{ "metadata": { "name": "", "signature": "sha256:f7a31615b3beb83b8b17b3507af2b7505643c9385577352b3394c24d378e5d0b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 08: Phase Diagrams and the Relative Stability of Solids, Liquids, and Gases" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 8.2, Page Number 186 Check" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Varialble Declaration\n", "nbp = 353.24 #normal boiling point of Benzene, K\n", "pv20 = 1.19e4 #Vapor pressure of benzene at 20\u00b0C, Pa\n", "DHf = 9.95 #Latent heat of fusion, kJ/mol\n", "pv443 = 137 #Vapor pressure of benzene at -44.3\u00b0C, Pa\n", "R = 8.314 #Ideal Gas Constant, J/(mol.K)\n", "Pf = 101325 #Pa\n", "T20 = 293.15\n", "Po = 1\n", "Pl = 10000\n", "Ts = -44.3\n", "#Calculations\n", "Ts = Ts + 273.15\n", "DHf = DHf*1e3\n", "DHv = -R*log(Pf/pv20)/(1/nbp-1/T20)\n", "DSv = DHv/nbp\n", "Ttp = -DHf/(R*(log(Pl/Po)-log(pv443/Po)-(DHv+DHf)/(R*Ts) + DHv/(R*T20)))\n", "\n", "#Results\n", "print 'Latent heat of vaporization of benzene at 20\u00b0C %5.2f J/mol'%DHv\n", "print 'Entropy Change of vaporization of benzene at 20\u00b0C %3.1f J/mol'%DSv\n", "print 'Triple point of benzene %4.1f K'%Ttp" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Latent heat of vaporization of benzene at 20\u00b0C 30686.36 J/mol\n", "Entropy Change of vaporization of benzene at 20\u00b0C 86.9 J/mol\n", "Triple point of benzene 267.3 K\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 8.3, Page Number 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos, pi\n", "\n", "#Varialble Declaration\n", "gama = 71.99e-3 #Surface tension of water, N/m\n", "r = 1.2e-4 #Radius of hemisphere, m\n", "theta = 0.0 #Contact angle, rad\n", "\n", "#Calculations\n", "DP = 2*gama*cos(theta)/r\n", "F = DP*pi*r**2\n", "\n", "#Results\n", "print 'Force exerted by one leg %5.3e N'%F" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Force exerted by one leg 5.428e-05 N\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 8.4, Page Number 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import cos\n", "\n", "#Varialble Declaration\n", "gama = 71.99e-3 #Surface tension of water, N/m\n", "r = 2e-5 #Radius of xylem, m\n", "theta = 0.0 #Contact angle, rad\n", "rho = 997.0 #Density of water, kg/m3\n", "g = 9.81 #gravitational acceleration, m/s2\n", "H = 100 #Height at top of redwood tree, m\n", "\n", "#Calculations\n", "h = 2*gama/(rho*g*r*cos(theta))\n", "\n", "#Results\n", "print 'Height to which water can rise by capillary action is %3.2f m'%h\n", "print 'This is very less than %4.1f n, hence water can not reach top of tree'%H" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Height to which water can rise by capillary action is 0.74 m\n", "This is very less than 100.0 n, hence water can not reach top of tree\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }