{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15: Vibrations" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1, Page 535" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "W=.3*2240#lb\n", "l=36#in\n", "D=3.#in\n", "k=15#in\n", "A=math.pi*(D/2)**2\n", "E=30*10**6#youngs modulus\n", "C=12*10**6\n", "g=32.2#ft/s^2\n", "\n", "#Calculations\n", "d=W*l/(A*E)\n", "Fl=187.8/(d)**(1./2)\n", "I=math.pi*(d/2)**4\n", "d1=W*(l**3)*64/(3*E*math.pi*(3**4))\n", "Ft=187.8/(d1)**(1./2)\n", "j=math.pi*3**4./32\n", "q=C*j/l\n", "Ftor=(1/(2*math.pi))*(q*g*12/(W*k**2))**(1./2)\n", "F1=Ftor*60\n", "\n", "#Results\n", "print \"a) Frequency of Longitudinal vibrations = %.f per min\\nb) Frequency of the transverse vibrations = %.f per min\"\\\n", " \"\\nc) Frequency of the torsional vibration = %.f per min\"%(Fl,Ft,F1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a) Frequency of Longitudinal vibrations = 17583 per min\n", "b) Frequency of the transverse vibrations = 634 per min\n", "c) Frequency of the torsional vibration = 786 per min\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2, Page 536" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "l1=3#ft\n", "l2=2.#ft\n", "l=l1+l2#ft\n", "W=.5*2240#lb\n", "k=20#in\n", "d=2.#in\n", "\n", "#Calculations\n", "Wa=2*W/5\n", "E=30*10**6\n", "d1=(Wa*l1*12)/(math.pi*E)\n", "N1=187.8/math.sqrt(d1)\n", "\n", "I=math.pi*(d)**4./64\n", "d2=W*(l1*12)**3*(l2*12)**3/(3*E*(l*12)**3*I)\n", "N2=187.8/(d2)**(1./2)\n", "C=12*10**6#given\n", "g=32.2#given\n", "J=math.pi*d**4/32\n", "q=C*J*((1./(l1*12))+(1./(l2*12)))\n", "n=(1./(2*math.pi))*(q*g*12/(W*k**2))**(1./2)\n", "N3=n*60\n", "\n", "#Results\n", "print \"a)Longitudinal vibration = %.f per min\\nb)Transverse Vibration = %.f per min\\nc)Torsional Vibration = %.f per min\"%(N1,N2,N3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)Longitudinal vibration = 14356 per min\n", "b)Transverse Vibration = 863 per min\n", "c)Torsional Vibration = 321 per min\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, Page 547" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "l=10#ft\n", "d=4#in\n", "E=30*10**6#youngs modulus\n", "d1=0.0882#inches; maximum deflection as shown in the figure\n", "\n", "#Calculations\n", "N=207./(d1)**(1./2)#From 15.20\n", "\n", "#Result\n", "print \"Frequency of natural transverse vibration = %.f per min\"%N\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of natural transverse vibration = 697 per min\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4, Page 552" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "m=50.#lb\n", "k=100#lb/in\n", "g=32.2#ft/s\n", "\n", "#Calculations\n", "d=m/k#static deflection\n", "n=(1/(2*math.pi))*(g*12/d)**(1./2)\n", "#part 2\n", "b=g*12./d\n", "a=(b/20.79)**(1./2)\n", "nd=(1./(2*math.pi))*((b-(a/2)**2))**(1./2)\n", "A=nd/n\n", "\n", "#Results\n", "print \"Frequency of free vibrations = %.3f per sec\\nFrequency of damped vibrations = %.3f per sec\"\\\n", " \"\\nThe ratio of the frequencies of damped and free vibrationsis %.3f\"%(n,nd,A)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of free vibrations = 4.424 per sec\n", "Frequency of damped vibrations = 4.398 per sec\n", "The ratio of the frequencies of damped and free vibrationsis 0.994\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, Page 553" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "#damping torque is directly proposrtional to the angular velocity\n", "C=12*10**6#Modulus of rigidity\n", "l=3#ft\n", "d=1#in\n", "g=32.2#ft/s**2\n", "I=500#lb ft^2 ; moment of inertia\n", "\n", "#Calculations\n", "J=math.pi*d**4/32\n", "q=C*J/(l*12)\n", "n=(1./(2*math.pi))*(q*g*12/(I*12**2))**(1./2)\n", "#part 2 \n", "b1=(q*g*12/(I*12**2))\n", "a1=(b1/10.15)**(1./2)#by reducing equation 15.28\n", "nd=(1./(2*math.pi))*(b1-(a1/2)**2)**(1./2)\n", "A=nd/n\n", "\n", "#Results\n", "print \"The frequency of natural vibration = %.2f per sec\\nThe frequency of damped vibration = %.2f per sec\"\\\n", " \"\\nThe ratio nd/n = %.3f\"%(n,nd,A)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of natural vibration = 2.11 per sec\n", "The frequency of damped vibration = 2.08 per sec\n", "The ratio nd/n = 0.988\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6, Page 560" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "m=20.#lb\n", "k=50#lb/in\n", "F=30.#lb\n", "w=50#sec^-1 \n", "g=32.2#ft/s^2\n", "\n", "#Calculations\n", "d=m/k\n", "x=F/k#extension of the spring\n", "b=g*12./d\n", "a=(b/30.02)**(1./2)#from equation 15.28\n", "D=1/((1-w**2/b)**2+a**2*w**2/b**2)**(1./2)\n", "Af=D*x#amplitude of forced vibration \n", "D=(b/a**2)**(1./2)#At resonance\n", "A=D*x#amplitude at resonance\n", "\n", "#Results\n", "print \"Amplitude of forced vibrations = %.3f in\\nAmplitude of the forced vibrations at resonance = %.2f in\"%(Af,A)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Amplitude of forced vibrations = 0.372 in\n", "Amplitude of the forced vibrations at resonance = 3.29 in\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7, Page 563" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "e=1./30\n", "n=1200.#rpm\n", "w=math.pi*n/30\n", "m=3.#lb\n", "g=32.2#ft/s^2\n", "stroke=3.5#in\n", "\n", "#Calculations\n", "r=stroke/2\n", "k=(1+1./e)**(1./2)#nf/n=k\n", "d=(k/187.7)**2\n", "W=200.#lb ; given\n", "s=W/d#combined stiffness\n", "p=1./14.1#As a^2/b=1/198\n", "T=((1+p**2*k**2/((1-k**2)**2+p**2*k**2)))**(1./2)#actual value of transmissibility\n", "F=(m/g)*w**2*r/12#maximum unbalanced force transmitted on the machine\n", "Fmax=F*T#maximum force transmitted to the foundation\n", "#case b\n", "E=((1+p**2)/(p**2))**(1./2)\n", "Nreso=215.5#rpm\n", "Fub=F*(Nreso/n)**2\n", "Ftmax=E*Fub\n", "D=E#dynamic magnifier\n", "deln=Fub/152#static deflection\n", "A=deln*D\n", "\n", "#Results\n", "print \"a) Maximum force transmitted at 1200 rpm = %.1f lb\\nb) The amplitude of the forced vibrations of the machine at\"\\\n", " \"resonance = %.3f in\\n Force transmitted = %.f lb\"%(Fmax,A,Fub)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a) Maximum force transmitted at 1200 rpm = 214.6 lb\n", "b) The amplitude of the forced vibrations of the machine atresonance = 0.643 in\n", " Force transmitted = 7 lb\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8, Page 570" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "l1=11#in\n", "l2=10#in\n", "l3=15#in\n", "l4=4#in\n", "l5=10#in\n", "d1=3#in\n", "d2=5#in\n", "d3=3.5#in\n", "d4=7#in\n", "d5=5#in\n", "I1=1500#lb ft^2\n", "I2=1000#lb ft^2\n", "leq=3#in from 15.49\n", "g=32.2#ft/s^2\n", "C=12*10**6\n", "\n", "#Calculations\n", "J=math.pi*leq**4./32\n", "l=l1+l2*(leq/d2)**4+l3*(leq/d3)**4+l4*(leq/d4)**4+l5*(leq/d5)**4\n", "la=I2*l/(I1+I2)\n", "qa=C*J/la\n", "n=(1./(2*math.pi))*(qa*g*12/(I1*12**2))**(1./2)\n", "\n", "#Results\n", "print \"The frequency of the natural torsional oscillation of the system = %.1f per sec\"%n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of the natural torsional oscillation of the system = 23.8 per sec\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9, Page 572" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "Ia=2.5#ton ft^2\n", "Ib=7.5#ton ft^2\n", "Ic=3.#ton ft^2\n", "g=32.2#ft/s^2\n", "AB=9.5#ft\n", "BC=25#ft\n", "d=8.5#in\n", "C=11.8*10**6#lb/in^2\n", "\n", "#Calculations\n", "k=Ic/Ia#la/lc=k\n", "lc1=(25.6+(25.6**2-4*114.1)**(1./2))/2#from 1 and 2 , reducing using quadratic formula\n", "lc2=(25.6-(25.6**2-4*114.1)**(1./2))/2#from 1 and 2 , reducing using quadratic formula\n", "la1=lc1*k\n", "la2=lc2*k\n", "J=math.pi*d**4/32\n", "q=C*J/(lc1*12)#torsional stiffness\n", "IC=Ic*2240*12**2/(g*12)#moment of inertia\n", "nc=(1./(2*math.pi))*(q/IC)**(1./2)#fundamental frequency of vibration\n", "a1=nc*60\n", "a=math.floor(a1)\n", "n=16*(lc1/lc2)**(1./2)\n", "b=n*60\n", "\n", "#Results\n", "print \"Fundamental frequency of vibration = %.f per min\\nTwo node frequency = %.f per min\"%(a,b)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fundamental frequency of vibration = 961 per min\n", "Two node frequency = 1784 per min\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11, Page 587" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "g=32.3#ft/s^2\n", "l2=25.5#in\n", "d1=2.75#in\n", "d2=3.5#in\n", "C=12*10**6#modulus of rigidity\n", "G=1/0.6#given speed ratio\n", "Ib=54.#lb in^2\n", "Ic=850.#lb in^2\n", "Id=50000.#lb in^2\n", "\n", "#Calculations\n", "Id1=Id/G**2#15.62\n", "Ia=1500#lb in^2\n", "la=Id1/(Id1+Ia)*66.5\n", "J=math.pi*d1**4/32\n", "q=C*J/la#torsional stiffness\n", "n=(1/(2*math.pi))*(q*g*12/Ia)**(1./2)\n", "nf=n*60#for minutes\n", "#case b)\n", "Ib1=Ib+Ic/(G**2)\n", "a=63.15#in; distance of the node from rotor A (given)\n", "b=3.661#in; distance of the node from rotor A (given)\n", "N1=n*(la/a)**(1./2)\n", "N2=n*(la/b)**(1./2)\n", "N1f=N1*60#for minutes\n", "N2f=N2*60#for minutes\n", "\n", "#Results\n", "print \"a) The frequency of torsional vibrations n = %.1f per sec or %.f per min\\nb) The fundamental frquency = %.1f per sec\"\\\n", " \"or %.f per min\\n and the two node frequency = %.f per sec or %.f per min\"%(n,nf,N1,N1f,N2,N2f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a) The frequency of torsional vibrations n = 84.8 per sec or 5086 per min\n", "b) The fundamental frquency = 83.6 per secor 5014 per min\n", " and the two node frequency = 347 per sec or 20824 per min\n" ] } ], "prompt_number": 29 } ], "metadata": {} } ] }