{ "metadata": { "name": "", "signature": "sha256:5f892b8e3ed0a74f24a745bdf0e14528cdf96fe8388a860fc7931df67549db87" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter10-Brakes and Dynamometers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg268" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 1 PAGE NO 268\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#calculate torque transmitted by the block brake\n", "##===========================================================================================\n", "##INPUT DATA\n", "d=0.32;##Diameter of the drum in m\n", "qq=90.;##Angle of contact in degree\n", "P=820.;##Force applied in N\n", "U=0.35;##Coefficient of friction\n", "\n", "\n", "U1=((4.*U*math.sin(45/57.3))/((qq*(3.14/180.))+math.sin(90./57.3)));##Equivalent coefficient of friction\n", "F=((P*0.66)/((0.3/U1)-0.06));##Force value in N taking moments\n", "TB=(F*(d/2.));##Torque transmitted in N.m\n", "\n", "print'%s %.4f %s'%('Torque transmitted by the block brake is ',TB,' N.m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Torque transmitted by the block brake is 120.4553 N.m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg269" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 2 PAGE NO 269\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#calculate The bicycle travels a distance and makes turns before it comes to rest\n", "##===========================================================================================\n", "##INPUT DATA\n", "m=120.;##Mass of rider in kg\n", "v=16.2;##Speed of rider in km/hr\n", "d=0.9;##Diameter of the wheel in m\n", "P=120.;##Pressure applied on the brake in N\n", "U=0.06;##Coefficient of friction\n", "\n", "F=(U*P);##Frictional force in N\n", "KE=((m*(v*(5./18.))**2.)/2.);##Kinematic Energy in N.m\n", "S=(KE/F);##Distance travelled by the bicycle before it comes to rest in m\n", "N=(S/(d*3.14));##Required number of revolutions\n", "\n", "print'%s %.1f %s %.1f %s'%('The bicycle travels a distance of ',S,' m'and'',N,'turns before it comes to rest')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The bicycle travels a distance of 168.8 59.7 turns before it comes to rest\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg270" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 3 PAGE NO 270\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#evaluvate maximum torque absorbed\n", "##===========================================================================================\n", "##INPUT DATA\n", "S=3500.;##Force on each arm in N\n", "d=0.36;##Diamter of the wheel in m\n", "U=0.4;##Coefficient of friction \n", "qq=100.;##Contact angle in degree\n", "\n", "qqr=(qq*(3.14/180));##Contact angle in radians\n", "UU=((4*U*math.sin(50/57.3))/(qqr+(math.sin(100./57.3))));##Equivalent coefficient of friction\n", "F1=(S*0.45)/((0.2/UU)+((d/2.)-0.04));##Force on fulcrum in N\n", "F2=(S*0.45)/((0.2/UU)-((d/2.)-0.04));##Force on fulcrum in N\n", "TB=(F1+F2)*(d/2.);##Maximum torque absorbed in N.m\n", "\n", "print'%s %.2f %s'%('Maximum torque absorbed is ',TB,' N.m')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum torque absorbed is 1412.67 N.m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg271" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 4 PAGE NO 271\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#calculate The maximum braking torque on the drum\n", "##===========================================================================================\n", "##INPUT DATA\n", "a=0.5;##Length of lever in m\n", "d=0.5;##Diameter of brake drum in m\n", "q=(5/8.)*(2*3.14);##Angle made in radians\n", "b=0.1;##Distance between pin and fulcrum in m\n", "P=2000.;##Effort applied in N\n", "U=0.25;##Coefficient of friction\n", "\n", "T=math.exp(U*q);##Ratios of tension\n", "T2=((P*a)/b);##Tension in N\n", "T1=(T*T2);##Tension in N\n", "TB=((T1-T2)*(d/2.))/1000.;##Maximum braking torque in kNm\n", "\n", "print'%s %.2f %s'%('The maximum braking torque on the drum is',TB,' kNm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum braking torque on the drum is 4.17 kNm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg271" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 5 PAGE NO 271\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#caculate the brake is self -locking and tension in the side \n", "##===========================================================================================\n", "##INPUT DATA\n", "q=220.;##Angle of contact in degree\n", "T=340.;##Torque in Nm\n", "d=0.32;##Diameter of drum in m\n", "U=0.3;##Coefficient of friction\n", "\n", "Td=(T/(d/2.));##Difference in tensions in N\n", "Tr=math.exp(U*(q*(3.14/180.)));##Ratio of tensions\n", "T2=(Td/(Tr-1.));##Tension in N\n", "T1=(Tr*T2);##Tension in N\n", "P=((T2*(d/2.))-(T1*0.04))/0.5;##Force applied in N\n", "b=(T1/T2)*4.;##Value of b in cm when the brake is self-locking\n", "\n", "print'%s %.2f %s %.2f %s %.2f %s '%('The value of b is ',b,' cm' 'when the brake is self-locking ' 'Tensions in the sides are ',T1,' N and',T2,' N')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of b is 12.65 cmwhen the brake is self-locking Tensions in the sides are 3107.70 N and 982.70 N \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg272" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 6 PAGE NO 272\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#calculate torque required and thickness necessary to limit the tensile stress to 70 and secton of the lever taking stress to 60 mpa\n", "##===========================================================================================\n", "##INPUT DATA\n", "d=0.5;##Drum diamter in m\n", "U=0.3;##Coefficient of friction\n", "q=250;##Angle of contact in degree\n", "P=750;##Force in N\n", "a=0.1;##Band width in m\n", "b=0.8;##Distance in m\n", "ft=(70*10**6);##Tensile stress in Pa\n", "f=(60*10**6);##Stress in Pa\n", "b1=0.1;##Distance in m\n", "\n", "T=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n", "T2=(P*b*10.)/(T+1.);##Tension in N\n", "T1=(T*T2);##Tension in N\n", "TB=(T1-T2)*(d/2.);##Torque in N.m\n", "t=(max(T1,T2)/(ft*a))*1000.;##Thickness in mm\n", "M=(P*b);##bending moment at fulcrum in Nm\n", "X=(M/((1/6.)*f));##Value of th**2\n", "##t varies from 10mm to 15 mm. Taking t=15mm,\n", "h=math.sqrt(X/(0.015))*1000.;##Section of the lever in m\n", "\n", "print'%s %.1f %s %.1f %s %.1f %s'%('Torque required is ',TB,' N.m' 'Thickness necessary to limit the tensile stress to 70 MPa is ',t,' mm ''Section of the lever taking stress to 60 MPa is ',h,' mm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Torque required is 861.7 N.mThickness necessary to limit the tensile stress to 70 MPa is 0.7 mm Section of the lever taking stress to 60 MPa is 63.2 mm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg273" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 7 PAGE NO 273\n", "##TITLE:Brakes and Dynamometers\n", "#calculate value of x and value of power/bd ratio \n", "import math\n", "##===========================================================================================\n", "##INPUT DATA\n", "P1=30.;##Power in kW\n", "N=1250.;##Speed in r.p.m\n", "P=60.;##Applied force in N\n", "d=0.8;##Drum diameter in m\n", "q=310.;##Contact angle in degree\n", "a=0.03;##Length of a in m\n", "b=0.12;##Length of b in m\n", "U=0.2;##Coefficient of friction\n", "B=10.;##Band width in cm\n", "D=80.;##Diameter in cm\n", "\n", "T=(P1*60000.)/(2.