{ "metadata": { "name": "", "signature": "sha256:a0be5f6d37f6b1696997f58d0cc492cc18c5483e1f769555c228f3249920c51f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13: Boltzmann Distribution" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 13.1, Page Number 309" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import factorial\n", "\n", "#Variable Declaration\n", "\n", "aH = 40\n", "N = 100\n", "\n", "#Calculations\n", "aT = 100 - aH\n", "We = factorial(N)/(factorial(aT)*factorial(aH))\n", "Wexpected = factorial(N)/(factorial(N/2)*factorial(N/2))\n", "\n", "#Results\n", "print 'The observed weight %5.2e compared to %5.2e'%(We,Wexpected)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The observed weight 1.37e+28 compared to 1.01e+29\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 13.2, Page Number 310" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 13.3, Page Number 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "p0 = 0.633 #Probabilities of Energy level 1,2,3 \n", "p1 = 0.233\n", "p2 = 0.086\n", "\n", "#Calculation\n", "p4 = 1. -(p0+p1+p2)\n", "\n", "#Results\n", "print 'Probability of finding an oscillator at energy level of n>3 is %4.3f i.e.%4.1f percent'%(p4,p4*100)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Probability of finding an oscillator at energy level of n>3 is 0.048 i.e. 4.8 percent\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 13.4, Page Number 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "p0 = 0.394 #Probabilities of Energy level 1,2,3 \n", "p1by2 = 0.239\n", "p2 = 0.145\n", "\n", "#Calculation\n", "p4 = 1. -(p0+p1by2+p2)\n", "\n", "#Results\n", "print 'Probability of finding an oscillator at energy level of n>3 is %4.3f'%(p4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Probability of finding an oscillator at energy level of n>3 is 0.222\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 13.5, Page Number 321" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "\n", "#Variable Declaration\n", "I2 = 208 #Vibrational frequency, cm-1 \n", "T = 298 #Molecular Temperature, K\n", "c = 3.00e10 #speed of light, cm/s\n", "h = 6.626e-34 #Planks constant, J/K\n", "k = 1.38e-23 #Boltzman constant, J/K\n", "#Calculation\n", "q = 1./(1.-exp(-h*c*I2/(k*T)))\n", "p2 = exp(-2*h*c*I2/(k*T))/q\n", "\n", "#Results\n", "print 'Partition function is %4.3f'%(q)\n", "print 'Probability of occupying the second vibrational state n=2 is %4.3f'%(p2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Partition function is 1.577\n", "Probability of occupying the second vibrational state n=2 is 0.085\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 13.6, Page Number 322" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "B = 1.45 #Magnetic field streangth, Teslas \n", "T = 298 #Molecular Temperature, K\n", "c = 3.00e10 #speed of light, cm/s\n", "h = 6.626e-34 #Planks constant, J/K\n", "k = 1.38e-23 #Boltzman constant, J/K \n", "gnbn = 2.82e-26 #J/T\n", "#Calculation\n", "ahpbyahm = exp(-gnbn*B/(k*T))\n", "\n", "#Results\n", "print 'Occupation Number is %7.6f'%(ahpbyahm)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Occupation Number is 0.999990\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }