{ "metadata": { "name": "", "signature": "sha256:13844e2491f60bc4c521c5dd5ea680eaf26c07059f7a5c77baf4e368f712f152" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15 : Inertia Forces in Reciprocating Parts" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.1 Page No : 521" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "OC = 200./1000 #m\n", "PC = 700./1000 \t\t\t#m\n", "omega = 120. \t\t\t#rad/s\n", "\n", "#Solution:\n", "#Refer Fig. 15.5\n", "OM = 127./1000\n", "CM = 173./1000\n", "QN = 93./1000\n", "NO = 200./1000 \t\t\t#m\n", "\n", "#Velocity and acceleration of the piston:\n", "#Calculating the velocity of the piston P\n", "vP = omega*OM \t\t\t#m/s\n", "#Calculating the acceleration of the piston P\n", "aP = omega**2*NO \t\t\t#m/s**2\n", "#Velocity and acceleration of the mid-point of the connecting rod:\n", "#By measurement\n", "OD1 = 140./1000\n", "OD2 = 193./1000 \t\t\t#m\n", "#Calculating the velocity of D\n", "vD = omega*OD1 \t\t\t#m/s\n", "#Calculating the acceleration of D\n", "aD = omega**2*OD2 \t\t\t#m/s**2\n", "#Angular velocity and angular acceleration of the connecting rod:\n", "#Calculating the velocity of the connecting rod PC\n", "vPC = omega*CM \t\t\t#m/s\n", "#Calculating the angular velocity of the connecting rod PC\n", "omegaPC = vPC/PC \t\t\t#rad/s\n", "#Calculating the math.tangential component of the acceleration of P with respect to C\n", "atPC = omega**2*QN \t\t\t#m/s**2\n", "#Calculating the angular acceleration of the connecting rod PC\n", "alphaPC = atPC/PC \t\t\t#ra/s**2\n", "\n", "#Results:\n", "print \" Velocity of the piston P, vP = %.2f m/s.\"%(vP)\n", "print \" Acceleration of the piston P, aP = %d m/s**2.\"%( aP)\n", "print \" Velocity of D, vD = %.1f m/s.\"%(vD)\n", "print \" Acceleration of D, aD = %.1f m/s**2.\"%(aD)\n", "print \" Angular velocity of the connecting rod PC, omegaPC = %.2f rad/s.\"%(omegaPC)\n", "print \" Angular acceleration of the connecting rod PC alphaPC = %.2f rad/s**2.\"%(alphaPC)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the piston P, vP = 15.24 m/s.\n", " Acceleration of the piston P, aP = 2880 m/s**2.\n", " Velocity of D, vD = 16.8 m/s.\n", " Acceleration of D, aD = 2779.2 m/s**2.\n", " Angular velocity of the connecting rod PC, omegaPC = 29.66 rad/s.\n", " Angular acceleration of the connecting rod PC alphaPC = 1913.14 rad/s**2.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.2 Page No : 522" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "OC = 150./1000 #m\n", "PC = 600./1000 #m\n", "CD = 150./1000 \t\t#m\n", "N = 450. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Refer Fig. 15.6\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#By measurement\n", "OM = 145./1000\n", "CM = 78./1000\n", "QN = 130./1000\n", "NO = 56./1000 \t\t\t#m\n", "\n", "#Velocity and acceleration of alider:\n", "#Calculating the velocity of the slider P\n", "vP = omega*OM \t\t\t#m/s\n", "#Calculating the acceleration of the slider P\n", "aP = omega**2*NO \t\t\t#m/s**2\n", "#Velocity and acceleration of point D on the connecting rod:\n", "#Calculating the length od CD1\n", "CD1 = CD/PC*CM \t\t\t#m\n", "#By measurement\n", "OD1 = 145./1000\n", "OD2 = 120./1000 \t\t\t#m\n", "\n", "#Calculating the velocity of point D\n", "vD = omega*OD1 \t\t\t#m/s\n", "#Calculating the acceleration of point D\n", "aD = omega**2*OD2 \t\t\t#m/s**2\n", "#Angular velocity and angular acceleration of the connecting rod:\n", "#Calculating the velocity of the connecting rod PC\n", "vPC = omega*CM \t\t\t#m/s\n", "#Calculating the angular velocity of the connecting rod\n", "omegaPC = vPC/PC \t\t\t#rad/s\n", "#Calculating the tangential component of the acceleration of P with respect to C\n", "atPC = omega**2*QN \t\t\t#m/s**2\n", "#Calculating the angular acceleration of the connecting rod PC\n", "alphaPC = atPC/PC \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" Velocity of the slider P vP = %.3f m/s.\"%(vP)\n", "print \" Acceleration of the slider P aP = %.1f m/s**2.\"%(aP)\n", "print \" Velocity of point D vD = %.3f m/s.\"%(vD)\n", "print \" Acceleration of point D aD = %.2f m/s**2.\"%(aD)\n", "print \" Angular velocity of the connecting rod omegaPC = %.3f rad/s.\"%(omegaPC)\n", "print \" Angular acceleration of the connecting rod PC alphaPC = %.2f rad/s**2.\"%(alphaPC)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the slider P vP = 6.833 m/s.\n", " Acceleration of the slider P aP = 124.4 m/s**2.\n", " Velocity of point D vD = 6.833 m/s.\n", " Acceleration of point D aD = 266.48 m/s**2.\n", " Angular velocity of the connecting rod omegaPC = 6.126 rad/s.\n", " Angular acceleration of the connecting rod PC alphaPC = 481.14 rad/s**2.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.3 Page No : 527" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "r = 300./1000\n", "l = 1. \t\t\t#m\n", "N = 200. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Crank angle at which the maximum velocity occurs:\n", "#Calculating the ratio of length of connecting rod to crank radius\n", "n = l/r\n", "#Velocity of the piston vP = omega*r*(math.sin(math.radians(theta)+math.sin(math.radians(2*theta)/(2*n)) .....(i)\n", "#For maximum velocity d(vP)/d(theta) = 0 .....(ii)\n", "#Substituting (i) in (ii) we get 2(math.cos(theta))**2+n*math.cos(theta)-1 = 0\n", "a = 2.\n", "b = n\n", "c = -1.\n", "costheta = (-b+math.sqrt(b**2-4*a*c))/(2*a)\n", "#Calculating the crank angle from the inner dead centre at which the maximum velocity occurs\n", "theta = round(math.degrees(math.acos(costheta))) \t\t\t#degrees\n", "#Calculating the maximum velocity of the piston:\n", "vPmax = omega*r*(math.sin(math.radians(theta))+math.sin(math.radians(2*theta))/(2*n)) \t\t\t#m/s\n", "#Results:\n", "print \" Crank angle from the inner dead centre at which the maximum velocity occurs theta = %.2f degrees.\"%(theta)\n", "print \" Maximum velocity of the piston( vPmax) = %.2f m/s.\"%(vPmax)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Crank angle from the inner dead centre at which the maximum velocity occurs theta = 75.00 degrees.\n", " Maximum velocity of the piston( vPmax) = 6.54 m/s.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.4 Page No : 528" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "r = 0.3 #m\n", "l = 1.5 \t\t\t#m\n", "N = 180. \t\t\t#rpm\n", "theta = 40. \t\t#degrees\n", "\n", "#Solution:\n", "#Calculating the angular speed of the piston\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Velocity of the piston:\n", "#Calculating the ratio of lengths of the connecting rod and crank\n", "n = l/r\n", "#Calculating the velocity of the piston\n", "vP = omega*r*(math.sin(math.radians(theta))+math.sin(math.radians(2*theta))/(2*n)) \t\t\t#m/s\n", "#Calculating the acceleration of the piston\n", "aP = omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#m/s**2\n", "#Position of the crank for zero acceleration of the piston:\n", "ap1 = 0\n", "#Calculating the position of the crank from the inner dead centre for zero acceleration of the piston\n", "#We have ap1 = omega**2*r*(math.cos(theta1)+math.cos(2*theta1)/n) or 2*(math.cos(theta1))**2+n*math.cos(theta1)-1 = 0\n", "a = 2.\n", "b = n\n", "c = -1.\n", "costheta1 = (-b+math.sqrt(b**2-4*a*c))/(2*a)\n", "#Calculating the crank angle from the inner dead centre for zero acceleration of the piston\n", "theta1 = math.degrees(math.acos(costheta1)) \t\t\t#degrees\n", "\n", "#Results:\n", "print \" Velocity of the piston vP = %.2f m/s.\"%( vP)\n", "print \" Acceleration of the piston aP = %.2f m/s**2.\"%(aP)\n", "print \" Position of the crank for zero acceleration of the piston theta1 = %.2f degrees or\\\n", " %.2f degrees.\"%(theta1,360-theta1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the piston vP = 4.19 m/s.\n", " Acceleration of the piston aP = 85.36 m/s**2.\n", " Position of the crank for zero acceleration of the piston theta1 = 79.27 degrees or 280.73 degrees.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.5 Page No : 528" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "r = 150./1000\n", "l = 600./1000 \t\t\t#m\n", "theta = 60. \t\t\t#degrees\n", "N = 450. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Velocity and acceleration of the slider:\n", "#Calculating the ratio of length of connecting rod and crank\n", "n = l/r\n", "#Calculating the velocity of the slider\n", "vP = omega*r*(math.sin(math.radians(theta))+math.sin(math.radians(2*theta))/(2*n)) \t\t\t#m/s\n", "#Calculating the acceleration of the slider\n", "aP = omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#m/s**2\n", "#Angular velocity and angular acceleration of the connecting rod:\n", "#Calculating the angular velocity of the connecting rod\n", "omegaPC = omega*math.cos(math.radians(theta))/n \t\t\t#rad/s\n", "#Calculating the angular acceleration of the connecting rod\n", "alphaPC = round(omega**2*math.sin(math.radians(theta))/n) \t\t\t#rad/s**2\n", "\n", "#Results:\n", "print \" Velocity of the slider vP = %.1f m/s.\"%(vP)\n", "print \" Acceleration of the slider aP = %.2f m/s**2.\"%(aP)\n", "print \" Angular velocity of the connecting rod omegaPC = %.1f rad/s.\"%(omegaPC)\n", "print \" Angular acceleration of the connecting rod alphaPC = %d rad/s**2.\"%(alphaPC)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the slider vP = 6.9 m/s.\n", " Acceleration of the slider aP = 124.91 m/s**2.\n", " Angular velocity of the connecting rod omegaPC = 5.9 rad/s.\n", " Angular acceleration of the connecting rod alphaPC = 481 rad/s**2.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.6 Page No : 532" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "D = 175./1000 #m\n", "L = 200./1000 #m\n", "r = L/2 #m\n", "l = 400./1000 \t #m\n", "N = 500. \t\t #rpm\n", "mR = 180. \t\t #kg\n", "theta = 60 #degrees\n", "#Solution:\n", "omega = round(2*math.pi*N/60,1) \t\t\t#rad/s\n", "\n", "# Graphical method\n", "ON = 0.038 # m\n", "aR = omega**2 * ON\n", "FI = mR * aR/1000\n", "print \" Inertia force FI = %.2f kN.\"%(FI)\n", "\n", "#Calculating the angular speed of the crank\n", "\n", "#Analytical method:\n", "#Calculating the ratio of lengths of connecting rod and crank\n", "n = l/r\n", "#Calculating the inertia force\n", "FI = mR*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n)/1000 \t\t\t#kN\n", "\n", "#Results:\n", "print \" Inertia force FI = %.2f kN.\"%(FI)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Inertia force FI = 18.78 kN.\n", " Inertia force FI = 18.53 kN.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.7 Page No : 533" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy\n", "\n", "# Variables:\n", "r = 300./1000 #m\n", "l = 1.2 #m\n", "D = 0.5 \t\t\t#m\n", "mR = 250. \t\t\t#kg\n", "theta = 60. \t\t#degrees\n", "dp = 0.35 \t\t\t#p1-p2 N/mm**2\n", "N = 250. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the net load on the piston\n", "FL = (dp)*math.pi/4*(D*1000)**2 \t\t\t#N\n", "#Calculating the ratio of length of connecting rod and crank\n", "n = l/r\n", "#Calculating the accelerating or inertia force on reciprocating parts\n", "FI = mR*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#N\n", "#Calculating the piston effort\n", "FP = (FL-FI)/1000 \t\t\t#kN\n", "#Pressure on slide bars:\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(math.radians(theta))/n \t\t\t#degrees\n", "phi = math.degrees(math.asin(sinphi))\n", "#Calculating the pressure on the slide bars\n", "FN = FP*math.tan(math.radians(phi)) \t\t\t#kN\n", "#Calculating the thrust in the connecting rod\n", "FQ = FP/math.cos(math.radians(phi)) \t\t\t#kN\n", "#Calculating the tangential force on the crank pin\n", "FT = FQ*math.sin(math.radians(theta+phi)) \t\t\t#kN\n", "#Calculating the turning moment on the crank shaft\n", "T = FT*r \t\t\t#kN-m\n", "\n", "#Results:\n", "print \" Pressure on the slide bars FN = %.2f kN.\"%(FN)\n", "print \" Thrust in the connecting rod FQ = %.2f kN.\"%(FQ)\n", "print \" Tangential force on the crank-pin FT = %.2f kN.\"%(FT)\n", "print \" Turning moment on the crank shaft T = %.3f kN-m.\"%(T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Pressure on the slide bars FN = 10.97 kN.\n", " Thrust in the connecting rod FQ = 50.65 kN.\n", " Tangential force on the crank-pin FT = 48.30 kN.\n", " Turning moment on the crank shaft T = 14.491 kN-m.\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.8 Page No : 534" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "D = 300./1000 #m\n", "L = 450./1000 #m\n", "r = L/2 #m\n", "d = 50./1000 #m\n", "l = 1.2 \t\t\t#m\n", "N = 200. \t\t\t#rpm\n", "mR = 225. \t\t\t#kg\n", "theta = 125. \t\t\t#degrees\n", "p1 = 30*1000. #N/m**2\n", "p2 = 1.5*1000. \t\t\t#N/m**2\n", "\n", "#Solution:\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the area of the piston\n", "A1 = math.pi/4*D**2 \t\t\t#m**2\n", "#Calculating the area of the piston rod\n", "a = math.pi/4*d**2 \t\t\t#m**2\n", "#Calculating the force on the piston due to steam pressure\n", "FL = round(p1*A1-p2*(A1-a)) \t\t\t#N\n", "#Calculating the ratio of lengths of connecting rod and crank\n", "n = l/r\n", "#Calculating the inertia force on the reciprocating parts\n", "FI = mR*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#N\n", "#Calculating the net force on the piston or piston effort\n", "FP = FL-FI+mR*9.81 \t\t\t#N\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(math.radians(theta))/n \t\t\t#degrees\n", "phi = math.degrees(math.asin(sinphi))\n", "#Calculating the effective turning moment on the crank shaft\n", "T = FP*math.sin(math.radians(theta+phi))/math.cos(math.radians(phi))*r \t\t\t#N-m\n", "\n", "#Results:\n", "print \" Effective turning moment of the crank shaft T = %.f N-m.\"%(T)\n", "\n", "# rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Effective turning moment of the crank shaft T = 3020 N-m.\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.9 Page No : 534" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 1800. \t\t\t#rpm\n", "r = 50./1000 #m\n", "l = 200./1000 #m\n", "D = 80./1000 #m\n", "x = 10./1000 \t\t#m\n", "mR = 1. \t\t\t#kg\n", "p = 0.7 \t\t\t#N/mm**2\n", "\n", "#Solution:\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Net load on the gudgeon pin:\n", "#Calculating the load on the piston\n", "FL = round(math.pi/4*(D*1000)**2*p) \t\t\t#N\n", "#Refer Fig. 15.10\n", "#By measurement\n", "theta = 33. \t\t\t#degrees\n", "#Calculating the ratio of lengths of connecting rod and crank\n", "n = l/r\n", "#Calculating the inertia force on the reciprocating parts\n", "FI = mR*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#N\n", "#Calculating the net load on the gudgeon pin\n", "FP = FL-FI \t\t\t#N\n", "#Thrust in the connecting rod:\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(math.radians(theta))/n \t\t\t#degrees\n", "phi = math.degrees(math.asin(sinphi))\n", "#Calculating the thrust in the connecting rod\n", "FQ = FP/math.cos(math.radians(phi)) \t\t\t#N\n", "#Calculating the reaction between the piston and cylinder\n", "FN = FP*math.tan(math.radians(phi)) \t\t\t#N\n", "#Engine speed at which the abov values will become zero:\n", "#Calculating the speed at which FI = FL\n", "omega1 = math.sqrt((math.pi/4*(D*1000)**2*p)/(mR*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n))) \t\t\t#rad/s\n", "#Calculating the corresponding speed in rpm\n", "N1 = omega1*60/(2*math.pi) \t\t\t#rpm\n", "\n", "print phi\n", "#Results:\n", "print \" Net load on the gudgeon pin FP = %.f N.\"%(FP)\n", "print \" Thrust in the connecting rod FQ = %.1f N.\"%(FQ)\n", "print \" Reaction between the piston and cylinder FN = %d N.\"%(FN)\n", "print \" Engine speed at which the above values will become zero N1 = %d rpm.\"%(N1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "7.82568845753\n", " Net load on the gudgeon pin FP = 1848 N.\n", " Thrust in the connecting rod FQ = 1865.8 N.\n", " Reaction between the piston and cylinder FN = 254 N.\n", " Engine speed at which the above values will become zero N1 = 2612 rpm.\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.10 Page No : 536" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "aP = 36. \t\t\t#m/s**2\n", "theta = 30. \t\t#degrees\n", "p = 0.5 \t\t\t#N/mm**2\n", "RF = 600. \t\t\t#N\n", "D = 300./1000 #m\n", "r = 300./1000 \t\t#m\n", "mR = 180. \t\t\t#kg\n", "n = 4.5\n", "\n", "#Solution:\n", "#Reaction on the guide bars:\n", "#Calculating the load on the piston\n", "FL = round(p*math.pi/4*(D*1000)**2) \t\t\t#N\n", "#Calculating the inertia force due to reciprocating parts\n", "FI = mR*aP \t\t\t#N\n", "#Calculating the piston effort\n", "FP = (FL-FI-RF)/1000 \t\t\t#kN\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(math.radians(theta))/n \t\t\t#degrees\n", "phi = math.degrees(math.asin(sinphi))\n", "#Calculating the reaction on the guide bars\n", "FN = FP*math.tan(phi) \t\t\t#kN\n", "#Calculating the thrust on the crank shaft bearing\n", "FB = (FP*math.cos(math.radians(phi+theta)))/math.cos(math.radians(phi)) \t\t\t#kN\n", "#Calculating the turning moment on the crank shaft\n", "T = (FP*math.sin(math.radians(theta+phi)))/math.cos(math.radians(phi))*r \t\t\t#kN-m\n", "\n", "\n", "#Results:\n", "print \" Reaction on the guide bars FN = %.f kN.\"%(FN)\n", "print \" Thrust on the crank shaft bearing FB = %.1f kN.\"%(FB)\n", "print \" Turning moment on the crank shaft T = %.2f kN-m.\"%(T)\n", "\n", "# rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Reaction on the guide bars FN = 3 kN.\n", " Thrust on the crank shaft bearing FB = 22.9 kN.\n", " Turning moment on the crank shaft T = 5.06 kN-m.\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.11 Page No : 537" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "D = 100./1000 #m\n", "L = 120./1000 #m\n", "r = L/2 #m\n", "l = 250./1000 \t\t\t#m\n", "mR = 1.1 \t\t\t#kg\n", "N = 2000. \t \t\t#rpm\n", "theta = 20. \t\t\t#degrees\n", "p = 700. \t\t \t#kN/m**2\n", "\n", "#Solution:\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Net force on the piston:\n", "#Calculating the force due to gas pressure\n", "FL = p*math.pi/4*D**2 \t\t\t#kN\n", "#Calculating the ratio of lengths of the connecting rod and crank\n", "n = l/r\n", "#Calculating the inertia force on the piston\n", "FI = round(mR*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n)) \t\t\t#N\n", "#Calculating the net force on the piston\n", "FP = (FL*1000)-FI+mR*9.81 \t\t\t#N\n", "#Resulmath.tant force on the gudgeon pin:\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(theta)/n \t\t\t#degrees\n", "phi = math.degrees(math.asin(sinphi))\n", "#Calculating the resultant load on the gudgeon pin\n", "FQ = round(FP/math.cos(phi)) \t\t\t#N\n", "#Calculating the thrust on the cylinder walls\n", "FN = FP*math.tan(math.radians(4.7)) \t\t\t#N \n", "#Speed above which the gudgeon pin load would be reversed in direction:\n", "#Calculating the minimum speed for FP to be negative\n", "omega1 = math.sqrt((FL*1000+mR*9.81)/(mR*r*(math.cos(theta)+math.cos(2*theta)/n))) \t\t\t#rad/s\n", "#Calculating the corresponding speed in rpm\n", "N1 = 273*60/(2*math.pi) \t\t\t#rpm\n", "\n", "#Results:\n", "print \" Net force on the piston FP = %.1f N.\"%(FP)\n", "print \" Resultant load on the gudgeon pin FQ = %d N.\"%(FQ)\n", "print \" Thrust on the cylinder walls FN = %.1f N.\"%(FN)\n", "print \" Speed above which the gudgeon pin load would be reversed in direction N1 > %d rpm.\"%(N1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Net force on the piston FP = 2255.6 N.\n", " Resultant load on the gudgeon pin FQ = 2265 N.\n", " Thrust on the cylinder walls FN = 185.4 N.\n", " Speed above which the gudgeon pin load would be reversed in direction N1 > 2606 rpm.\n" ] } ], "prompt_number": 71 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.12 Page No : 538" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 120. \t\t\t#rpm\n", "D = 250./1000 #m\n", "L = 400./1000 #m\n", "r = L/2 #m\n", "l = 0.6 #m\n", "d = 50./1000 \t\t#m\n", "mR = 60. \t\t\t#kg\n", "theta = 45. \t\t#degrees\n", "p1 = 550.*1000 #N/m**2\n", "p2 = 70.*1000 \t\t\t#N/m**2\n", "\n", "#Solution:\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Turning moment on the crankshaft:\n", "#Calculating the area of the piston on the cover end side\n", "A1 = math.pi/4*D**2 \t\t\t#m**2\n", "#Calculating the area of the piston rod\n", "a = math.pi/4*d**2 \t\t\t#m**2\n", "#Calculating the net load on the piston\n", "FL = p1*A1-p2*(A1-a) \t\t\t#N\n", "#Calculating the ratio of lengths of the connecting rod and crank\n", "n = l/r\n", "#Calculating the inertia force on the reciprocating parts\n", "FI = mR*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#N\n", "#Calculating the net force on the piston or piston effort\n", "FP = (FL-FI)/1000 \t\t\t#kN\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(math.radians(theta))/n \t\t\t#degrees\n", "phi = math.degrees(math.asin(sinphi))\n", "#Calculating the turning moment on the crank shaft\n", "T = (FP*math.sin(math.radians(theta+phi)))/math.cos(math.radians(phi))*r*1000\t\t\t#N-m\n", "#Calculating the thrust on the bearings\n", "FB = (FP*math.cos(math.radians(theta+phi)))/math.cos(math.radians(phi)) \t\t\t#kN\n", "#Acceleration of the flywheel:\n", "P = 20.*1000 \t\t\t#W\n", "m = 60. \t\t\t#kg\n", "k = 0.6 \t\t\t#m\n", "#Calculating the mass moment of inertia of the flywheel\n", "I = m*k**2 \t\t\t#kg-m**2\n", "#Calculating the resisting torque\n", "TR = P*60/(2*math.pi*N) \t\t\t#N-m\n", "#Calculating the acceleration of the flywheel\n", "alpha = (T-TR)/I \t\t\t#rad/s**2\n", "\n", "\n", "#Results:\n", "print \" Turning moment on the crank shaft T = %f N-m.\"%(T) # rounding off error \n", "print \" Thrust on the bearings FB = %.2f kN.\"%(FB)\n", "print \" Acceleration of the flywheel alpha = %.1f rad/s**2.\"%(alpha)\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Turning moment on the crank shaft T = 3929.026139 N-m.\n", " Thrust on the bearings FB = 11.98 kN.\n", " Acceleration of the flywheel alpha = 108.2 rad/s**2.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.13 Page No : 540" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "D = 300./1000 #m\n", "L = 500./1000 #m\n", "r = L/2 \t\t\t#m\n", "n = 4.5\n", "N = 180. \t\t\t#rpm\n", "mR = 280. \t\t\t#kg\n", "theta = 45. \t\t#degrees\n", "p1 = 0.1 \t\t\t#N/mm**2\n", "CR = 14. \t\t\t#Compression ration V1/V2\n", "p4 = 2.2\n", "\n", "#Solution:\n", "#Refer Fig. 15.12\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the pressure corresponding to point 2\n", "p2 = p1*(CR)**1.35 \t\t\t#N/mm**2\n", "#Calculating the swept volume\n", "VS = math.pi/4*D**2*L \t\t\t#m**3\n", "VC = VS/(CR-1) \t\t\t#m**3\n", "#Calculating the volume corresponding to point 3\n", "V3 = VC+(1/10*VS) \t\t\t#m**3\n", "#Calculating the print lacement of the piston corresponding to crank print lacement of 45 degrees\n", "x = r*((1-math.cos(math.radians(theta)))+(math.sin(math.radians(theta)))**2/(2*n)) \t\t\t#m\n", "#Calculating the volume corresponding to point 4'\n", "V4dash = VC+(math.pi/4*D**2*x) \t\t\t#m**2\n", "#Calculating the pressure corresponding to point 4'\n", "p3 = p2\n", "p4dash = p3*(V3/V4dash)**1.35 \t\t\t#N/mm**2\n", "\n", "#Calculating the difference of pressures on two sides of the piston\n", "p = (p4-p1)*10**6 \t\t\t#N/m**2\n", "#Calculating the net load on the piston\n", "FL = p*math.pi/4*D**2 \t\t\t#N\n", "#Calculating the inertia force on the reciprocating parts\n", "FI = mR*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#N\n", "#Calculating the net force on the piston or piston effort\n", "FP = FL-FI+mR*9.81 \t\t\t#N\n", "#Crank-pin effort:\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(math.radians(theta))/n \t\t\t#degrees\n", "phi = math.degrees(math.asin(sinphi))\n", "#Calculating the crank-pin effort\n", "FT = (FP*math.sin(math.radians(theta+phi)))/(math.cos(math.radians(phi))*1000) \t\t\t#kN\n", "#Calculating the thrust on the bearings\n", "FB = (FP*math.cos(math.radians(theta+phi)))/(math.cos(math.radians(phi))*1000) \t\t\t#kN\n", "#Calculating the turning moment on the crankshaft\n", "T = FT*r \t\t\t#kN-m\n", "\n", "#Results:\n", "print \" Crank-pin effort FT = %.3f kN.\"%(FT)\n", "print \" Thrust on the bearings FB = %.3f kN.\"%(FB)\n", "print \" Turning moment on the crankshaft T = %.2f kN-m.\"%(T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Crank-pin effort FT = 109.501 kN.\n", " Thrust on the bearings FB = 79.438 kN.\n", " Turning moment on the crankshaft T = 27.38 kN-m.\n" ] } ], "prompt_number": 94 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.14 Page No : 542" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "D = 240./1000 #m\n", "L = 360./1000 #m\n", "r = L/2 #m\n", "l = 0.6 \t\t\t#m\n", "N = 300. \t\t\t#rpm\n", "mR = 160. \t\t\t#kg\n", "pA = (8+1.03)*10**5\n", "pE = (-0.75+1.03)*10**5 \t\t\t#N/m**2\n", "FR = 500. \t \t\t#N\n", "theta = 75. \t\t\t#degrees\n", "\n", "#Solution:\n", "#Refer Fig. 15.13\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Calculating the stroke volume\n", "VS = math.pi/4*D**2*L \t\t\t#m**3\n", "#Calculating the volume of steam at cut-off\n", "VB = VS/3 \t\t\t#m**3\n", "#Calculating the ratio of lengths of the connecting rod and crank\n", "n = l/r\n", "#Calculating the print lacement of the piston when the crank position is 75 degrees from the top dead centre\n", "x = r*((1-math.cos(math.radians(theta)))+(math.sin(math.radians(theta)))**2/(2*n)) \t\t\t#m**3\n", "#Calculating the volume corresponding to point C'\n", "VCdash = VS*x/L \t\t\t#m**3\n", "#Calculating the pressure corresponding to point C'\n", "pB = pA\n", "pCdash = round((pB*VB)/VCdash) \t\t\t#N/m**2\n", "#Calculating the difference of pressures on the two sides of the piston\n", "p = round(pCdash-pE) \t\t\t#N/m**2\n", "#Calculating the net load on the piston\n", "FL = round(math.pi/4*D**2*p) \t\t\t#N\n", "#Calculating the inertia force on the reciprocating parts\n", "FI = round(mR*omega**2*r*(math.cos(math.radians(theta))+(math.cos(math.radians(2*theta))/n))) \t\t\t#N\n", "#Calculating the piston effort\n", "FP = FL-FI+mR*9.81-FR \t\t\t#N\n", "#Turning moment on the crankshaft:\n", "#Calculating the angle of inclination of the connecting rod to the line of stroke\n", "sinphi = math.sin(math.radians(theta))/n \t\t\t#degrees\n", "phi = round(math.degrees(math.asin(sinphi)),3)\n", "\n", "#Calculating the turning moment on the crankshaft\n", "T = (FP*math.sin(math.radians(theta+phi)))/math.cos(math.radians(phi))*r \t\t\t#N-m\n", "\n", "#Results:\n", "print \" Turning moment on the crankshaft T = %d N-m.\"%(T)\n", "\n", "# note : rounding error. please check using calculator" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Turning moment on the crankshaft T = 5778 N-m.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.15 Page No : 545" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "l = 300. #mm\n", "l1 = 200. \t\t\t#mm\n", "m = 15. \t\t\t#kg\n", "I = 7000. \t\t\t#kg-mm**2\n", "\n", "#Solution:\n", "#Refer Fig. 15.16 and Fig. 15.17\n", "#Calculating the radius of gyration of the connecting rod about an axis pasmath.sing through its centre of gravity\n", "kG = math.sqrt(I/m) \t\t\t#mm\n", "#Calculating the distance of other mass from the centre of gravity\n", "l2 = (kG)**2/l1 \t\t\t#mm\n", "#Calculating the magnitude of mass placed at the small end centre\n", "m1 = (l2*m)/(l1+l2) \t\t\t#kg\n", "#Calculating the magnitude of the mass placed at a dismath.tance l2 from the centre of gravity\n", "m2 = (l1*m)/(l1+l2) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Mass placed at the small end centre m1 = %.2f kg.\"%(m1)\n", "print \" Mass placed at a distance %.2f mm from the centre of gravity m2 = %.2f kg.\"%(l2,m2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass placed at the small end centre m1 = 0.17 kg.\n", " Mass placed at a distance 2.33 mm from the centre of gravity m2 = 14.83 kg.\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.16 Page No : 546" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables: \n", "h = 650./1000 #m\n", "l1 = (650.-25)/1000 #m\n", "m = 37.5 \t\t\t#kg\n", "tp = 1.87 \t\t\t#seconds\n", "\n", "#Solution:\n", "#Refer Fig. 15.18 and Fig. 15.19\n", "#Calculating the radius of gyration of the connecting rod about an axis pasmath.sing through its centre of gravity\n", "kG = math.sqrt((tp/(2*math.pi))**2*(9.81*h)-h**2) \t\t\t#m\n", "#Calculating the dismath.tance of mass m2 from the centre of gravity\n", "l2 = (kG)**2/l1 \t\t\t#m\n", "#Calculating the magnitude of mass placed at the small end centre\n", "m1 = (l2*m)/(l1+l2) \t\t\t#kg\n", "#Calculating the magnitude of mass placed at a dismath.tance l2 from centre of gravity\n", "m2 = (l1*m)/(l1+l2) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Mass placed at the small end centre A m1 = %d kg.\"%(m1)\n", "print \" Mass placed at a distance %.3f m from G m2 = %.1f kg.\"%(l2,m2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass placed at the small end centre A m1 = 10 kg.\n", " Mass placed at a distance 0.228 m from G m2 = 27.5 kg.\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.17 Page No : 547" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from scipy.optimize import fsolve \n", "import math \n", "\n", "# Variables:\n", "m = 55. \t\t\t#kg\n", "l = 850./1000 #m\n", "d1 = 75./1000 #m\n", "d2 = 100./1000 \t\t#m\n", "tp1 = 1.83 #sec\n", "tp2 = 1.68 \t\t\t#seconds\n", "\n", "#Solution:\n", "#Refer Fig. 15.20\n", "#Calculating the length of equivalent simple pendulum when suspended from the top of small end bearing\n", "L1 = 9.81*(tp1/(2*math.pi))**2 \t\t\t#m\n", "#Calculating the length of equivalent simple pendulum when suspended from the top of big end bearing\n", "L2 = 9.81*(tp2/(2*math.pi))**2 \t\t\t#m\n", "#Radius of gyration of the rod about an axis pasmath.sing through the centre of gravity and perpendicular to the plane of oscillation:\n", "#Calculating the distances of centre of gravity from the top of small end and big end bearings\n", "#We have h1*(L1-h1) = h2*(L2-h2) or h1**2-h2**2+h2*L2-h1*L1 = 0 .....(i)\n", "#Also h1+h2 = d1/2+l+d2/2 or h1+h2-d1/2-l-d2/2 = 0 .....(ii)\n", "def f(x):\n", " y = [0,0]\n", " h1 = x[0]\n", " h2 = x[1]\n", " y[0] = h1**2-h2**2+h2*L2-h1*L1\n", " y[1] = h1+h2-d1/2-l-d2/2\n", " return y\n", "\n", "z = fsolve(f,[1,1])\n", "h1 = z[0]\n", "h2 = z[1] \t\t\t#m\n", "\n", "#Calculating the required radius of gyration of the rod\n", "kG = math.sqrt(h1*(L1-h1)) \t\t\t#m\n", "#Calculating the moment of inertia of the rod\n", "I = m*(kG)**2 \t\t\t#kg-m**2\n", "#Dynamically equivalent system for the rod:\n", "#Calculating the distance of the mass situated at the centre of small end bearing from the centre of gravity\n", "l1 = h1-d1/2 \t\t\t#m\n", "#Calculating the distance of the second mass from the centre of gravity towards big end bearing\n", "l2 = (kG)**2/l1 \t\t\t#m\n", "#Calculating the magnitude of the mass situated at the centre of small end bearing\n", "m1 = (l2*m)/(l1+l2) \t\t\t#kg\n", "#Calculating the magnitude of the second mass\n", "m2 = (l1*m)/(l1+l2) \t\t\t#kg\n", "\n", "#Results:\n", "print \" Radius of gyration of the rod about an axis passing through the centre of\\\n", " gravity and perpendicular to the plane of oscillation, kG = %.3f m.\"%(kG)\n", "print \" Moment of inertia of the rod, I = %.2f kg-m**2.\"%(I)\n", "print \" Magnitude of the mass situated at the centre of small end bearing, m1 = %.2f kg.\"%(m1)\n", "print \" Magnitude of the second mass, m2 = %.2f kg.\"%(m2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Radius of gyration of the rod about an axis passing through the centre of gravity and perpendicular to the plane of oscillation, kG = 0.345 m.\n", " Moment of inertia of the rod, I = 6.56 kg-m**2.\n", " Magnitude of the mass situated at the centre of small end bearing, m1 = 13.32 kg.\n", " Magnitude of the second mass, m2 = 41.68 kg.\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.18 Page No : 550" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "m = 2. \t\t\t#kg\n", "l = 250./1000 #m\n", "l1 = 100./1000 #m\n", "kG = 110./1000 \t\t\t#m\n", "alpha = 23000. \t\t\t#rad/s**2\n", "\n", "#Solution:\n", "#Equivalent dynamical system:\n", "#Calculating the distance of the second mass from the centre of gravity\n", "l2 = (kG)**2/l1 \t\t\t#m\n", "#Calculating the magnitude of the mass placed at the gudgeon pin\n", "m1 = (l2*m)/(l1+l2) \t\t\t#kg\n", "#Calculating the magnitude of the mass placed at a distance l2 from centre of gravity\n", "m2 = (l1*m)/(l1+l2) \t\t\t#kg\n", "#Correction couple:\n", "#Calculating the magnitude of l3\n", "l3 = l-l1 \t\t\t#m\n", "#Calculating the new radius of gyration\n", "k1 = math.sqrt(l1*l3) \t\t\t#m**2\n", "#Calculating the correction couple\n", "Tdash = m*(k1**2-kG**2)*alpha \t\t\t#N-m\n", "\n", "#Results:\n", "print \" Mass placed at the gudgeon pin, m1 = %.1f kg.\"%(m1)\n", "print \" Mass placed at a distance %.3f m from the centre of gravity m2 = %.1f kg.\"%(l2,m2)\n", "print \" Correction couple Tdash = %.1f N-m.\"%(Tdash)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Mass placed at the gudgeon pin, m1 = 1.1 kg.\n", " Mass placed at a distance 0.121 m from the centre of gravity m2 = 0.9 kg.\n", " Correction couple Tdash = 133.4 N-m.\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.19 Page No : 554" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "r = 125. #mm\n", "OC = r #mm\n", "l = 500. #mm\n", "PC = l #mm\n", "PG = 275. #mm\n", "kG = 150. \t\t\t#mm\n", "mC = 60. \t\t\t#kg\n", "N = 600. \t\t\t#rpm\n", "theta = 45. \t\t\t#degrees\n", "\n", "#Solution:\n", "#Refer Fig. 15.24\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Acceleration of the piston:\n", "#By measurement\n", "NO = 90./1000 \t\t\t#m\n", "#Calculating the acceleration of the piston\n", "aP = omega**2*NO \t\t\t#m/s**2\n", "#The magnitude position and direction of inertia force due to the mass of the connecting rod:\n", "#By measurement\n", "gO = 103./1000 \t\t\t#m\n", "#Calculating the magnitude of the inertia force of the connecting rod\n", "FC = mC*omega**2*gO/1000 \t\t\t#kN\n", "\n", "#Results:\n", "print \" Acceleration of the piston aP = %.1f m/s**2.\"%(aP)\n", "print \" The magnitude of inertia force due to the mass of the connecting rod FC = %.1f kN.\"%(FC)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Acceleration of the piston aP = 355.3 m/s**2.\n", " The magnitude of inertia force due to the mass of the connecting rod FC = 24.4 kN.\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.20 Page No : 555" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "D = 240./1000 #m\n", "L = 600./1000 #m\n", "r = L/2 #m\n", "l = 1.5 #m\n", "GC = 500./1000 #m\n", "kG = 650./1000 \t #m\n", "mR = 300.\n", "mC = 250. \t\t\t#kg\n", "N = 125. \t\t\t#rpm\n", "theta = 30. \t\t\t#degrees\n", "\n", "#Solution:\n", "#Refer Fig. 15.25\n", "#Calculating the angular speed of the crank\n", "omega = round(2*math.pi*N/60,1) \t\t\t#rad/s\n", "#Analytical method:\n", "#Calculating the distance of centre of gravity of the connecting rod from P\n", "l1 = l-GC \t\t\t#m\n", "#Calculating the ratio of lengths of the connecting rod and crank\n", "n = l/r\n", "#Calculating the inertia force due to total mass of the reciprocating parts at P\n", "FI = int((mR+(l-l1)/l*mC)*omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n)) \t\t\t#N\n", "#Calculating the corresponding torque due to FI\n", "TI = int(FI*r*(math.sin(math.radians(theta))+math.sin(math.radians(2*theta))/ \\\n", "(2*math.sqrt(n**2-(math.sin(math.radians(theta)))**2)))) \t\t\t#N-m\n", "#Calculating the equivalent length of a simple pendulum when swung about an axis through P\n", "L = ((kG)**2+(l1)**2)/l1 \t\t\t#m\n", "#Calculating the correcting torque\n", "TC = mC*l1*(l-L) *(omega**2 * math.sin(math.radians(60)))/(2*n**2)\t\t\t#N-m\n", "#Calculating the torque due to the weight of the connecting rod at C\n", "TW = mC*9.81*(l1/n)*math.cos(math.radians(theta)) \t\t\t#N-m\n", "#Calculating the total torque exerted on the crankshaft\n", "Tt = TI+TC+TW \t\t\t#Total torque exerted on the crankshaft N-m\n", "\n", "\n", "#Results:\n", "print \" Total torque exerted on the crankshaft = %.1f N-m.\"%(round(Tt,-1))\n", "\n", "# rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Total torque exerted on the crankshaft = 3840.0 N-m.\n" ] } ], "prompt_number": 110 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.21 Page No : 558" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "N = 1200. \t\t\t#rpm\n", "L = 110./1000\n", "r = L/2\n", "l = 250./1000\n", "PC = l\n", "CG = 75./1000 \t\t\t#m\n", "mC = 1.25 \t\t\t#kg\n", "theta = 40. \t\t\t#degrees\n", "\n", "#Solution:\n", "#Refer Fig. 15.26\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#Radius of gyration of the connecting rod about an axis through its mass centre:\n", "#Calculating the distance of the centre of gravity from the point of suspension\n", "l1 = l-CG \t\t\t#m\n", "PG = l1\n", "#Calculating the frequency of oscillation\n", "n = 21./20 \t\t\t#Hz\n", "#Calculating the radius of gyration of the connecting rod about an axis through its mass centre\n", "kG = round(math.sqrt((9.81*l1/(2*math.pi*n)**2)-l1**2)*1000) \t\t\t#mm\n", "#Acceleration of the piston:\n", "#Calculating the ratio of lengths of the connecting rod and crank\n", "n = l/r\n", "#Calculating the acceleration of the piston\n", "aP = omega**2*r*(math.cos(math.radians(theta))+math.cos(math.radians(2*theta))/n) \t\t\t#m/s**2\n", "#Calculating the angular acceleration of the connecting rod\n", "alphaPC = (-omega**2*math.sin(math.radians(theta)))/n \t\t\t#rad/s**2\n", "#Inertia torque exerted on the crankshaft:\n", "#Calculating the mass of the connecting rod at P\n", "m1 = (l-l1)/l*mC \t\t\t#kg\n", "#Calculating the vertical inertia force\n", "FI = round(m1*aP) \t\t\t#N\n", "#By measurement\n", "OM = 0.0425\n", "NC = 0.035 \t\t\t#m\n", "#Calculating the corresponding torque due to FI\n", "TI = FI*OM \t\t\t#N-m\n", "#Calculating the equivalent length of a simple pendulum when swung about an axis pasmath.sing through P\n", "L = ((kG/1000)**2+(l1)**2)/l1 \t\t\t#m\n", "#Calculating the correction couple\n", "Tdash = mC*l1*(l-L)*alphaPC \t\t\t#N-m\n", "#Calculating the corresponding torque on the crankshaft\n", "TC = -Tdash*math.cos(math.radians(theta))/n \t\t\t#N-m\n", "#Calculating the torque due to mass at P\n", "TP = m1*9.81*OM \t\t\t#N-m\n", "#Calculating the equivalent mass of the connecting rod at C\n", "m2 = mC*(l1/l) \t\t\t#kg\n", "#Calculating the torque due to mass at C\n", "TW = m2*9.81*NC \t\t\t#N-m\n", "#Calculating the inertia force exerted on the crankshaft\n", "Ti = TI+TC-TP-TW \t\t\t#Inertia torque exerted on the crankshaft N-m\n", "\n", "#Results:\n", "print \" Radius of gyration of the connecting rod about an axis through its mass centre kG = %d mm.\"%(kG)\n", "print \" Acceleration of the piston aP = %.1f m/s**2.\"%(aP)\n", "print \" Angular acceleration of the connecting rod alphaPC = %.1f rad/s**2.\"%(alphaPC)\n", "print \" Inertia torque exerted on the crankshaft = %.3f N-m.\"%(Ti)\n", "\n", "# rounding off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Radius of gyration of the connecting rod about an axis through its mass centre kG = 94 mm.\n", " Acceleration of the piston aP = 698.5 m/s**2.\n", " Angular acceleration of the connecting rod alphaPC = -2233.1 rad/s**2.\n", " Inertia torque exerted on the crankshaft = 12.696 N-m.\n" ] } ], "prompt_number": 112 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.22 Page No : 559" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables:\n", "l = 225./1000 #m\n", "PC = l #m\n", "L = 150./1000 #m\n", "r = L/2 #m\n", "D = 112.5/1000 #m\n", "PG = 150./1000 #m\n", "kG = 87.5/1000 \t #m\n", "mC = 1.6\n", "mR = 2.4 \t\t\t#kg\n", "theta = 40 \t\t\t#degrees\n", "p = 1.8*10**6 \t\t#N/m**2\n", "N = 2000. \t\t\t#rpm\n", "\n", "#Solution:\n", "#Refer Fig. 15.27\n", "#Calculating the angular speed of the crank\n", "omega = 2*math.pi*N/60 \t\t\t#rad/s\n", "#By measurement\n", "NO = 0.0625\n", "gO = 0.0685\n", "IC = 0.29\n", "IP = 0.24\n", "IY = 0.148\n", "IX = 0.08 \t\t\t#m\n", "#Calculating the force due to gas pressure\n", "FL = math.pi/4*D**2*p \t\t\t#N\n", "#Calculating the inertia force due to mass of the reciprocating parts\n", "FI = mR*omega**2*NO \t\t\t#N\n", "#Calculating the net force on the piston\n", "FP = FL-FI \t\t\t#N\n", "#Calculating the inertia force due to mass of the connecting rod\n", "FC = mC*omega**2*gO \t\t\t#N\n", "#Calculating the force acting perpendicular to the crank OC\n", "FT = ((FP*IP)-((mC*9.81*IY)+(FC*IX)))/IC \t\t\t#N\n", "#By measurement\n", "FN = 3550.\n", "FR = 7550.\n", "FQ = 13750. \t\t\t#N\n", "\n", "#Results:\n", "print \" Resultant force on the crank pin FQ = %d N.\"%(FQ)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Resultant force on the crank pin FQ = 13750 N.\n" ] } ], "prompt_number": 36 } ], "metadata": {} } ] }