{ "metadata": { "name": "", "signature": "sha256:267b6c699ea5b02708cd7837dc08f6cae55ca12f860a79f0fcaa34ccb60be757" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 06: Chemical Equilibrium" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.1, Page Number 117" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "dHcCH4 = -891.0 #Std. heat of combustion for CH4, kJ/mol\n", "dHcC8H18 = -5471.0 #Std. heat of combustion for C8H18, kJ/mol\n", "\n", "T = 298.15\n", "SmCO2, SmCH4, SmH2O, SmO2, SmC8H18 = 213.8,186.3,70.0,205.2, 316.1\n", "dnCH4 = -2.\n", "dnC8H18 = 4.5\n", "R = 8.314\n", "#Calculations\n", "dACH4 = dHcCH4*1e3 - dnCH4*R*T - T*(SmCO2 + 2*SmH2O - SmCH4 - 2*SmO2)\n", "dAC8H18 = dHcC8H18*1e3 - dnC8H18*R*T - T*(8*SmCO2 + 9*SmH2O - SmC8H18 - 25.*SmO2/2) \n", "#Results \n", "print 'Maximum Available work through combustion of CH4 %4.1f kJ/mol'%(dACH4/1000)\n", "print 'Maximum Available work through combustion of C8H18 %4.1f kJ/mol'%(dAC8H18/1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum Available work through combustion of CH4 -813.6 kJ/mol\n", "Maximum Available work through combustion of C8H18 -5320.9 kJ/mol\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.2, Page Number 118" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "dHcCH4 = -891.0 #Std. heat of combustion for CH4, kJ/mol\n", "dHcC8H18 = -5471.0 #Std. heat of combustion for C8H18, kJ/mol\n", "\n", "T = 298.15\n", "SmCO2, SmCH4, SmH2O, SmO2, SmC8H18 = 213.8,186.3,70.0,205.2, 316.1\n", "dnCH4 = -2.\n", "dnC8H18 = 4.5\n", "R = 8.314\n", "#Calculations\n", "dGCH4 = dHcCH4*1e3 - T*(SmCO2 + 2*SmH2O - SmCH4 - 2*SmO2)\n", "dGC8H18 = dHcC8H18*1e3 - T*(8*SmCO2 + 9*SmH2O - SmC8H18 - 25.*SmO2/2) \n", "#Results \n", "print 'Maximum nonexapnasion work through combustion of CH4 %4.1f kJ/mol'%(dGCH4/1000)\n", "print 'Maximum nonexapnasion work through combustion of C8H18 %4.1f kJ/mol'%(dGC8H18/1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum nonexapnasion work through combustion of CH4 -818.6 kJ/mol\n", "Maximum nonexapnasion work through combustion of C8H18 -5309.8 kJ/mol\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.4, Page Number 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "dGf298 = 370.7 #Std. free energy of formation for Fe (g), kJ/mol\n", "dHf298 = 416.3 #Std. Enthalpy of formation for Fe (g), kJ/mol\n", "T0 = 298.15 #Temperature in K\n", "T = 400. #Temperature in K\n", "R = 8.314\n", "\n", "#Calculations\n", "\n", "dGf = T*(dGf298*1e3/T0 + dHf298*1e3*(1./T - 1./T0))\n", "\n", "#Results \n", "print 'Std. free energy of formation for Fe(g) at 400 K is %4.1f kJ/mol'%(dGf/1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Std. free energy of formation for Fe(g) at 400 K is 355.1 kJ/mol\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.5, Page Number 127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Variable Declaration\n", "nHe = 1.0 #Number of moles of He\n", "nNe = 3.0 #Number of moles of Ne\n", "nAr = 2.0 #Number of moles of Ar\n", "nXe = 2.5 #Number of moles of Xe\n", "T = 298.15 #Temperature in K\n", "P = 1.0 #Pressure, bar\n", "R = 8.314\n", "\n", "#Calculations\n", "n = nHe + nNe + nAr + nXe\n", "dGmix = n*R*T*((nHe/n)*log(nHe/n) + (nNe/n)*log(nNe/n) +(nAr/n)*log(nAr/n) + (nXe/n)*log(nXe/n))\n", "dSmix = n*R*((nHe/n)*log(nHe/n) + (nNe/n)*log(nNe/n) +(nAr/n)*log(nAr/n) + (nXe/n)*log(nXe/n))\n", "\n", "#Results \n", "print 'Std. free energy Change on mixing is %3.1e J'%(dGmix)\n", "print 'Std. entropy Change on mixing is %4.1f J'%(dSmix)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Std. free energy Change on mixing is -2.8e+04 J\n", "Std. entropy Change on mixing is -93.3 J\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.6, Page Number 128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "dGfFe = 0.0 #Std. Gibbs energy of formation for Fe (S), kJ/mol\n", "dGfH2O = -237.1 #Std. Gibbs energy of formation for Water (g), kJ/mol\n", "dGfFe2O3 = -1015.4 #Std. Gibbs energy of formation for Fe2O3 (s), kJ/mol\n", "dGfH2 = 0.0 #Std. Gibbs energy of formation for Hydrogen (g), kJ/mol\n", "T0 = 298.15 #Temperature in K\n", "R = 8.314\n", "nFe, nH2, nFe2O3, nH2O = 3,-4,-1,4\n", "\n", "#Calculations\n", "dGR = nFe*dGfFe + nH2O*dGfH2O + nFe2O3*dGfFe2O3 + nH2*dGfH2 \n", "\n", "#Results \n", "print 'Std. Gibbs energy change for reaction is %4.2f kJ/mol'%(dGR)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Std. Gibbs energy change for reaction is 67.00 kJ/mol\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.7, Page Number 128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "dGR = 67.0 #Std. Gibbs energy of formation for reaction, kJ, from previous problem\n", "dHfFe = 0.0 #Enthalpy of formation for Fe (S), kJ/mol\n", "dHfH2O = -285.8 #Enthalpy of formation for Water (g), kJ/mol\n", "dHfFe2O3 = -1118.4 #Enthalpy of formation for Fe2O3 (s), kJ/mol\n", "dHfH2 = 0.0 #Enthalpy of formation for Hydrogen (g), kJ/mol\n", "T0 = 298.15 #Temperature in K\n", "T = 525. #Temperature in K\n", "R = 8.314\n", "nFe, nH2, nFe2O3, nH2O = 3,-4,-1,4\n", "\n", "#Calculations\n", "dHR = nFe*dHfFe + nH2O*dHfH2O + nFe2O3*dHfFe2O3 + nH2*dHfH2 \n", "dGR2 = T*(dGR*1e3/T0 + dHR*1e3*(1./T - 1./T0))\n", "\n", "#Results \n", "print 'Std. Enthalpy change for reactionat %4.1f is %4.2f kJ/mol'%(T, dHR)\n", "print 'Std. Gibbs energy change for reactionat %4.1f is %4.0f kJ/mol'%(T, dGR2/1e3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Std. Enthalpy change for reactionat 525.0 is -24.80 kJ/mol\n", "Std. Gibbs energy change for reactionat 525.0 is 137 kJ/mol\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.8, Page Number 130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "\n", "#Variable Declaration\n", "dGfNO2 = 51.3 #Std. Gibbs energy of formation for NO2 (g), kJ/mol\n", "dGfN2O4 = 99.8 #Std. Gibbs energy of formation for N2O4 (g), kJ/mol\n", "T0 = 298.15 #Temperature in K\n", "pNO2 = 0.350 #Partial pressure of NO2, bar\n", "pN2O4 = 0.650 #Partial pressure of N2O4, bar\n", "R = 8.314\n", "nNO2, nN2O4 = -2, 1 #Stoichiomentric coeff of NO2 and N2O4 respectively in reaction\n", "\n", "#Calculations\n", "dGR = nN2O4*dGfN2O4*1e3 + nNO2*dGfNO2*1e3 + R*T0*log(pN2O4/(pNO2)**2)\n", "\n", "#Results \n", "print 'Std. Gibbs energy change for reaction is %5.3f kJ/mol'%(dGR/1e3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Std. Gibbs energy change for reaction is 1.337 kJ/mol\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.9, Page Number 131" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "\n", "#Variable Declaration\n", "dGfCO2 = -394.4 #Std. Gibbs energy of formation for CO2 (g), kJ/mol\n", "dGfH2 = 0.0 #Std. Gibbs energy of formation for H2 (g), kJ/mol\n", "dGfCO = 237.1 #Std. Gibbs energy of formation for CO (g), kJ/mol\n", "dGfH2O = 137.2 #Std. Gibbs energy of formation for H24 (l), kJ/mol\n", "T0 = 298.15 #Temperature in K\n", "R = 8.314\n", "nCO2, nH2, nCO, nH2O = 1,1,1,1 #Stoichiomentric coeff of CO2,H2,CO,H2O respectively in reaction\n", "\n", "#Calculations\n", "dGR = nCO2*dGfCO2 + nH2*dGfH2 + nCO*dGfCO + nH2O*dGfH2O\n", "Kp = exp(-dGR*1e3/(R*T0))\n", "\n", "#Results \n", "print 'Std. Gibbs energy change for reaction is %5.3f kJ/mol'%(dGR/1e3)\n", "print 'Equilibrium constant for reaction is %5.3f '%(Kp)\n", "if Kp > 1: print 'Kp >> 1. hence, mixture will consists of product CO2 and H2'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Std. Gibbs energy change for reaction is -0.020 kJ/mol\n", "Equilibrium constant for reaction is 3323.254 \n", "Kp >> 1. hence, mixture will consists of product CO2 and H2\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.11, Page Number 133" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp, sqrt\n", "\n", "#Variable Declaration\n", "dGfCl2 = 0.0 #Std. Gibbs energy of formation for CO2 (g), kJ/mol\n", "dGfCl = 105.7 #Std. Gibbs energy of formation for H2 (g), kJ/mol\n", "dHfCl2 = 0.0 #Std. Gibbs energy of formation for CO (g), kJ/mol\n", "dHfCl = 121.3 #Std. Gibbs energy of formation for H24 (l), kJ/mol\n", "T0 = 298.15 #Temperature in K\n", "R = 8.314\n", "nCl2, nCl= -1,2 #Stoichiomentric coeff of Cl2,Cl respectively in reaction\n", "PbyP0 = 0.01\n", "#Calculations\n", "dGR = nCl*dGfCl + nCl2*dGfCl2 \n", "dHR = nCl*dHfCl + nCl2*dHfCl2 \n", "func = lambda T: exp(-dGR*1e3/(R*T0) - dHR*1e3*(1./T - 1./T0)/R)\n", "Kp8 = func(800)\n", "Kp15 = func(1500)\n", "Kp20 = func(2000)\n", "DDiss = lambda K: sqrt(K/(K+4*PbyP0))\n", "alp8 = DDiss(Kp8)\n", "alp15 = DDiss(Kp15)\n", "alp20 = DDiss(Kp20)\n", "\n", "#Results \n", "print 'Part A'\n", "print 'Std. Gibbs energy change for reaction is %5.3f kJ/mol'%(dGR)\n", "print 'Std. Enthalpy change for reaction is %5.3f kJ/mol'%(dHR)\n", "print 'Equilibrium constants at 800, 1500, and 2000 K are %4.3e, %4.3e, and %4.3e'%(Kp8,Kp15,Kp20)\n", "\n", "print 'Part B'\n", "print 'Degree of dissociation at 800, 1500, and 2000 K are %4.3e, %4.3e, and %4.3e'%(alp8,alp15,alp20)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part A\n", "Std. Gibbs energy change for reaction is 211.400 kJ/mol\n", "Std. Enthalpy change for reaction is 242.600 kJ/mol\n", "Equilibrium constants at 800, 1500, and 2000 K are 4.223e-11, 1.042e-03, and 1.349e-01\n", "Part B\n", "Degree of dissociation at 800, 1500, and 2000 K are 3.249e-05, 1.593e-01, and 8.782e-01\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.12, Page Number 134" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "\n", "#Variable Declaration\n", "dGfCaCO3 = -1128.8 #Std. Gibbs energy of formation for CaCO3 (s), kJ/mol\n", "dGfCaO = -603.3 #Std. Gibbs energy of formation for CaO (s), kJ/mol\n", "dGfCO2 = -394.4 #Std. Gibbs energy of formation for O2 (g), kJ/mol\n", "dHfCaCO3 = -1206.9 #Std. Enthalpy Change of formation for CaCO3 (s), kJ/mol\n", "dHfCaO = -634.9 #Std. Enthalpy Change of formation for CaO (s), kJ/mol\n", "dHfCO2 = -393.5 #Std. Enthalpy Change of formation for O2 (g), kJ/mol\n", "T0 = 298.15 #Temperature in K\n", "R = 8.314\n", "nCaCO3, nCaO, nO2 = -1,1,1 #Stoichiomentric coeff of CaCO3, CaO, O2 respectively in reaction\n", "\n", "#Calculations\n", "dGR = nCaO*dGfCaO + nO2*dGfCO2 + nCaCO3*dGfCaCO3\n", "dHR = nCaO*dHfCaO + nO2*dHfCO2 + nCaCO3*dHfCaCO3\n", "\n", "func = lambda T: exp(-dGR*1e3/(R*T0) - dHR*1e3*(1./T - 1./T0)/R)\n", "\n", "Kp10 = func(1000)\n", "Kp11 = func(1100)\n", "Kp12 = func(1200)\n", "\n", "#Results \n", "print 'Std. Gibbs energy change for reaction is %4.1f kJ/mol'%(dGR)\n", "print 'Std. Enthalpy change for reaction is %4.1f kJ/mol'%(dHR)\n", "print 'Equilibrium constants at 1000, 1100, and 1200 K are %4.4f, %4.3fe, and %4.3f'%(Kp10,Kp11,Kp12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Std. Gibbs energy change for reaction is 131.1 kJ/mol\n", "Std. Enthalpy change for reaction is 178.5 kJ/mol\n", "Equilibrium constants at 1000, 1100, and 1200 K are 0.0956, 0.673e, and 3.423\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.13, Page Number 135" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "\n", "#Variable Declaration\n", "dGfCG = 0.0 #Std. Gibbs energy of formation for CaCO3 (s), kJ/mol\n", "dGfCD = 2.90 #Std. Gibbs energy of formation for CaO (s), kJ/mol\n", "rhoG = 2.25e3 #Density of Graphite, kg/m3\n", "rhoD = 3.52e3 #Density of dimond, kg/m3\n", "T0 = 298.15 #Std. Temperature, K\n", "R = 8.314 #Ideal gas constant, J/(mol.K) \n", "P0 = 1.0 #Pressure, bar\n", "M = 12.01 #Molceular wt of Carbon\n", "#Calculations\n", "P = P0*1e5 + dGfCD*1e3/((1./rhoG-1./rhoD)*M*1e-3)\n", "\n", "#Results \n", "print 'Pressure at which graphite and dimond will be in equilibrium is %4.2e bar'%(P/1e5)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure at which graphite and dimond will be in equilibrium is 1.51e+04 bar\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.14, Page Number 143" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "\n", "#Variable Declaration\n", "beta = 2.04e-4 #Thermal exapansion coefficient, /K\n", "kapa = 45.9e-6 #Isothermal compressibility, /bar\n", "T = 298.15 #Std. Temperature, K\n", "R = 8.206e-2 #Ideal gas constant, atm.L/(mol.K) \n", "T1 = 320.0 #Temperature, K\n", "Pi = 1.0 #Initial Pressure, bar\n", "V = 1.00 #Volume, m3\n", "a = 1.35 #van der Waals constant a for nitrogen, atm.L2/mol2\n", "\n", "#Calculations\n", "dUbydV = Pf = (beta*T1-kapa*P0)/kapa\n", "dVT = V*kapa*(Pf-Pi)\n", "dVbyV = dVT*100/V\n", "Vm = Pi/(R*T1)\n", "dUbydVm = a/(Vm**2)\n", "\n", "#Results \n", "print 'dUbydV = %4.2e bar'%(dUbydV)\n", "print 'dVbyV = %4.3f percent'%(dVbyV)\n", "print 'dUbydVm = %4.0e atm'%(dUbydVm)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dUbydV = 1.42e+03 bar\n", "dVbyV = 6.519 percent\n", "dUbydVm = 9e+02 atm\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.15, Page Number 144" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp, log\n", "\n", "#Variable Declaration\n", "m = 1000.0 #mass of mercury, g\n", "Pi, Ti = 1.00, 300.0 #Intial pressure and temperature, bar, K\n", "Pf, Tf = 300., 600.0 #Final pressure and temperature, bar, K\n", "rho = 13534. #Density of mercury, kg/m3\n", "beta = 18.1e-4 #Thermal exapansion coefficient for Hg, /K \n", "kapa = 3.91e-6 #Isothermal compressibility for Hg, /Pa\n", "Cpm = 27.98 #Molar Specific heat at constant pressure, J/(mol.K) \n", "M = 200.59 #Molecular wt of Hg, g/mol\n", "\n", "#Calculations\n", "Vi = m*1e-3/rho\n", "Vf = Vi*exp(-kapa*(Pf-Pi))\n", "Ut = m*Cpm*(Tf-Ti)/M \n", "Up = (beta*Ti/kapa-Pi)*1e5*(Vf-Vi) + (Vi-Vf+Vf*log(Vf/Vi))*1e5/kapa\n", "dU = Ut + Up\n", "Ht = m*Cpm*(Tf-Ti)/M\n", "Hp = ((1 + beta*(Tf-Ti))*Vi*exp(-kapa*Pi)/kapa)*(exp(-kapa*Pi)-exp(-kapa*Pf))\n", "dH = Ht + Hp\n", "#Results\n", "print 'Internal energy change is %6.2e J/mol in which \\ncontribution of temeprature dependent term %6.4f percent'%(dU,Ut*100/dH)\n", "print 'Enthalpy change is %4.3e J/mol in which \\ncontribution of temeprature dependent term %4.1f percent'%(dH,Ht*100/dH)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Internal energy change is 4.06e+04 J/mol in which \n", "contribution of temeprature dependent term 99.9999 percent\n", "Enthalpy change is 4.185e+04 J/mol in which \n", "contribution of temeprature dependent term 100.0 percent\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.16, Page Number 145" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "T = 300.0 #Temperature of Hg, K \n", "beta = 18.1e-4 #Thermal exapansion coefficient for Hg, /K \n", "kapa = 3.91e-6 #Isothermal compressibility for Hg, /Pa\n", "M = 0.20059 #Molecular wt of Hg, kg/mol \n", "rho = 13534 #Density of mercury, kg/m3\n", "Cpm = 27.98 #Experimental Molar specif heat at const pressure for mercury, J/(mol.K)\n", "\n", "#Calculations\n", "Vm = M/rho\n", "DCpmCv = T*Vm*beta**2/kapa\n", "Cvm = Cpm - DCpmCv\n", "#Results\n", "print 'Difference in molar specific heats \\nat constant volume and constant pressure %4.2e J/(mol.K)'%DCpmCv\n", "print 'Molar Specific heat of Hg at const. volume is %4.2f J/(mol.K)'%Cvm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Difference in molar specific heats \n", "at constant volume and constant pressure 3.73e-03 J/(mol.K)\n", "Molar Specific heat of Hg at const. volume is 27.98 J/(mol.K)\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example Problem 6.17, Page Number 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable Declaration\n", "T = 298.15 #Std. Temperature, K \n", "P = 1.0 #Initial Pressure, bar\n", "Hm0, Sm0 = 0.0,154.8 #Std. molar enthalpy and entropy of Ar(g), kJ, mol, K units\n", "Sm0H2, Sm0O2 = 130.7,205.2 #Std. molar entropy of O2 and H2 (g), kJ/(mol.K)\n", "dGfH2O = -237.1 #Gibbs energy of formation for H2O(l), kJ/mol \n", "nH2, nO2 = 1, 1./2 #Stoichiomentric coefficients for H2 and O2 in water formation reaction \n", "\n", "#Calculations\n", "Gm0 = Hm0 - T*Sm0\n", "dGmH2O = dGfH2O*1000 - T*(nH2*Sm0H2 + nO2*Sm0O2)\n", "#Results\n", "print 'Molar Gibbs energy of Ar %4.3f kJ/mol'%(Gm0/1e3)\n", "print 'Molar Gibbs energy of Water %4.3f kJ/mol'%(dGmH2O/1e3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Molar Gibbs energy of Ar -46.154 kJ/mol\n", "Molar Gibbs energy of Water -306.658 kJ/mol\n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }