{ "metadata": { "name": "", "signature": "sha256:8b757cfb7a3d46c26051163fc5ae963591320e2fd8a4c339acfb031be7305afd" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : Acceleration in Mechanisms" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1 Page No : 177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NBO = 300. \t\t\t#rpm\n", "OB = 150./1000\n", "BA = 600./1000 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.4\n", "#Calculating the angular velocity of BO\n", "omegaBO = 2*math.pi*NBO/60 \t\t\t#rad/s\n", "#Calculating the linear velocity of B with respect to O\n", "vBO = omegaBO*OB \t\t\t#m/s\n", "vB = vBO\n", "#By measurement from the velocity diagram Fig. 8.4(b)\n", "vAB = 3.4\n", "vD = 4.1 \t\t\t#m/s\n", "#Calculating the radial component of the acceleration of B with respect of O\n", "arBO = vBO**2/OB \t\t\t#m/s**2\n", "aB = arBO\n", "#Calculating the radisla component of the accaleration of A with respect to B\n", "arAB = vAB**2/BA \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.4(c)\n", "aD = 117.\n", "adashAB = 103. \t\t\t#m/s**2\n", "#Calculating the angular velocity of the connecting rod\n", "omegaAB = vAB/BA \t\t\t#rad/s**2\n", "#Calculating the angular acceleration of the connecting rod\n", "alphaAB = adashAB/BA \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" The linear velocity of the midpoint of the connecting rod, vD = %.1f m/s.\"%(vD)\n", "print \" The linear acceleration of the midpoint of the connecting rod, aD = %d m/s**2.\"%(aD)\n", "print \" The angular velocity of the connecting rod, omegaAB = %.2f rad/s, anticlockwise about B.\"%(omegaAB)\n", "print \" The angular acceleration of the connecting rod, alphaAB = %.2f rad/s**2, clockwise about B.\"%(alphaAB)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The linear velocity of the midpoint of the connecting rod, vD = 4.1 m/s.\n", " The linear acceleration of the midpoint of the connecting rod, aD = 117 m/s**2.\n", " The angular velocity of the connecting rod, omegaAB = 5.67 rad/s, anticlockwise about B.\n", " The angular acceleration of the connecting rod, alphaAB = 171.67 rad/s**2, clockwise about B.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2 Page No : 180" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "omegaBC = 75. \t \t\t#rad/s\n", "alphaBC = 1200. \t\t\t#rad/s**2\n", "CB = 100/1000. #m\n", "BA = 300/1000. \t\t\t#m/\n", "\n", "#Solution:\n", "#Refer Fig. 8.5\n", "#Calculating the linear velocity of B with respect to C\n", "vBC = omegaBC*CB \t\t\t#m/s\n", "#Calculating the math.tangential component of the acceleration of B with respect to C\n", "alphatBC = alphaBC*CB \t\t\t#m/s**2\n", "#By measurement from the velocity diagram Fig. 8.6(b)\n", "vG = 6.8\n", "vAB = 4 \t\t\t#m/s\n", "#Calculating the angular velocity of AB\n", "omegaAB = vAB/BA \t\t\t#rad/s\n", "#Calculating the radial component of the acceleration of B with respect to C\n", "arBC = vBC**2/CB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of A with respect to B\n", "arAB = vAB**2/BA \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.6(c)\n", "arBC = 120.\n", "arAB = 53.3\n", "aG = 414.\n", "atAB = 546. \t\t\t#m/s**2\n", "#Calculating the angular acceleration of AB\n", "alphaAB = atAB/BA \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" The velocity of G, vG = %.1f m/s.\"%(vG)\n", "print \" The angular velocity of AB, omegaAB = %.1f rad/s, clockwise.\"%(omegaAB)\n", "print \" The acceleration of G, aG = %d m/s**2.\"%(aG)\n", "print \" The angular accaleration of AB, alphaAB = %d rad/s**2.\"%(alphaAB)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The velocity of G, vG = 6.8 m/s.\n", " The angular velocity of AB, omegaAB = 13.3 rad/s, clockwise.\n", " The acceleration of G, aG = 414 m/s**2.\n", " The angular accaleration of AB, alphaAB = 1820 rad/s**2.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3 Page No : 182" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "vC = 1.\n", "vCD = vC \t\t\t#m/s\n", "aC = 2.5 \t\t\t#m/s**2\n", "AB = 3. #m\n", "BC = 1.5 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.8\n", "#By measurement from the velocity diagram Fig. 8.8(b)\n", "vBA = 0.72\n", "vBC = 0.72 \t\t\t#m/s\n", "#Calculating the radial component of acceleration of B with respect to C\n", "arBC = vBC**2/BC \t\t\t#m/s**2\n", "#Calculating the radial component of acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.8(c)\n", "aCD = 2.5\n", "aC = aCD\n", "arBC = 0.346\n", "arBA = 0.173\n", "atBA = 1.41\n", "atBC = 1.94\n", "vectorbb = 1.13\n", "vectorab = 0.9 \t\t\t#m/s**2\n", "#Calculating the angular accaleration of AB\n", "alphaAB = atBA/AB \t\t\t#rad/s**2\n", "#Calculating the angular acceleration of BC\n", "alphaBC = atBC/BC \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" The magnitude of vertical component of the acceleration of the point B is %.2f m/s**2.\"%(vectorbb)\n", "print \" The magnitude of horizontal component of the acceleration of the point B is %.1f m/s**2.\"%(vectorab)\n", "print \" The angular acceleration of the link AB, alphaAB = %.2f rad/s**2.\"%(alphaAB)\n", "print \" The angular acceleration of the link BC, alphaBC = %.1f rad/s**2.\"%(alphaBC)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The magnitude of vertical component of the acceleration of the point B is 1.13 m/s**2.\n", " The magnitude of horizontal component of the acceleration of the point B is 0.9 m/s**2.\n", " The angular acceleration of the link AB, alphaAB = 0.47 rad/s**2.\n", " The angular acceleration of the link BC, alphaBC = 1.3 rad/s**2.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4 Page No : 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "omegaQP = 10. \t\t\t#rad/s\n", "PQ = 62.5/1000 #m\n", "QR = 175./1000 #m\n", "RS = 112.5/1000 #m\n", "PS = 200./1000 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.9\n", "#Calculating the velocity of Q with respect to P\n", "vQP = omegaQP*PQ \t\t\t#m/s\n", "vQ = vQP\n", "#By measurement from the velocity diagram Fig. 8.9(b)\n", "vRQ = 0.333\n", "vRS = 0.426\n", "vR = vRS \t\t\t#m/s\n", "#Calculating the angular velocity of link QR\n", "omegaQR = vRQ/QR \t\t\t#rad/s\n", "#Calculating the angular velocity of link RS\n", "omegaRS = vRS/RS \t\t\t#rad/s\n", "#Calculating the radial component of the acceleration of Q with respect to P\n", "arQP = vQP**2/PQ \t\t\t#m/s**2\n", "aQP = arQP\n", "aQ = aQP\n", "#Calculating the radial component of the acceleration of R with respect to Q\n", "arRQ = vRQ**2/QR \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of R with respect to S\n", "arRS = vRS**2/RS \t\t\t#m/s**2\n", "aRS = arRS\n", "aR = aRS\n", "#By measurement from the acceleration diagram Fig. 8.9(c)\n", "atRQ = 4.1\n", "atRS = 5.3 \t\t\t#m/s**2\n", "#Calculating the angular acceleration of link QR\n", "alphaQR = atRQ/QR \t\t\t#rad/s**2\n", "#Calculating the angular acceleration of link RS\n", "alphaRS = atRS/RS \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" The angular velocity of link QR, omegaQR = %.1f rad/s anticlockwise.\"%(omegaQR)\n", "print \" The angular velocity of link RS, omegaRS = %.2f rad/s clockwise.\"%(omegaRS)\n", "print \" The angular acceleration of link QR, alphaQR = %.2f rad/s**2 anticlockwise.\"%(alphaQR)\n", "print \" The angular acceleration of link RS, alphaRS = %.1f rad/s**2 anticlockwise.\"%(alphaRS)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The angular velocity of link QR, omegaQR = 1.9 rad/s anticlockwise.\n", " The angular velocity of link RS, omegaRS = 3.79 rad/s clockwise.\n", " The angular acceleration of link QR, alphaQR = 23.43 rad/s**2 anticlockwise.\n", " The angular acceleration of link RS, alphaRS = 47.1 rad/s**2 anticlockwise.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5 Page No : 186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "omegaAP1 = 10. \t\t\t#rad/s\n", "alphaAP1 = 30. \t\t\t#rad/s**2\n", "P1A = 300./1000 #m\n", "P2B = 360./1000 #m\n", "AB = P2B \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.10\n", "#Calculating the velocity of A with respect to P1\n", "vAP1 = omegaAP1/P1A \t\t\t#m/s\n", "vA = vAP1\n", "#By measurement from the velocity diagram Fig. 8.11(b)\n", "vBP2 = 2.2\n", "vBA = 2.05 \t\t\t#m/s\n", "#Calculating the angular velocity of P2B\n", "omegaP2B = vBP2/P2B \t\t\t#rad/s\n", "#Calculating the angular velocity of AB\n", "omegaAB = vBA/AB \t\t\t#rad/s\n", "#Calculating the math.tangential component of the acceleration of A with respect to P1\n", "atAP1 = alphaAP1*P1A \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of A with respect to P1\n", "arAP1 = vAP1**2/P1A \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of B with respect to P2\n", "arBP2 = vBP2**2/P2B \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.11(c)\n", "aBP2 = 29.6\n", "aB = aBP2\n", "atBA = 13.6\n", "atBP2 = 26.6 \t\t\t#m/s**2\n", "#Calculating the angular acceleration of P2B\n", "alphaP2B = atBP2/P2B \t\t\t#rad/s**2\n", "#Calculating the angular acceleration of AB\n", "alphaAB = atBA/AB \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" The velocity of P2B, vBP2 = %.1f m/s.\"%(vBP2)\n", "print \" The angular velocity of P2B, omegaP2B = %.1f rad/s, clockwise.\"%(omegaP2B)\n", "print \" The angular velocity of AB, omegaAB = %.1f rad/s, anticlockwise.\"%(omegaAB)\n", "print \" The acceleration of the joint B, aB = %.1f m/s**2.\"%(aB)\n", "print \" The angular acceleration of P2B, alphaP2B = %.1f rad/s**2, anticlockwise.\"%(alphaP2B)\n", "print \" The angular acceleration of AB, alphaAB = %.1f rad/s**2, anticlockwise.\"%(alphaAB)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The velocity of P2B, vBP2 = 2.2 m/s.\n", " The angular velocity of P2B, omegaP2B = 6.1 rad/s, clockwise.\n", " The angular velocity of AB, omegaAB = 5.7 rad/s, anticlockwise.\n", " The acceleration of the joint B, aB = 29.6 m/s**2.\n", " The angular acceleration of P2B, alphaP2B = 73.9 rad/s**2, anticlockwise.\n", " The angular acceleration of AB, alphaAB = 37.8 rad/s**2, anticlockwise.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.6 Page No : 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NAO = 20. \t\t\t#rpm\n", "OA = 300./1000 #m\n", "AB = 1200./1000 #m\n", "BC = 450./1000 #m\n", "CD = BC \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.13\n", "#Calculating the angular velocity of crank AO\n", "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", "#Calculating the linear velocity of A with respect to O\n", "vAO = omegaAO*OA \t\t\t#m/s\n", "vA = vAO\n", "#By measurement from the velocity diagram Fig. 8.13(b)\n", "vB = 0.4\n", "vD = 0.24\n", "vDC = 0.37\n", "vBA = 0.54 \t\t\t#m/s\n", "#Calculating the angular velocity of CD\n", "omegaCD = vDC/CD \t\t\t#rad/s\n", "#Calculating the radial component of the acceleration of A with respect to O\n", "arAO = vAO**2/OA \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of D with respect to C\n", "arDC = vDC**2/CD \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.13(c)\n", "aD = 0.16\n", "atDC = 1.28 \t\t\t#m/s**2\n", "#Calculating the angular acceleration of CD\n", "alphaCD = atDC/CD \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" Velocity of sliding at B, vB = %.1f m/s.\"%(vB)\n", "print \" Velocity of sliding at D, vD = %.2f m/s.\"%(vD)\n", "print \" Angular velocity of CD, omegaCD = %.2f rad/s.\"%(omegaCD)\n", "print \" Linear acceleration of D, aD = %.2f m/s**2.\"%(aD)\n", "print \" Angular acceleration of CD, alphaCD = %.2f rad/s**2, clockwise.\"%(alphaCD)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of sliding at B, vB = 0.4 m/s.\n", " Velocity of sliding at D, vD = 0.24 m/s.\n", " Angular velocity of CD, omegaCD = 0.82 rad/s.\n", " Linear acceleration of D, aD = 0.16 m/s**2.\n", " Angular acceleration of CD, alphaCD = 2.84 rad/s**2, clockwise.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7 Page No : 191" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NAO = 180. \t\t\t#rpm\n", "OA = 150./1000 #m\n", "AB = 450./1000 #m\n", "PB = 240./1000 #m\n", "CD = 660./1000 \t\t#m\n", "\n", "#solution:\n", "#Refer Fig. 8.15\n", "#Calculating the angular speed of crank AO\n", "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", "#Calculating the velocity of A with respect to O\n", "vAO = omegaAO*OA \t\t\t#m/s\n", "vA = vAO\n", "#By measurement from the velocity diagram Fig. 8.15(b)\n", "vD = 2.36\n", "vDC = 1.2\n", "vBA = 1.8\n", "vBP = 1.5 \t\t\t#m/s\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arAO = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to P\n", "arBP = vBP**2/PB \t\t\t#m/s**2\n", "#Calculating the radial component of D with respect to C\n", "arDC = vDC**2/CD \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.15(c)\n", "aD = 69.6\n", "atDC = 17.4 \t\t\t#m/s**2\n", "#Calculating the angular acceleration of CD\n", "alphaCD = atDC/CD \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" Acceleration of slider D, aD = %.1f m/s**2.\"%(aD)\n", "print \" Angular acceleration of link CD, alphaCD = %.1f rad/s**2.\"%(alphaCD)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Acceleration of slider D, aD = 69.6 m/s**2.\n", " Angular acceleration of link CD, alphaCD = 26.4 rad/s**2.\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.8 Page No : 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Variables:\n", "NAO = 180. \t\t\t#rpm\n", "OA = 180./1000\n", "CB = 240./1000\n", "AB = 360./1000\n", "BD = 540./1000 \t\t\t#m\n", "alphaAO = 50. \t\t\t#rad/s**2\n", "\n", "#Solution:\n", "#Refer Fig. 8.17\n", "#Calculating the angular speed of crank AO\n", "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", "#Calculating the velcoity of A with respect to O\n", "vAO = omegaAO*OA \t\t\t#m/s\n", "vA = vAO\n", "#By measurement from the velocity diagram Fig. 8.17(b)\n", "vBA = 0.9\n", "vBC = 2.4\n", "vDB = 2.4\n", "vD = 2.05 \t\t\t#m/s\n", "\n", "#Calculating the angular velocity of BD\n", "omegaBD = vDB/BD \t\t\t#rad/s\n", "#Calculating the tangential component of the acceleration of A with respect to O\n", "atAO = alphaAO*OA \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of A with respect to O\n", "arAO = vAO**2/OA \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to C\n", "arBC = vBC**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of D with respect to B\n", "arDB = vDB**2/BD \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.17(c)\n", "aD = 13.3\n", "atDB = 38.5 \t\t\t#m/s**2\n", "\n", "#Calculating the angular acceleration of BD\n", "alphaBD = atDB/BD \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" Velocity of slider D, vD = %.2f m/s.\"%(vD)\n", "print \" Angular velocity of BD, omegaBD = %.1f rad/s.\"%(omegaBD)\n", "print \" Acceleration of slider D, aD = %.1f m/s**2.\"%(aD)\n", "print \" Angular acceleration of BD, alphaBD = %.1f rad/s**2, clockwise.\"%(alphaBD)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of slider D, vD = 2.05 m/s.\n", " Angular velocity of BD, omegaBD = 4.4 rad/s.\n", " Acceleration of slider D, aD = 13.3 m/s**2.\n", " Angular acceleration of BD, alphaBD = 71.3 rad/s**2, clockwise.\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.9 Page No : 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "omegaAO1 = 100. \t\t\t#rad/s\n", "O1A = 100./1000 #m\n", "AC = 700./1000 #m\n", "BC = 200./1000 #m\n", "BD = 150./1000 #m\n", "O2D = 200./1000 #m\n", "O2E = 400./1000 #m\n", "O3C = 200./1000 \t\t\t#m\n", "m=0.0;\n", "#Solution:\n", "#Refer Fig. 8.19\n", "#Calculating the linear velocity of A with respect to O1\n", "vAO1 = omegaAO1/O1A \t\t\t#m/s\n", "vA = vAO1\n", "#By measurement from the velocity diagram Fig. 8.19(b)\n", "vCA = 7.\n", "vCO3 = 10.\n", "vC = vCO3\n", "vDB = 10.2\n", "vDO2 = 2.8\n", "vD = vDO2\n", "vE = 5.8\n", "vEO2 = vE \t\t\t#m/s\n", "#Calculating the radial component of the acceleration of A with respect to O1\n", "arAO1 = vAO1**2/O1A \t\t\t#m/s**2\n", "aAO1 = arAO1\n", "aA = aAO1\n", "#Calculating the radial component of the acceleration of C with respect to A\n", "arCA = vCA**2/AC \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of C with respect to O3\n", "arCO3 = vCO3**2/O3C \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of D with respect to B\n", "arDB = vDB**2/BD \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of D with respect to O2\n", "arDO2 = vDO2**2/O2D \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of E with respect to O2\n", "arEO2 = vEO2**2/O2E \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.19(c)\n", "aE = 1200.\n", "atDO2 = 610. \t\t\t#m/s**2\n", "aEO2 = aE\n", "aB = 440. \t\t\t#Acceleration of point B\n", "#m/s**2\n", "#Calculating the angular acceleration of the bell crank lever\n", "alpha = atDO2/O2D \t\t\t#The angular acceleration of the bell crank lever rad/s**2\n", "\n", "#Results:\n", "print \" Velocity of the point E on the bell crank lever, vE = %.1f m/s.\"%(vE)\n", "print \" Acceleration of point B = %d m/s**2.\"%(aB)\n", "print \" Acceleration of point E, aE = %d m/s**2.\"%(aE)\n", "print \" Angular acceleration of the bell crank lever = %d rad/s**2, anticlockwise.\"%(alpha)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the point E on the bell crank lever, vE = 5.8 m/s.\n", " Acceleration of point B = 440 m/s**2.\n", " Acceleration of point E, aE = 1200 m/s**2.\n", " Angular acceleration of the bell crank lever = 3050 rad/s**2, anticlockwise.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.10 Page No : 199" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NAO = 100. \t\t\t#rpm\n", "OA = 150./1000 #m\n", "AB = 600./1000 #m\n", "BC = 350./1000 #m\n", "CD = 150./1000 #m\n", "DE = 500./1000 \t\t#m\n", "dA = 50./1000\n", "dB = dA\n", "rA = dA/2\n", "rB = dB/2 \t\t\t#m\n", "pF = 0.35 \t\t\t#N/mm**2\n", "DF = 250. \t\t\t#mm\n", "\n", "#Solution:\n", "#Refer Fig. 8.21\n", "#Calculating the angular speed of the crank AO\n", "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", "#Calculating the velocity of A with respect to O\n", "vAO = omegaAO*OA \t\t\t#m/s\n", "vA = vAO\n", "#By measurement from the velocity diagram Fig. 8.21(b)\n", "vBA = 1.65\n", "vBC = 0.93\n", "vB = vBC\n", "vED = 0.18\n", "vEO = 0.36\n", "vE = vEO\n", "vF = vE \t\t\t#m/s\n", "\n", "#Calculating the velocity of D with respect to C\n", "vDC = vBC*CD/BC \t\t\t#m/s\n", "#Calculating the angular velocity of B with respect to A\n", "omegaBA = vBA/AB \t\t\t#rad/s\n", "#Calculating the angular velocity of B with respect to C\n", "omegaBC = vBC/BC \t\t\t#rad/s\n", "#Calculating the rubbing velocity of pin at A\n", "vrA = (omegaAO-omegaBA)*rA \t\t\t#The rubbing velocity of pin at A m/s\n", "#Calculating the rubbing velocity of pin at B\n", "vrB = (omegaBA+omegaBC)*rB \t\t\t#The rubbing velocity of pin at B m/s\n", "#Calculating the force at the pump piston at F\n", "FF = pF*math.pi/4*DF**2 \t\t\t#N\n", "#Calculating the force required at the crankshaft A\n", "FA = FF*vF/vA \t\t\t#N\n", "#Calculating the torque required at the crankshaft\n", "TA = FA*OA \t\t\t#N-m\n", "#Calculating the radial component of the acceleration of A with respect to O\n", "arAO = vAO**2/OA \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to C\n", "arBC = vBC**2/BC \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of E with respect to D\n", "arED = vED**2/DE \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.21(c)\n", "aBC = 9.2\n", "aB = aBC\n", "aBA = 9\n", "aE = 3.8 \t\t\t#m/s**2\n", "#Calculating the acceleration of D\n", "aD = aBC*CD/BC \t\t\t#m/s**2\n", "\n", "#Results:\n", "print \" The velocity of the cross-head E, vE = %.2f m/s.\"%(vE)\n", "print \" The rubbing velocity of pin at A = %.3f m/s.\"%(vrA)\n", "print \" The rubbing velocity of pin at B = %.3f m/s.\"%(vrB)\n", "print \" The torque required at the crankshaft, TA = %d N-m.\"%(TA)\n", "print \" The acceleration of the crosshead E, aE = %.1f m/s**2.\"%(aE)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The velocity of the cross-head E, vE = 0.36 m/s.\n", " The rubbing velocity of pin at A = 0.193 m/s.\n", " The rubbing velocity of pin at B = 0.135 m/s.\n", " The torque required at the crankshaft, TA = 590 N-m.\n", " The acceleration of the crosshead E, aE = 3.8 m/s**2.\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.11 Page No : 203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NAO = 150. \t\t\t#rpm\n", "OA = 150./1000 #m\n", "AB = 550./1000 #m\n", "AC = 450./1000 #m\n", "DC = 500./1000 #m\n", "BE = 350./1000 \t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.23\n", "#Calculating the angular speed of the crank AO\n", "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", "#Calculating the linear velocity of A with respect to O\n", "vAO = omegaAO*OA \t\t\t#m/s\n", "vA = vAO\n", "#By measurement from the velocity diagram Fig. 8.23(b)\n", "vCA = 0.53\n", "vCD = 1.7\n", "vC = vCD\n", "vEB = 1.93\n", "vE = 1.05 \t\t\t#m/s\n", "#Calculating the radial component of the acceleration of A with respect to O\n", "arAO = vAO**2/OA \t\t\t#m/s**2\n", "aA = arAO\n", "#Calculating the radial component of the acceleration of C with respect to A\n", "arCA = vCA**2/AC \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of C with respect to D\n", "arCD = vCD**2/DC \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of E with respect to B\n", "arEB = vEB**2/BE \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.23(c)\n", "aE = 3.1 \t\t\t#m/s**2\n", "\n", "#Results:\n", "print \" Velocity of the ram E, vE = %.2f m/s.\"%(vE)\n", "print \" Acceleration of the ram E, aE = %.1f m/s**2.\"%(aE)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the ram E, vE = 1.05 m/s.\n", " Acceleration of the ram E, aE = 3.1 m/s**2.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.12 Page No : 205" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NDC = 1140. \t\t\t#rpm\n", "AB = 80./1000 #m\n", "CD = 40./1000 #m\n", "BE = 150./1000 #m\n", "DE = BE #m\n", "EP = 200./1000 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.25\n", "#Calculating the angular speed of the link CD\n", "omegaDC = 2*math.pi*NDC/60 \t\t\t#rad/s\n", "#Calculating the velocity of D with respect to C\n", "vDC = omegaDC*CD \t\t\t#m/s\n", "vD = vDC\n", "#Calculating the angular speed of the larger wheel\n", "omegaBA = omegaDC*CD/AB \t\t\t#rad/s\n", "#Calculating the velocity of B with respect to A\n", "vBA = omegaBA*AB \t\t\t#m/s\n", "vB = vBA\n", "#By measurement from the velocity diagram Fig. 8.25(b)\n", "vEB = 8.1\n", "vED = 0.15\n", "vPE = 4.7\n", "vP = 0.35 \t\t\t#m/s\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of D with respect to C\n", "arDC = vDC**2/CD \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of E with respect to B\n", "arEB = vEB**2/BE \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of E with respect to D\n", "arED = vED**2/DE \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of P with respect to E\n", "arPE = vPE**2/EP \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.25(c)\n", "aP = 655. \t\t\t#m/s**2\n", "\n", "#Results:\n", "print \" Velocity of P, vP = %.2f m/s.\"%(vP)\n", "print \" Acceleration of the piston P, aP = %d m/s**2.\"%(aP)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of P, vP = 0.35 m/s.\n", " Acceleration of the piston P, aP = 655 m/s**2.\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.13 Page No : 211" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NBA = 120. \t\t\t#rpm\n", "AB = 150./1000 #m\n", "OC = 700./1000 #m\n", "CD = 200./1000 \t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.29\n", "#Calculating the angular speed of the crank AB\n", "omegaAB = 2*math.pi*NBA/AB \t\t\t#rad/s\n", "#Calculating the velocity of B with respect to A\n", "vBA = omegaBA*AB \t\t\t#m/s\n", "#By measurement from the velocity diagram Fig. 8.29(b)\n", "vD = 2.15\n", "vBBdash = 1.05\n", "vDC = 0.45\n", "vBdashO = 1.55\n", "vCO = 2.15 \t\t\t#m/s\n", "BdashO = 0.52 \t\t\t#m\n", "#Calculating the angular velocity of the link OC or OB'\n", "omegaCO = vCO/OC \t\t\t#rad/s\n", "omegaBdashO = omegaCO \t\t\t#rad/s\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = omegaAB**2/AB \t\t\t#m/s**2\n", "#Calculating the coriolis component of the acceleration of slider B with respect to the coincident point B'\n", "acBBdash = 2*omegaCO*vBBdash \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of D with respect to C\n", "arDC = vDC**2/CD \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B' with respect to O\n", "arBdashO = vBdashO**2/BdashO \t\t\t#m/s**2\n", "#By measurement fro the acceleration diagram Fig. 8.29(c)\n", "aD = 8.4\n", "atBdashO = 6.4 \t\t\t#m/s**2\n", "#Calculating the angular acceleration of the slotted lever\n", "alpha = atBdashO/BdashO \t\t\t#The angular acceleration of the slotted lever rad/s**2\n", "\n", "#Results:\n", "print \" Velocity of the ram D, vD = %.2f m/s.\"%(vD)\n", "print \" Acceleration of the ram D, aD = %.1f m/s**2.\"%(aD)\n", "print \" Angular acceleration of the slotted lever = %.1f rad/s**2, anticlockwise.\"%(alpha)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the ram D, vD = 2.15 m/s.\n", " Acceleration of the ram D, aD = 8.4 m/s**2.\n", " Angular acceleration of the slotted lever = 12.3 rad/s**2, anticlockwise.\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.14 Page No : 214" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NBA = 200. \t\t\t#rpm\n", "AB = 75./1000 #m\n", "PQ = 375./1000 #m\n", "QR = 500./1000 \t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.31\n", "#Calculating the angular velocity of the crank AB\n", "omegaBA = 2*math.pi*NBA/60 \t\t\t#rad/s\n", "#Calculating the velocity of B with respect to A\n", "vBA = omegaBA*AB \t\t\t#m/s\n", "#By measurement from the velocity diagram Fig. 8.31(b)\n", "vR = 1.6\n", "vBdashB = 1.06\n", "vBdashP = 1.13\n", "vRQ = 0.4\n", "vQP = 1.7 \t\t\t#m/s\n", "PBdash = 248./1000 \t\t\t#m\n", "#Calculating the angular velocity of the link PQ\n", "omegaPQ = vQP/PQ \t\t\t#rad/s\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = omegaBA**2*AB \t\t\t#m/s**2\n", "#Calculating the coriolis component of the acceleration of B with respect to coincident point B'\n", "acBBdash = 2*omegaPQ*vBdashB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of R with respect to Q\n", "arRQ = vRQ**2/QR \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B' with respect to P\n", "arBdashP = vBdashP**2/PBdash \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.31(d)\n", "aR = 22.\n", "aBBdash = 18. \t\t\t#m/s**2\n", "\n", "#Results:\n", "print \" Velocity of the tool-box R, vR = %.1f m/s.\"%(vR)\n", "print \" Acceleration of the tool-box R, aR = %d m/s**2.\"%(aR)\n", "print \" The acceleration of sliding of the block B along the slotted lever PQ, aBBdash = %d m/s**2.\"%(aBBdash)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the tool-box R, vR = 1.6 m/s.\n", " Acceleration of the tool-box R, aR = 22 m/s**2.\n", " The acceleration of sliding of the block B along the slotted lever PQ, aBBdash = 18 m/s**2.\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.15 Page No : 218" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NAO = 30. \t\t\t#rpm\n", "OA = 150./1000 #m\n", "OC = 100./1000 #m\n", "CD = 125./1000 #m\n", "DR = 500./1000 \t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.33\n", "#Calculating the angular speed of the crank OA\n", "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", "#Calculating the velocity of A with respect to O\n", "vAO = omegaAO*OA \t\t\t#m/s\n", "vA = vAO\n", "#By measurement from the velocity diagram Fig. 8.33(b)\n", "vBC = 0.46\n", "vAB = 0.15\n", "vRD = 0.12 \t\t\t#m/s\n", "CB = 240./1000 \t\t\t#m\n", "#Calculating the angular velocity of the link BC\n", "omegaBC = vBC/CB \t\t\t#rad/s\n", "#Calculating the radial component of the acceleration of A with respect to O\n", "arAO = vAO**2/OA \t\t\t#m/s**2\n", "#Calculating the coriolis component of the acceleration of A with respect to coincident point B\n", "acAB = 2*omegaBC*vAB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to C\n", "arBC = vBC**2/CB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of R with respect to D\n", "arRD = vRD**2/DR \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.33(c)\n", "aR = 0.18\n", "atBC = 0.14 \t\t\t#m/s**2\n", "#Calculating the angular acceleration of the slotted lever CA\n", "alphaCA = atBC/CB \t\t\t#rad/s**2\n", "alphaBC = alphaCA\n", "\n", "#Results:\n", "print \" Acceleration of the sliding block R, aR = %.2f m/s**2.\"%(aR)\n", "print \" Angular acceleration of the slotted lever CA, alphaCA = %.3f rad/s**2, anticlockwise.\"%(alphaCA)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Acceleration of the sliding block R, aR = 0.18 m/s**2.\n", " Angular acceleration of the slotted lever CA, alphaCA = 0.583 rad/s**2, anticlockwise.\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.16 Page No : 221" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "AB = 125./1000 \t\t\t#m\n", "NCO = 300. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Refer Fig. 8.35\n", "#By measurement from the space diagram Fig. 8.35(a)\n", "OC = 85./1000 \t\t\t#m\n", "#Calculating the angular velocity of the link CO\n", "omegaCO = 2*math.pi*NCO/60 \t\t\t#rad/s\n", "#Calculating the velocity of C with respect to O\n", "vCO = omegaCO*OC \t\t\t#m/s\n", "vC = vCO\n", "#By measurement from the velocity diagram Fig. 8.35(b)\n", "vBC = 0.85\n", "vBA = 2.85\n", "vB = vBA \t\t\t#m/s\n", "#Calculating the radial component of of the acceleration of C with respect to O\n", "arCO = vCO**2/OC \t\t\t#m/s**2\n", "#Calculating the coriolis component of of acceleration of the piston B with respect to the cylinder or the coincident point C\n", "acBC = 2*omegaCO*vBC \t\t\t#m/s**2\n", "#Calculating the radial component of of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.35(d)\n", "aBC = 73.2\n", "atBA = 37.6 \t\t\t#m/s**2\n", "#Calculating the angular acceleration of the connecting rod AB\n", "alphaAB = atBA/AB \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" Acceleration of the piston inside the cylinder, aBC = %.1f m/s**2.\"%(aBC)\n", "print \" Angular acceleration of the connecting rod AB, alphaAB = %d rad/s**2, clockwise.\"%(alphaAB)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Acceleration of the piston inside the cylinder, aBC = 73.2 m/s**2.\n", " Angular acceleration of the connecting rod AB, alphaAB = 300 rad/s**2, clockwise.\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.17 Page No : 223" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "NAO = 100. \t\t\t#rpm\n", "OA = 50./1000 #m\n", "AB = 350./1000 #m\n", "DE = 250./1000 #m\n", "EF = DE #m\n", "CB = 125./1000 \t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 8.37\n", "#Calculating the angular velocity of the crank AO\n", "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n", "#Calculating the velocity of A with respect to O\n", "vAO = omegaAO*OA \t\t\t#m/s\n", "vA = vAO\n", "#By measurement from the velocity diagram Fig. 8.37(b)\n", "vBA = 0.4\n", "vBC = 0.485\n", "vB = vBC\n", "vSD = 0.265\n", "vQS = 0.4\n", "vED = 0.73\n", "vFE = 0.6\n", "vF = 0.27 \t\t\t#m/s\n", "DS = 85./1000 \t\t\t#m\n", "#Calculating the angular velocity of the link DE\n", "omegaDE = vED/DE \t\t\t#rad/s\n", "#Calculating the velocity of sliding of the link DE in the swivel block\n", "vS = vQS \t\t\t#m/s\n", "#Calculating the radial component of the acceleration of A with respect to O\n", "arAO = vAO**2/OA \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to A\n", "arBA = vBA**2/AB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of B with respect to C\n", "arBC = vBC**2/CB \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of S with respect to D\n", "arSD = vSD**2/DS \t\t\t#m/s**2\n", "#Calculating the coriolis component of the acceleration of Q with respect to S\n", "acQS = 2*omegaDE*vQS \t\t\t#m/s**2\n", "#Calculating the radial component of the acceleration of F with respect to E\n", "arFE = vFE**2/EF \t\t\t#m/s**2\n", "#By measurement from the acceleration diagram Fig. 8.37(d)\n", "arQS = 1.55 \t\t\t#m/s**2\n", "\n", "#Results:\n", "print \" Velocity of the slider block F, vF = %.2f m/s.\"%(vF)\n", "print \" Angular velocity of the link DE, omegaDE = %.2f rad/s, anticlockwise.\"%(omegaDE)\n", "print \" Velocity of sliding of the link DE in the swivel block, vS = %.1f m/s.\"%(vS)\n", "print \" Acceleration of sliding of the link DE in the trunnion, arQS = %.2f m/s**2.\"%(arQS)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the slider block F, vF = 0.27 m/s.\n", " Angular velocity of the link DE, omegaDE = 2.92 rad/s, anticlockwise.\n", " Velocity of sliding of the link DE in the swivel block, vS = 0.4 m/s.\n", " Acceleration of sliding of the link DE in the trunnion, arQS = 1.55 m/s**2.\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }