{ "metadata": { "name": "", "signature": "sha256:f8110fb6016a142f9c7bb6eab2fb7171930a565929eb5cb2f65ff0d315425e0a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15: Statistical Thermodyanamics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 15.2, Page Number 362" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Variable Declaration\n", "hnu = 1.00e-20\n", "NA = 6.023e23\n", "k = 1.38e-23\n", "U = 1.00e3\n", "n = 1\n", "#Calcualtions\n", "T = hnu/(k*log(n*NA*hnu/U-1.))\n", "\n", "#Results\n", "print 'For Internal energy to be %4.1f J temperature will be %4.1f K'%(U,T)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For Internal energy to be 1000.0 J temperature will be 449.0 K\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 15.3, Page Number 367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "\n", "#Variable Declaration\n", "g0 = 3.0\n", "c = 3.00e8\n", "h = 6.626e-34\n", "NA = 6.023e23\n", "k = 1.38e-23\n", "labda = 1263e-9\n", "T = 500.\n", "n = 1.0\n", "#Calcualtions\n", "beta = 1./(k*T)\n", "eps = h*c/labda\n", "qE = g0 + exp(-beta*eps)\n", "UE = n*NA*eps*exp(-beta*eps)/qE\n", "\n", "#Results\n", "print 'Energy of excited state is %4.2e J'%eps\n", "print 'Electronic partition function qE is %4.3e'%qE\n", "print 'Electronic partition function UE is %4.3e J'%UE" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of excited state is 1.57e-19\n", "Electronic partition function qE is 3.000e+00\n", "Electronic partition function UE is 3.922e-06 J\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 15.5, Page Number 376" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log, pi, sqrt\n", "\n", "#Variable Declaration\n", "Mne = 0.0201797\n", "Mkr = 0.0837980\n", "Vmne = 0.0224\n", "Vmkr = 0.0223\n", "h = 6.626e-34\n", "NA = 6.023e23\n", "k = 1.38e-23\n", "T = 298\n", "R = 8.314\n", "n = 1.0\n", "\n", "#Calcualtions\n", "mne = Mne/NA\n", "mkr = Mkr/NA\n", "Labdane = sqrt(h**2/(2*pi*mne*k*T))\n", "Labdakr = sqrt(h**2/(2*pi*mkr*k*T))\n", "Sne = 5.*R/2 + R*log(Vmne/Labdane**3)-R*log(NA)\n", "Skr = 5.*R/2 + R*log(Vmkr/Labdakr**3)-R*log(NA)\n", "\n", "#Results\n", "print 'Thermal wave lengths for Ne is %4.2e m3'%Labdane\n", "print 'Std. Molar entropy for Ne is %4.2f J/(mol.K)'%Sne\n", "print 'Thermal wave lengths for Kr is %4.2e m3'%Labdakr\n", "print 'Std. Molar entropy for Kr is %4.2f J/(mol.K)'%Skr" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thermal wave lengths for Ne is 2.25e-11 m3\n", "Std. Molar entropy for Ne is 145.46 J/(mol.K)\n", "Thermal wave lengths for Kr is 1.11e-11 m3\n", "Std. Molar entropy for Kr is 163.18 J/(mol.K)\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 15.8, Page Number 381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log, pi\n", "\n", "#Variable Declaration\n", "M = 0.040\n", "h = 6.626e-34\n", "NA = 6.023e23\n", "k = 1.38e-23\n", "T = 298.15\n", "P = 1e5\n", "R = 8.314\n", "n = 1.0\n", "\n", "#Calcualtions\n", "m = M/NA\n", "Labda3 = (h**2/(2*pi*m*k*T))**(3./2)\n", "G0 = -n*R*T*log(k*T/(P*Labda3))\n", "\n", "#Results\n", "print 'Thermal wave lengths for Ne is %4.2e m3'%Labda3\n", "print 'The Gibbs energy for 1 mol of Ar is %6.2f kJ'%(G0/1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thermal wave lengths for Ne is 4.09e-33 m3\n", "The Gibbs energy for 1 mol of Ar is -39.97 kJ\n" ] } ], "prompt_number": 39 } ], "metadata": {} } ] }