{ "metadata": { "name": "", "signature": "sha256:18b62f9d05dddb3fa3e34cb2cfa86e210f5eaa5cdedab202d52d0e65a17b4192" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16 : Turning Moment Diagrams and Flywheel" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.1 Page No : 573" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import linalg\n", "\n", "# Variables:\n", "m = 6.5*1000 \t\t#kg\n", "k = 1.8 \t\t\t#m\n", "deltaE = 56.*1000 \t#N-m\n", "N = 120. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Calculating the maximum and minimum speeds\n", "#We know that fluctuation of energy deltaE = math.pi**2/900*m*k**2*N*(N1-N2) or N1-N2 = (deltaE/(math.pi**2/900*m*k**2*N)) .....(i)\n", "#Also mean speed N = (N1+N2)/2 or N1+N2 = 2*N .....(ii)\n", "A = [[1, -1],[ 1, 1]]\n", "B = [deltaE/(math.pi**2/900*m*k**2*N), 2*N]\n", "V = linalg.solve(A,B)\n", "N1 = round(V[0]) \t\t\t#rpm\n", "N2 = round(V[1]) \t\t\t#rpm\n", "\n", "#Results:\n", "print \" Maximum speed N1 = %d rpm.\"%(N1)\n", "print \" Minimum speed N2 = %d rpm.\"%(N2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Maximum speed N1 = 121 rpm.\n", " Minimum speed N2 = 119 rpm.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.2 Page No : 573" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "k = 1. \t\t\t#m\n", "m = 2500. \t\t\t#kg\n", "T = 1500. \t\t\t#N-m\n", "\n", "#Solution:\n", "#Angular acceleration of the flywheel:\n", "#Calculating the mass moment of inertia of the flywheel\n", "I = m*k**2 \t\t\t#kg-m**2\n", "#Calculating the angular acceleration of the flywheel\n", "alpha = T/I \t\t\t#rad/s**2\n", "#Kinetic energy of the flywheel:\n", "omega1 = 0 \t\t\t#Angular speed at rest\n", "#Calculating the angular speed after 10 seconds\n", "omega2 = omega1+alpha*10 \t\t\t#rad/s\n", "#Calculating the kinetic energy of the flywheel\n", "KE = 1./2*I*(omega2)**2/1000 \t\t\t#Kinetic energy of the flywheel kN-m\n", "\n", "#Results:\n", "print \" Angular acceleration of the flywheel alpha = %.1f rad/s**2.\"%(alpha)\n", "print \" Kinetic energy of the flywheel = %.1f kN-m.\"%(KE)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Angular acceleration of the flywheel alpha = 0.6 rad/s**2.\n", " Kinetic energy of the flywheel = 45.0 kN-m.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.3 Page No : 574" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "P = 300.*1000 \t#W\n", "N = 90. \t\t#rpm\n", "CE = 0.1\n", "k = 2. \t\t\t#m\n", "\n", "#Solution:\n", "#Calculating the mean angular speed\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 1./100\n", "#Calculating the work done per cycle\n", "WD = P*60/N \t\t\t#Work done per cycle N-m\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = WD*CE \t\t\t#N-m\n", "#Calculating the mass of the flywheel\n", "m = deltaE/(k**2*omega**2*CS) \t\t\t#kg\n", "#Results:\n", "print \" Mass of the flywheel, m = %d kg.\"%(m)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass of the flywheel, m = 5628 kg.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4 Page No : 574" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "m = 36. \t\t\t#kg\n", "k = 150./1000 \t\t#m\n", "N = 1800. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Refer Fig. 16.6\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the value of 1 mm**2 on the turning moment diagram\n", "c = 5*math.pi/180 \t\t\t#Value of 1 mm**2 on turning miment diagram N-m\n", "#Calculating the maximum fluctuation of energy\n", "#From the turning moment diagram maximum energy = E+295 and minimum energy = E-690\n", "deltaE = (285-(-690))*c \t\t\t#N-m\n", "#Calculating the coefficient of fluctuation of energy\n", "CS = deltaE/(m*k**2*omega**2)*100 \t\t\t#%\n", "\n", "#Results:\n", "print \" Coefficient of fluctuation of speed CS = %.1f %%.\"%(CS)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Coefficient of fluctuation of speed CS = 0.3 %.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.5 Page No : 575" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 600. \t\t\t#rpm\n", "R = 0.5 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 16.7\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 3./100\n", "#Calculating the value of 1 mm**2 on turning moment diagram\n", "c = 600*math.pi/60 \t\t\t#Value of 1 mm**2 on turning moment diagram N-m\n", "#Calculating the maximum fluctuation of energy\n", "#From the turning moment diagram maximum fluctuation = E+52 and minimum fluctuation = E-120\n", "deltaE = (52.-(-120))*c \t\t\t#N-m\n", "#Calculating the mass of the flywheel\n", "m = deltaE/(R**2*omega**2*CS) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Mass of the flywheel m = %d kg.\"%(m)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass of the flywheel m = 182 kg.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.6 Page No : 584\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 250. \t\t\t#rpm\n", "m = 500. \t\t\t#kg\n", "k = 600./1000 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 16.8\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the torque required for one complete cycle\n", "T = (6*math.pi*750)+(1./2*math.pi*(3000-750))+(2*math.pi*(3000-750))+(1./2*math.pi*(3000-750)) \t\t\t#N-m\n", "#Calculating the mean torque\n", "Tmean = T/(6*math.pi) \t\t\t#N-m\n", "#Calculating the power required to drive the machine\n", "P = Tmean*omega/1000 \t\t\t#kW\n", "#Coefficient of fluctuation of speed:\n", "#Calculating the value of LM\n", "LM = math.pi*((3000.-1875)/(3000-750.))\n", "#Calculating the value of NP\n", "NP = math.pi*((3000.-1875)/(3000-750))\n", "#Calculating the value of BM\n", "BM = 3000-1875. \t\t\t#N-m CN = BM\n", "#Calculating the value of MN\n", "MN = 2*math.pi\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = (1./2*LM*BM)+(MN*BM)+(1./2*NP*BM) \t\t\t#N-m\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = deltaE/(m*k**2*omega**2)\n", "\n", "#Results:\n", "print \" Power required to drive the machine P = %.3f kW.\"%(P)\n", "print \" Coefficient of speed CS = %.3f.\"%(CS)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Power required to drive the machine P = 49.087 kW.\n", " Coefficient of speed CS = 0.072.\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.7 Page No : 578" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 100. \t\t\t#rpm\n", "k = 1.75 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 16.9\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 1.5/100\n", "#Coefficient of fluctuation of energy:\n", "AB = 2000.\n", "LM = 1500. \t\t\t#N-m\n", "#Calculating the work done per cycle\n", "WD = (1./2*math.pi*AB)+(1./2*math.pi*LM) \t\t\t#Work done per cycle N-m\n", "#Calculating the mean resisting torque\n", "Tmean = WD/(2*math.pi) \t\t\t#N-m\n", "#Calculating the value of CD\n", "CD = math.pi/2000*(2000-875) \t\t\t#rad\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = 1./2*CD*(2000-875) \t\t\t#N-m\n", "#Calculating the coefficient of fluctuation of energy\n", "Ce = deltaE/WD*100 \t\t\t#%\n", "#Calculating the mass of the flywheel\n", "m = deltaE/(k**2*omega**2*CS) \t\t\t#kg\n", "#Crank angles for minimum and maximum speeds:\n", "#Calculating the value of CE\n", "CE = (2000.-875)/2000*(4*math.pi/9) \t\t\t#rad\n", "#Calculating the crank angle for minimum speed\n", "thetaC = ((4.*math.pi/9)-CE)*180/math.pi \t\t\t#degrees\n", "#Calculating the value of ED\n", "ED = (2000.-875)/2000*(math.pi-(4*math.pi/9)) \t\t\t#rad\n", "#Calculating the crank angle for maximum speed\n", "thetaD = ((4.*math.pi/9)+ED)*180/math.pi \t\t\t#degrees\n", "\n", "#Results:\n", "print \" Coefficient of fluctuation of energy CE = %d %%.\"%(Ce)\n", "print \" Mass of the flywheel, m = %.1f kg.\"%(m)\n", "print \" Crank angle from IDC for the minimum speed, thetaC = %d degrees.\"%(thetaC)\n", "print \" Crank angle from IDC for the maximum speed, thetaD = %d degrees.\"%(thetaD)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Coefficient of fluctuation of energy CE = 18 %.\n", " Mass of the flywheel, m = 197.3 kg.\n", " Crank angle from IDC for the minimum speed, thetaC = 35 degrees.\n", " Crank angle from IDC for the maximum speed, thetaD = 136 degrees.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.8 Page No : 580" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 600. \t\t\t#rpm\n", "Tmax = 90. \t\t\t#N-m\n", "m = 12. \t\t\t#kg\n", "k = 80./1000 \t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 16.10\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Power developed:\n", "#Calculating the work done per cycle\n", "WD = 3*1./2*math.pi*90 \t\t\t#Work done per cycle N-m\n", "#Calculating the mean torque\n", "Tmean = WD/(2*math.pi) \t\t\t#N-m\\\n", "#Calculating the power developed\n", "P = Tmean*omega/1000 \t\t\t#Power developed kW\n", "#Coefficient of fluctuation of speed:\n", "#Calculating the maximum fluctuation of energy\n", "#From the torque-crank angle diagram maximum energy = E+5.89 and minimum energy = E-5.89\n", "deltaE = 5.89-(-5.89) \t\t\t#N-m\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = round(deltaE/(m*k**2*omega**2)*100) \t\t\t#%\n", "#Calculating the coefficient of fluctuation of energy\n", "CE = deltaE/WD*100 \t\t\t#%\n", "#Calculating the maximum angular acceleration of the flywheel\n", "alpha = (Tmax-Tmean)/(m*k**2) \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" Power developed = %.2f kW.\"%(P)\n", "print \" Coefficient of fluctuation of speed CS = %d %%.\"%(CS)\n", "print \" Coefficient of fluctuation of energy CE = %.2f %%.\"%(CE)\n", "print \" Maximum angular acceleration of the flywheel alpha = %d rad/s**2.\"%(alpha)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Power developed = 4.24 kW.\n", " Coefficient of fluctuation of speed CS = 4 %.\n", " Coefficient of fluctuation of energy CE = 2.78 %.\n", " Maximum angular acceleration of the flywheel alpha = 292 rad/s**2.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.9 Page No : 582" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "P = 20.*1000 \t\t\t#W\n", "N = 300. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Refer Fig. 16.11\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#ra/s\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 4./100\n", "#Calculating the number of working strokes per cycle for a four stroke engine\n", "n = N/2\n", "#Calculating the work done per cycle\n", "WD = P*60/n \t\t\t#Work done per cycle N-m\n", "#Calculating the work done during expansion cycle\n", "WE = WD*3./2 \t\t\t#N-m\n", "#Calculating the maximum turning moment\n", "Tmax = WE*2/math.pi \t\t\t#N-m\n", "#Calculating the mean turning moment\n", "Tmean = WD/(4*math.pi) \t\t\t#N-m\n", "#Calculating the excess turning moment\n", "Texcess = Tmax-Tmean \t\t\t#N-m\n", "#Calculating the value of DE\n", "DE = Texcess/Tmax*math.pi \t\t\t#rad\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = (1./2*DE*Texcess) \t\t\t#N-m\n", "#Calculating the moment of inertia of the flywheel\n", "I = deltaE/(omega**2*CS) \t\t\t#kg-m**2\n", "\n", "#Results:\n", "print \" Moment of inertia of the flywheel I = %.1f kg-m**2.\"%(I)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Moment of inertia of the flywheel I = 255.4 kg-m**2.\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.10 Page No : 584" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "a1 = 0.45*10**-3\n", "a2 = 1.7*10**-3\n", "a3 = 6.8*10**-3\n", "a4 = 0.65*10**-3 \t\t\t#m**2\n", "N1 = 202.\n", "N2 = 198. \t\t\t#rpm\n", "R = 1.2 \t\t\t#m\n", "\n", "#Solution:\n", "#Refer Fig. 16.12\n", "#Calculating the net area\n", "a = a3-(a1+a2+a4) \t\t\t#Net area m**2\n", "#Calculating the energy scale constant\n", "c = 3*10**6 \t\t\t#Energy scale constant N-m\n", "#Calculating the net work done per cycle\n", "WD = a*c \t\t\t#Net work done per cycle N-m\n", "#Calculating the mean torque\n", "Tmean = round(WD/(4*math.pi)) \t\t\t#N-m\n", "#Calculating the value of FG\n", "FG = Tmean \t\t\t#N-m\n", "#Calculating the work done during expansion stroke\n", "WDe = a3*c \t\t\t#Work done during expansion stroke N-m\n", "#Calculating the value of AG\n", "AG = WDe/(1./2*math.pi) \t\t\t#N-m\n", "#Calculating the excess torque\n", "Texcess = round(AG-FG,-1) \t\t\t#N-m\n", "#Calculating the value of AF\n", "AF = Texcess \t\t\t#N-m\n", "#Calculating the value of DE\n", "DE = round(AF/AG*math.pi,1) \t\t\t#rad\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = 1./2*DE*AF \t\t\t#N-m\n", "#Mass of the rim of a flywheel:\n", "#Calculating the mean speed of the flywheel\n", "N = (N1+N2)/2 \t\t\t#rpm\n", "#Calculating the mass of the rim of a flywheel\n", "m = deltaE/(math.pi**2/900*R**2*N*(N1-N2)) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Mass of the rim of the flywheel m = %.f kg.\"%(m)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass of the rim of the flywheel m = 1381 kg.\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.11 page no : 585" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from scipy.integrate import quad\n", "\n", "# variables\n", "w = math.pi*2*180./60 # rad/s\n", "T = 180 # rpm\n", "Cs = 0.01 # speed\n", "\n", "# Calculations\n", "work_done_r = 20000 * 2 # pi N-m\n", "Tmean = work_done_r/2 # N-m\n", "power = round(Tmean * w,-3)/1000\n", "deltaE = 11078 \n", "energy = deltaE/round((w**2*Cs),2)\n", "excess = 9500*math.sin(math.radians(90)) - 5700*math.cos(math.radians(90))\n", "alpha = excess/energy\n", "\n", "# results\n", "print \"power developed by the engine : %.f kW\"%power\n", "print \"maximum fluctuation of energy : %.f kg-m**2\"%energy\n", "print \"Alpha a = %.3f rad/s**2\"%alpha" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power developed by the engine : 377 kW\n", "maximum fluctuation of energy : 3121 kg-m**2\n", "Alpha a = 3.044 rad/s**2\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.12 Page No : 587" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from scipy.integrate import quad \n", "\n", "# Variables:\n", "m = 500. \t\t\t#kg\n", "k = 0.4 \t\t\t#m\n", "N = 150. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Refer Fig. 16.14\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Fluctuation of energy:\n", "#Equating the change in torque to zero and calculating the value of theta\n", "thetaA = math.sin(math.radians(0))\n", "thetaC = math.sin(math.radians(0))+180\n", "thetaE = math.sin(math.radians(0))+360 \t\t\t#degrees\n", "thetaB = 65.4\n", "thetaD = 294.6\n", "\n", "#Calculating the maximum fluctuation of energy\n", "def f4(theta): \n", " return (5000+600*math.sin(2*theta))-(5000+500*math.sin(theta))\n", "\n", "deltaE = round( quad(f4 ,thetaC*math.pi/180,thetaD*math.pi/180)[0])\n", "\n", "#Calculating the total percentage fluctuation of speed\n", "CS = deltaE/(m*k**2*omega**2)*100 \t\t\t#%\n", "#Maximum and minimum angular acceleration of the flywheel and the corresponding shaft positions:\n", "#Calculating the maximum or minimum values of theta\n", "#Differentiating (600*math.sin(2*theta))-500*math.sin(theta) = 0 with respect to theta and equating to zero\n", "#we get 12*2*(math.cos(theta))**2-5*math.cos(theta)-12 = 0\n", "a = 12.*2\n", "b = -5.\n", "c = -12.\n", "costheta1 = (-b+math.sqrt(b**2-4*a*c))/(2*a)\n", "costheta2 = (-b-math.sqrt(b**2-4*a*c))/(2*a)\n", "theta1 = math.degrees(math.acos(costheta1))\n", "theta2 = math.degrees(math.acos(costheta2)) \t\t\t#degrees\n", "#Calculating the maximum torque\n", "Tmax = 600*math.sin(math.radians(2*theta1))-500*math.sin(math.radians(theta1)) \t\t\t#N-m\n", "#Calculating the minimum torque\n", "Tmin = 600*math.sin(math.radians(2*theta2))-500*math.sin(math.radians(theta2)) \t\t\t#N-m\n", "#Calculating the maximum acceleration\n", "alphamax = Tmax/(m*k**2) \t\t\t#rad/s**2\n", "#Calculating the minimum acceleration\n", "alphamin = abs(Tmin)/(m*k**2) \t\t\t#rad/s**2\n", "\n", "\n", "#Results:\n", "print \" Fluctuation of energy deltaE = %d N-m.\"%(deltaE)\n", "print \" Total percentage fluctuation of speed CS = %.1f %%.\"%(CS)\n", "print \" Shaft position corresponding to maximum and minimum accelerations\\\n", " theta = %d degrees and %.1f degrees.\"%(theta1,theta2)\n", "print \" Maximum acceleration, alphamax = %.2f rad/s**2.\"%(alphamax)\n", "print \" Minimum acceleration alphamin = %.1f rad/s**2.\"%(alphamin)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Fluctuation of energy deltaE = 1204 N-m.\n", " Total percentage fluctuation of speed CS = 6.1 %.\n", " Shaft position corresponding to maximum and minimum accelerations theta = 35 degrees and 127.6 degrees.\n", " Maximum acceleration, alphamax = 3.46 rad/s**2.\n", " Minimum acceleration alphamin = 12.2 rad/s**2.\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.13 Page No : 589" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from scipy.integrate import quad \n", "\n", "# Variables:\n", "I = 1000. \t\t\t#kg-m**2\n", "N = 300. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Refer Fig. 16.15 and Fig. 16.16\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Power of the engine:\n", "#Calculating the work done per revolution\n", "def f0(theta): \n", " return 5000+1500*math.sin(3*theta)\n", "\n", "WD = quad(f0,0,2*math.pi)[0]\n", "\n", "#Calculating the mean resisting torque\n", "Tmean = WD/(2*math.pi) \t\t\t#N-m\n", "#Calculating the power of the engine\n", "P = Tmean*omega/1000 \t\t\t#kW\n", "#Maximum fluctuation of the speed of the flywheel when resisting torque is consmath.tant:\n", "#Calculating the value of theta \n", "theta = (5000-5000)/1500\n", "theta = 1./3*(math.sin(math.radians((theta)))+180) \t\t\t#degrees\n", "#Calculating the maximum fluctuation of energy\n", "def f1(theta): \n", " return 5000+1500*math.sin(3*theta)-5000\n", "\n", "deltaE = quad(f1,0,60*math.pi/180)[0]\n", "\n", "#Calculating the maximum fluctuation of speed of the flywheel\n", "CS1 = deltaE/(I*omega**2)*100 \t\t\t#%\n", "#Maximum fluctuation of speed of the flywheel when resisting torque (5000+600*math.sin(theta)) N-m:\n", "#Calculating the values of theta thetaB and thetaC\n", "thetaB = math.sin(math.radians(math.sqrt((1./4*(3-600./1500))))) \t\t\t#degrees\n", "thetaC = 180-thetaB \t\t\t#degrees\n", "#Calculating the maximum fluctuation of energy\n", "\n", "def f2(theta): \n", " return (5000+1500*math.sin(3*theta))-(5000+600*math.sin(theta))\n", "\n", "deltaE = round( quad(f2,thetaB*math.pi/180,thetaC*math.pi/180)[0])\n", "\n", "#Calculating the maximum fluctuation of speed of the flywheel\n", "CS2 = abs(deltaE)/(I*omega**2)*100 \t\t\t#%\n", "\n", "#Results:\n", "print \" Power of the engine P = %.1f kW.\"%(P)\n", "print \" Maximum fluctuation of the speed of the flywheel when resisting torque\\\n", " is constant, CS = %.1f %%.\"%(CS1)\n", "print \" Maximum fluctuation of speed of the flywheel when resisting torque \\\n", " 5000+600*sintheta N-m CS = %.3f %%.\"%(CS2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Power of the engine P = 157.1 kW.\n", " Maximum fluctuation of the speed of the flywheel when resisting torque is constant, CS = 0.1 %.\n", " Maximum fluctuation of speed of the flywheel when resisting torque 5000+600*sintheta N-m CS = 0.020 %.\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.14 Page No : 592" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 800. \t\t\t#rpm\n", "stroke = 300. \t\t\t#mm\n", "sigma = 7.*10**6 \t\t\t#N/m**2\n", "rho = 7200. \t\t\t#kg/m**3\n", "\n", "#Solution:\n", "#Refer Fig. 16.18\n", "#Calculating the angular speed of the engine\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 4./100\n", "#Diameter of the flywheel rim:\n", "#Calculating the peripheral velocity of the flywheel rim\n", "v = math.sqrt(sigma/rho) \t\t\t#m/s\n", "#Calculating the diameter of the flywheel rim\n", "D = v*60/(math.pi*N) \t\t\t#m\n", "#Cross-section of the flywheel rim:\n", "#Calculating the value of 1 mm**2 on the turning moment diagram\n", "c = 500.*math.pi/30 \t\t\t#Value of 1 mm**2 on the turning moment diagram N-m\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = round((420.-(-30))*c) \t\t\t#N-m\n", "#Calculating the mass of the flywheel rim\n", "m = deltaE/(v**2*CS) \t\t\t#kg\n", "#Calculating the thickness of the flywheel rim\n", "t = math.sqrt(m/(math.pi*D*5*rho))*1000 \t\t\t#mm\n", "#Calculating the width of the flywheel rim\n", "b = 5*t \t\t\t #mm\n", "\n", "#Results:\n", "print \" Diameter of the flywheel rim D = %.3f m.\"%(D)\n", "print \" Thickness of the flywheel rim t = %d mm.\"%(t)\n", "print \" Width of the flywheel rim b = %d mm.\"%(b)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Diameter of the flywheel rim D = 0.744 m.\n", " Thickness of the flywheel rim t = 84 mm.\n", " Width of the flywheel rim b = 424 mm.\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.15 Page No : 594" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "P = 150.*1000 \t\t\t#W\n", "N = 80. \t\t\t#rpm\n", "CE = 0.1\n", "D = 2.\n", "R = D/2. \t\t\t#m\n", "rho = 7200. \t\t\t#kg/m**3\n", "\n", "#Solution:\n", "#Calculating the angular speed of the engine\n", "omega = round(2*math.pi*N/60,1) \t\t\t#rad/s\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 4./100\n", "#Mass of the flywheel rim:\n", "#Calculating the work done per cycle\n", "WD = P*60/N \t\t\t#Work done per cycle N-m\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = WD*CE \t\t\t#N-m\n", "#Calculating the mass moment of inertia of the flywheel\n", "I = deltaE/(omega**2*CS) \t\t\t#kg-m**2\n", "#Calculating the mass moment of inertia of the flywheel rim\n", "Irim = 0.95*I \t\t\t#kg-m**2\n", "#Calculating the mass of the flywheel rim\n", "k = R \t\t\t#Radius of gyration m\n", "m = Irim/k**2 \t\t\t#kg\n", "#Calculating the cross-sectional area of the flywheel rim\n", "A = m/(2*math.pi*R*rho) \t\t\t#m**2\n", "\n", "#Resilts:\n", "print \" Mass of the flywheel rim m = %.f kg.\"%(m)\n", "print \" Cross-sectional area of the flywheel rim A = %.3f m**2.\"%(A)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass of the flywheel rim m = 3787 kg.\n", " Cross-sectional area of the flywheel rim A = 0.084 m**2.\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.16 Page No : 595" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 600. \t\t\t#rpm\n", "rho = 7250. \t\t\t#kg/m**3\n", "sigma = 6.*10**6 \t\t\t#N/m**2\n", "\n", "#Solution:\n", "#Refer Fig. 16.19\n", "#Calculating the angular speed of the engine\n", "omega = 2.*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the total fluctuation of speed\n", "CS = 2./100\n", "#Moment of inertia of the flywheel:\n", "#Calculating the value of 1 mm**2 of turning moment diagram\n", "c = 250.*math.pi/60 \t\t\t#Value of 1 mm**2 of turning moment diagram N-m\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = round((162.-(-35))*c) \t\t\t#N-m\n", "#Calculating the moment of inertia of the flywheel\n", "I = deltaE/(omega**2*CS) \t\t\t#kg-m**2\n", "#Dimensions of the flywheel rim:\n", "#Calculating the peripheral velocity of the flywheel\n", "v = math.sqrt(sigma/rho) \t\t\t#m/s\n", "#Calculating the mean diameter of the flywheel\n", "D = v*60/(math.pi*N) \t\t\t#m\n", "#Calculating the maximum fluctuation of energy of the flywheel rim\n", "deltaErim = 0.92*deltaE \t\t\t#N-m\n", "#Calculating the mass of the flywheel rim\n", "m = deltaErim/(v**2*CS) \t\t\t#kg\n", "#Calculating the thickness of the flywheel rim\n", "t = math.sqrt(m/(math.pi*D*2*rho))*1000 \t\t\t#mm\n", "#Calculating the breadth of the flywheel rim\n", "b = 2*t \t\t\t#mm\n", "\n", "#Results:\n", "print \" Moment of inertia of the flywheel I = %.1f kg-m**2.\"%(I)\n", "print \" Thickness of the flywheel rim t = %.1f mm.\"%(t)\n", "print \" Breadth of the flywheel rim b = %.1f mm.\"%(b)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Moment of inertia of the flywheel I = 32.7 kg-m**2.\n", " Thickness of the flywheel rim t = 58.6 mm.\n", " Breadth of the flywheel rim b = 117.2 mm.\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.17 Page No : 596" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "a1 = 5.*10**-5 #m**2\n", "a2 = 21.*10**-5 #m**2\n", "a3 = 85.*10**-5 #m**2\n", "a4 = 8.*10**-5 \t\t\t#m**2\n", "N2 = 98.\n", "N1 = 102. \t\t\t#rpm\n", "rho = 8150. \t\t\t#kg/m**3\n", "sigma = 7.5*10**6 \t\t\t#N/m**2\n", "\n", "#Solution:\n", "#Refer Fig. 16.20\n", "#Calculating the net area\n", "a = a3-(a1+a2+a4) \t\t\t#Net area m**2\n", "#Calculating the value of 1 m**2 on the turning moment diagram in terms of work\n", "c = 14*10**6 \t\t\t#Value of 1 m**2 on the turning moment diagram N-m\n", "#Calculating the net work done per cycle\n", "WD = a*c \t\t\t#Net work done per cycle N-m\n", "#Calculating the mean torque on the flywheel\n", "Tmean = round(WD/(4*math.pi)) \t\t\t#N-m\n", "FG = Tmean \t\t\t#N-m\n", "#Calculating the work done during expansion stroke\n", "WDe = int(a3*c) \t\t\t#Work done during expansion stroke N-m\n", "#Calculating the value of AG\n", "AG = int(WDe/(1./2*math.pi)) \t\t\t#N-m\n", "#Calculating the excess torque\n", "Texcess = AG-FG \t\t\t#Excess torque N-m\n", "AF = Texcess \t\t\t#N-m\n", "#Calculating the value of DE\n", "DE = round(AF/AG*math.pi,1) \t\t\t#rad\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = 1./2*DE*AF \t\t\t#N-m\n", "#Moment of inertia of the flywheel:\n", "#Calculating the mean speed during the cycle\n", "N = (N1+N2)/2 \t\t\t#rpm\n", "#Calculating the corresponding angular mean speed\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = (N1-N2)/N\n", "#Calculating the moment of inertia of the flywheel\n", "I = deltaE/(omega**2*CS) \t\t\t#kg-m**2\n", "#Size of flywheel:\n", "#Calculating the peripheral velocity of the flywheel\n", "v = math.sqrt(sigma/rho) \t\t\t#m/s\n", "#Calculating the mean diameter of the flywheel\n", "D = v*60/(math.pi*N) \t\t\t#m\n", "#Calculating the mass of the flywheel rim\n", "m = deltaE/(v**2*CS) \t\t\t#kg\n", "#Calculating the thickness of the flywheel rim\n", "t = math.sqrt(m/(math.pi*D*4*rho))*1000 \t\t\t#mm\n", "#Calculating the width of the flywheel rim\n", "b = 4*t \t\t\t#mm\n", "\n", "#Results:\n", "print \" Moment of inertia of the flywheel I = %.f kg-m**2.\"%(I)\n", "print \" Thickness of the flywheel rim t = %.1f mm.\"%(t)\n", "print \" Width of the flywheel rim b = %.1f mm.\"%(b)\n", "\n", "# rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Moment of inertia of the flywheel I = 2316 kg-m**2.\n", " Thickness of the flywheel rim t = 21.6 mm.\n", " Width of the flywheel rim b = 86.3 mm.\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.18 Page No : 599" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "P = 50.*1000 \t\t\t#W\n", "N = 150. \t\t\t#rpm\n", "n = 75.\n", "sigma = 4.*10**6 \t\t\t#N/m**2\n", "rho = 7200. \t\t\t#kg/m**3\n", "\n", "#Solution:\n", "#Refer Fig. 16.21\n", "#Calculating the angular speed of the engine\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the mean torque transmitted by the flywheel\n", "Tmean = P/omega \t\t\t#N-m\n", "FG = Tmean \t\t\t#N-m\n", "#Calculating the work done per cycle\n", "WD = Tmean*4*math.pi \t\t\t#Work done per cycle N-m\n", "#Calculating the work done during power stroke\n", "WDp = 1.4*WD \t\t\t#Work done during power stroke N-m\n", "#Calculating the maximum torque transmitted by the flywheel\n", "Tmax = WDp/(1./2*math.pi) \t\t\t#N-m\n", "BF = Tmax \t\t\t#N-m\n", "#Calculating the excess torque\n", "Texcess = Tmax-Tmean \t\t\t#N-m\n", "BG = Texcess \t\t\t#N-m\n", "#Calculating the value of DE\n", "DE = BG/BF*math.pi \t\t\t#N-m\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = 1./2*DE*BG \t\t\t#N-m\n", "#Mean diameter of the flywheel:\n", "#Calculating the peripheral velocity of the flywheel\n", "v = math.sqrt(sigma/rho) \t\t\t#m/s\n", "#Calculating the mean diameter of the flywheel\n", "D = v*60./(math.pi*N) \t\t\t#m\n", "#Cross-sectional dimensions of the rim:\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 1./100\n", "#Calculating the total energy of the flywheel\n", "E = deltaE/(2*CS) \t\t\t#N-m\n", "#Calculating the energy of the rim\n", "Erim = 15./16*E \t\t\t#N-m\n", "#Calculating the mass of the flywheel rim\n", "m = Erim/(1./2*v**2) \t\t\t#kg\n", "#Calculating the thickness of the rim\n", "t = round(math.sqrt(m/(math.pi*D*4*rho))*1000) \t\t\t#mm\n", "#Calculating the width of the rim\n", "b = 4*t \t\t\t#mm\n", "\n", "#Results:\n", "print \" Mean diameter of the flywheel D = %d m.\"%(D)\n", "print \" Thickness of the flywheel rim t = %d mm.\"%(t)\n", "print \" Width of the flywheel rim b = %d mm.\"%(b)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mean diameter of the flywheel D = 3 m.\n", " Thickness of the flywheel rim t = 170 mm.\n", " Width of the flywheel rim b = 680 mm.\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.19 Page No : 603" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N1 = 225.\n", "N2 = 200. \t\t\t#rpm\n", "k = 0.5 \t\t\t#m\n", "E1 = 15.*1000 \t\t\t#N-m\n", "HolePunched = 720. \t\t\t#per hour\n", "\n", "#Solution:\n", "#Power of the motor:\n", "#Calculating the total energy required per second\n", "E = E1*HolePunched/3600 \t\t\t#N-m/s\n", "#Calculating the power of the motor\n", "P = E/1000 \t\t\t#kW\n", "#Minimum mass of the flywheel:\n", "#Calculating the energy supplied by the motor in 2 seconds\n", "E2 = E*2 \t\t\t#N-m\n", "#Calculating the energy supplied by the flywheel during punching\n", "deltaE = E1-E2 \t\t\t#N-m\n", "#Calculating the mean speed of the flywheel\n", "N = (N1+N2)/2 \t\t\t#rpm\n", "#Calculating the minimum mass of the flywheel\n", "m = round(deltaE*900/(math.pi**2*k**2*N*(N1-N2))) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Power of the motor P = %d kW.\"%(P)\n", "print \" Minimum mass of the flywheel m = %d kg.\"%(m)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Power of the motor P = 3 kW.\n", " Minimum mass of the flywheel m = 618 kg.\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.20 Page No : 603" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "d = 38. #mm\n", "t = 32. #mm\n", "s = 100. \t\t\t#mm\n", "E1 = 7. \t\t\t#N-m/mm**2 of sheared area\n", "v = 25. \t\t\t#m/s\n", "\n", "#Solution:\n", "#Power of the motor required:\n", "#Calculating the sheared area\n", "A = round(math.pi*d*t) \t\t\t#mm**2\n", "#Calculating the total energy required per hole\n", "E1 = E1*A \t\t\t#N-m\n", "#Calculating the energy required for punching work per second\n", "E = E1/10 \t\t\t#Energy required for punching work per second N-m/s\n", "#Calculating the power of the motor required\n", "P = E/1000 \t\t\t#Power of the motor required kW\n", "#Mass of the flywheel required:\n", "#Calculating the time required to punch a hole in a 32 mm thick plate\n", "t32 = 10/(2*s)*t \t\t\t#Time required to punch a hole in 32 mm thick plate seconds\n", "#Calculating the energy supplied by the motor in t32 seconds\n", "E2 = E*t32 \t\t\t#N-m\n", "#Calculating the energy to be supplied by the flywheel during punching\n", "deltaE = E1-E2 \t\t\t#N-m\n", "#Calculating the coefficient of fluctuation of speed\n", "CS = 3/100.\n", "#Calculating the mass of the flywheel required\n", "m = round(deltaE/(v**2*CS)) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Power of the motor required P = %.3f kW.\"%(P)\n", "print \" Mass of the flywheel required m = %d kg.\"%(m)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Power of the motor required P = 2.674 kW.\n", " Mass of the flywheel required m = 1198 kg.\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.21 Page No : 604" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "P = 3. \t\t\t#kW\n", "m = 150. \t\t\t#kg\n", "k = 0.6 \t\t\t#m\n", "N1 = 300. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Calculating the angular speed of the flywheel before riveting\n", "omega1 = 2*math.pi*N1/60 \t\t\t#rad/s\n", "#Speed of the flywheel immediately after riveting:\n", "#Calculating the energy supplied by the motor\n", "E2 = P*1000 \t\t\t#N-m/s\n", "#Calculating the energy absorbed during one riveting operation which takes 1 second\n", "E1 = 10000 \t\t\t#N-m\n", "#Calculating the energy to be supplied by the flywheel for each riveting operation per second\n", "deltaE = E1-E2 \t\t\t#N-m\n", "#Calculating the angular speed of the flywheel immediately after riveting\n", "omega2 = math.sqrt(omega1**2-(2*deltaE/(m*k**2))) \t\t\t#rad/s\n", "#Calculating the corresponding speed in rpm\n", "N2 = omega2*60/(2*math.pi) \t\t\t#rpm\n", "#Calculating the number of rivets that can be closed per minute\n", "n = E2/E1*60 \t\t\t#Number of rivets that can be closed per minute\n", "\n", "#Results:\n", "print \" Speed of the flywheel immediately after riveting N2 = %.1f rpm.\"%(N2)\n", "print \" Number of rivets that can be closed per minute = %d rivets.\"%(n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Speed of the flywheel immediately after riveting N2 = 257.6 rpm.\n", " Number of rivets that can be closed per minute = 18 rivets.\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.22 Page No : 605" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "d = 40. #mm\n", "t = 15. \t\t\t#mm\n", "NoofHoles = 30. \t\t\t#per minute\n", "EnergyRequired = 6. \t\t\t#N-m/mm**2\n", "Time = 1./10 \t\t\t#seconds\n", "N1 = 160.\n", "N2 = 140. \t\t\t#rpm\n", "k = 1. \t\t\t#m\n", "\n", "#Solution:\n", "#Calculating the sheared area per hole\n", "A = round(math.pi*d*t) \t\t\t#Sheared area per hole mm**2\n", "#Calculating the energy required to punch a hole\n", "E1 = EnergyRequired*A \t\t\t#N-m\n", "#Calculating the energy required for punching work per second\n", "E = E1*NoofHoles/60 \t\t\t#Energy required for punching work per second N-m/s\n", "#Calculating the energy supplied by the motor during the time of punching\n", "E2 = E*Time \t\t\t#N-m\n", "#Calculating the energy to be supplied by the flywheel during punching a hole\n", "deltaE = E1-E2 \t\t\t#N-m\n", "#Calculating the mean speed of the flywheel\n", "N = (N1+N2)/2 \t\t\t#rpm\n", "#Calculating the mass of the flywheel required\n", "m = round(deltaE*900/(math.pi**2*k**2*N*(N1-N2))) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Mass of the flywheel required m = %d kg.\"%(m)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass of the flywheel required m = 327 kg.\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.23 Page No : 606" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "n = 25.\n", "d1 = 25./1000 #m\n", "t1 = 18./1000 #m\n", "D = 1.4\n", "R = D/2 \t\t\t#m\n", "touu = 300.*10**6 \t\t\t#N/m**2\n", "etam = 95./100\n", "CS = 0.1\n", "sigma = 6.*10**6 \t\t\t#N/m**2\n", "rho = 7250. \t\t\t#kg/m**3\n", "\n", "#Solution:\n", "#Power needed for the driving motor:\n", "#Calculating the area of the plate sheared\n", "AS = math.pi*d1*t1 \t\t\t#m**2\n", "#Calculating the maximum shearing force required for punching\n", "FS = AS*touu \t\t\t#N\n", "#Calculating the energy required per stroke\n", "E = 1./2*FS*t1 \t\t\t#Energy required per stroke N-m\n", "#Calculating the energy required per minute\n", "E1 = E*n \t\t\t#Energy required per minute N-m\n", "#Calculating the power required for the driving motor\n", "P = E1/(60*etam)/1000 \t\t\t#Energy required for the driving motor kW\n", "#Dimensions for the rim cross-section:\n", "#Calculating the maximum fluctuation of energy\n", "deltaE = 9./10*E \t\t\t#N-m\n", "#Calculating the maximum fluctuation of energy provided by the rim\n", "deltaErim = 0.95*deltaE \t\t\t#N-m\n", "#Calculating the mean speed of the flywheel\n", "N = 9.*25 \t\t\t#rpm\n", "#Calculating the mean angular speed\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the mass of the flywheel\n", "m = round(deltaErim/(R**2*omega**2*CS)) \t\t\t#kg\n", "#Calculating the thickness of rim\n", "t = math.sqrt(m/(math.pi*D*2*rho))*1000 \t\t\t#mm\n", "#Calculating the width of rim\n", "b = 2*t \t\t\t#mm\n", "\n", "#Results:\n", "print \" Power needed for the driving motor = %.3f kW.\"%(P)\n", "print \" Thickness of the flywheel rim t = %d mm.\"%(t)\n", "print \" Width of the flywheel rim b = %d mm.\"%(b)\n", "#Answers vary due to rounding-off errors" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Power needed for the driving motor = 1.674 kW.\n", " Thickness of the flywheel rim t = 43 mm.\n", " Width of the flywheel rim b = 86 mm.\n" ] } ], "prompt_number": 32 } ], "metadata": {} } ] }