*3.14*N);##Torque in N.m\n", "Td=(T/(d/2.));##Tension difference in N\n", "Tr=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n", "T2=(Td/(Tr-1.));##Tension in N\n", "T1=(Tr*T2);##Tension in N\n", "x=((T2*b)-(T1*a))/P;##Distance in m;\n", "X=(P1/(B*D));##Ratio\n", "\n", "print'%s %.3f %s %.3f %s'%('Value of x is ',x,' m '' Value of (Power/bD) ratio is ',X,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of x is 0.155 m Value of (Power/bD) ratio is 0.037 \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg274" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 8 PAGE NO 274\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#calculate time required to bring the shaft to the rest from its running condition\n", "##===========================================================================================\n", "##INPUT DATA\n", "m=80.;##Mass of flywheel in kg\n", "k=0.5;##Radius of gyration in m\n", "N=250;##Speed in r.p.m\n", "d=0.32;##Diamter of the drum in m\n", "b=0.05;##Distance of pin in m\n", "q=260.;##Angle of contact in degree\n", "U=0.23;##Coefficient of friction\n", "P=20;##Force in N\n", "a=0.35;##Distance at which force is applied in m\n", "\n", "Tr=math.exp(U*q*(3.14/180.));##Tensions ratio\n", "T2=(P*a)/b;##Tension in N\n", "T1=(Tr*T2);##Tension in N\n", "TB=(T1-T2)*(d/2.);##Torque in N.m\n", "KE=((1/2.)*(m*k**2)*((2.*3.14*N)/60.)**2);##Kinematic energy of the rotating drum in Nm\n", "N1=(KE/(TB*2.*3.14));##Speed in rpm\n", "aa=((2*3.14*N)/60.)**2/(4.*3.14*N1);##Angular acceleration in rad/s**2\n", "t=((2.*3.14*N)/60.)/aa;##Time in seconds\n", "\n", "print'%s %.1f %s'%('Time required to bring the shaft to the rest from its running condition is ',t,' seconds')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time required to bring the shaft to the rest from its running condition is 12.7 seconds\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 9 PAGE NO 275\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#calculate Minimum force required and Time taken to bring to rest \n", "##===========================================================================================\n", "##INPUT DATA\n", "n=12.;##Number of blocks\n", "q=15.;##Angle subtended in degree\n", "P=185.;##Power in kW\n", "N=300.;##Speed in r.p.m\n", "U=0.25;##Coefficient of friction\n", "d=1.25;##Diamter in m\n", "b1=0.04;##Distance in m\n", "b2=0.14;##Distance in m\n", "a=1.;##Diatance in m\n", "m=2400.;##Mass of rotor in kg\n", "k=0.5;##Radius of gyration in m\n", "\n", "Td=(P*60000.)/(2.*3.14*N*(d/2.));##Tension difference in N\n", "T=Td*(d/2.);##Torque in Nm\n", "Tr=((1+(U*math.tan(7.5/57.3)))/(1.-(U*math.tan(7.5/57.3))))**n;##Tension ratio\n", "To=(Td/(Tr-1.));##Tension in N\n", "Tn=(Tr*To);##Tension in N\n", "P=((To*b2)-(Tn*b1))/a;##Force in N\n", "aa=(T/(m*k**2));##Angular acceleration in rad/s**2\n", "t=((2*3.14*N)/60.)/aa;##Time in seconds\n", "\n", "print'%s %.1f %s %.1f %s'%('Minimum force required is ',P,' N' 'Time taken to bring to rest is ',t,' seconds')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum force required is 406.1 NTime taken to bring to rest is 3.2 seconds\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##CHAPTER 10 ILLUSRTATION 10 PAGE NO 275\n", "##TITLE:Brakes and Dynamometers\n", "import math\n", "#calculate Maximum braking torque and Angular retardation of the drum and Time taken by the system to come to rest \n", "##===========================================================================================\n", "##INPUT DATA\n", "n=12.;## Number of blocks\n", "q=16.;##Angle subtended in degrees\n", "d=0.9;##Effective diameter in m\n", "m=2000.;##Mass in kg\n", "k=0.5;##Radius of gyration in m\n", "b1=0.7;##Distance in m\n", "b2=0.03;##Distance in m\n", "a=0.1;##Distance in m\n", "P=180.;##Force in N\n", "N=360.;##Speed in r.p.m\n", "U=0.25;##Coefficient of friction\n", "\n", "Tr=((1.+(U*math.tan(8/57.3)))/(1.-(U*math.tan(8/57.3))))**n;##Tensions ratio\n", "T2=(P*b1)/(a-(b2*Tr));##Tension in N\n", "T1=(Tr*T2);##Tension in N\n", "TB=(T1-T2)*(d/2.);##Torque in N.m\n", "aa=(TB/(m*k**2.));##Angular acceleration in rad/s**2\n", "t=((2.*3.14*N)/60.)/aa;##Time in seconds\n", "\n", "print'%s %.2f %s %.2f %s %.2f %s '%('(i) Maximum braking torque is ',TB,'Nm ''(ii) Angular retardation of the drum is ',aa,' rad/s**2''(iii) Time taken by the system to come to rest is ',t,' s')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Maximum braking torque is 2481.63 Nm (ii) Angular retardation of the drum is 4.96 rad/s**2(iii) Time taken by the system to come to rest is 7.59 s \n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }