K)'%Sne\n",
      "print 'Thermal wave lengths for Kr is %4.2e m3'%Labdakr\n",
      "print 'Std. Molar entropy for Kr is %4.2f J/(mol.K)'%Skr"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Thermal wave lengths for Ne is 2.25e-11 m3\n",
        "Std. Molar entropy for Ne is 145.46 J/(mol.K)\n",
        "Thermal wave lengths for Kr is 1.11e-11 m3\n",
        "Std. Molar entropy for Kr is 163.18 J/(mol.K)\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem 15.8, Page Number 381"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import log, pi\n",
      "\n",
      "#Variable Declaration\n",
      "M = 0.040\n",
      "h = 6.626e-34\n",
      "NA = 6.023e23\n",
      "k = 1.38e-23\n",
      "T = 298.15\n",
      "P = 1e5\n",
      "R = 8.314\n",
      "n = 1.0\n",
      "\n",
      "#Calcualtions\n",
      "m = M/NA\n",
      "Labda3 = (h**2/(2*pi*m*k*T))**(3./2)\n",
      "G0 = -n*R*T*log(k*T/(P*Labda3))\n",
      "\n",
      "#Results\n",
      "print 'Thermal wave lengths for Ne is %4.2e m3'%Labda3\n",
      "print 'The Gibbs energy for 1 mol of Ar is %6.2f kJ'%(G0/1000)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Thermal wave lengths for Ne is 4.09e-33 m3\n",
        "The Gibbs energy for 1 mol of Ar is -39.97 kJ\n"
       ]
      }
     ],
     "prompt_number": 39
    }
   ],
   "metadata": {}
  }
 ]
}