{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13: Governors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1, Page 459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "#all lengths are in inches\n", "W=120.#lb\n", "w=15#lb\n", "AB=12\n", "BF=8\n", "BC=12\n", "BE=6.5\n", "g=35230#inches rpm\n", "\n", "#Calculations\n", "#at Minimum radius \n", "AF=(AB**2-BF**2)**(1./2)\n", "CE=(BC**2-BE**2)**(1./2)\n", "k2=(BE*AF)/(CE*BF)\n", "N2=(((W/2)*(1+k2)+w)*g/(w*AF))**(1./2)\n", "#At MAximum radius \n", "BF1=10\n", "BE1=8.5\n", "AF1=(AB**2-BF1**2)**(1./2)\n", "CE1=(BC**2-BE1**2)**(1./2)\n", "k1=(BE1*AF1)/(CE1*BF1)\n", "N1=(((W/2)*(1+k1)+w)*g/(w*AF1))**(1./2)\n", "\n", "#Results\n", "print \"N1 (corresponding maximum radius) = %.1f rpm\\nN2 (corresponding minimum radius) = %.1f rpm\"%(N1,N2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "N1 (corresponding maximum radius) = 201.7 rpm\n", "N2 (corresponding minimum radius) = 176.2 rpm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2, Page 462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "BG=4#in\n", "\n", "#Calculations&Results\n", "#solution a\n", "w=15#lb\n", "W=120.#lb\n", "k=.720\n", "BD=10.08#in\n", "CE=BD\n", "DG=BD+BG\n", "#by equating quations 13.2 and 13.10 and reducing, we get\n", "w1=(W/2*(1+k))/(((W/2*(1+k)+w)*DG/(BD*w))-1)\n", "print \"Weight of ball = %.3f lb\"%w1\n", "#solution b\n", "CD=6.5#in\n", "BC=12#in\n", "BF=10.#in\n", "AB=12#in\n", "CG=(DG**2+CD**2)**(1./2)\n", "gama=math.atan(CD/DG)\n", "bita=math.asin(CD/BC)\n", "alpha1=math.asin(BF/AB)\n", "bita1=math.asin(8.5/BC)\n", "gama1=gama+bita1-bita\n", "F=((w1+W/2)*8.471*(math.tan(alpha1)+math.tan(bita1)))/(CG*math.cos(gama1))-(w1*math.tan(gama1))\n", "print\"F1= %.1f lb\"%F\n", "r1=CG*math.sin(gama1)+1.5#radius of rotation\n", "N1=(30/math.pi)*(F*32.2*12/(w1*r1))**(1./2)\n", "print \"r1= %.2f in\\nN1= %.1f rpm\"%(r1,N1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight of ball = 10.313 lb\n", "F1= 113.1 lb\n", "r1= 10.85 in\n", "N1= 188.7 rpm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, Page 466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "w=3#lb\n", "g=32.2\n", "N2=300\n", "\n", "#Calculations\n", "w2=(N2*math.pi/30)\n", "r2=3./12#ft\n", "N1=1.06*N2\n", "r1=4.5/12#ft\n", "a=4#in\n", "b=2#in\n", "ro=3.5/12#ft\n", "F2=w*w2**2*r2/g\n", "F1=F2*N1**2*r1/(N2**2*r2)\n", "p=2*a**2*(F1-F2)/(b**2*(r1-r2))\n", "Fc=F2+(F1-F2)*(.5/1.5)\n", "N=(Fc*g/(ro*w))**(1./2)*30/math.pi\n", "Ns=math.ceil(N)\n", "\n", "#Result\n", "print \"N = %.1f rpm\"%Ns" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "N = 308.0 rpm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4, Page 468" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "w=5#lb\n", "g=32.2\n", "N2=240#rpm\n", "\n", "#Calculations\n", "w2=(N2*math.pi/30)\n", "r2=5./12#ft\n", "N1=1.05*N2\n", "r1=7./12#ft\n", "a=6.#in\n", "b=4#in\n", "pb=3./2\n", "F2=w*w2**2*r2/g\n", "F1=F2*N1**2*r1/(N2**2*r2)\n", "p=2*(a/b)**2*((F1-F2)/(r1*12-r2*12)-4*pb)\n", "\n", "#Result\n", "print \"Equivalent stiffness; p = %.f lb/in\"%p" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equivalent stiffness; p = 23 lb/in\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, Page 470" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "w=3.#lb\n", "W=15.#lb\n", "g=32.2\n", "r2=2.5/12#ft\n", "N2=240.#rpm\n", "\n", "#Calculations\n", "w2=N2*math.pi/30\n", "F2=w*w2**2*r2/g\n", "a=4.5#in\n", "b=2#in\n", "sleevelift=0.5\n", "r1=r2*12+a*sleevelift/b#the increase of radius for a scleeve lift is 0.5 in\n", "N1=1.05*N2\n", "F1=(N1/N2)**2*(r1/(r2*12))*F2\n", "#a) at minimum radius\n", "S2=(F2*a/b-w)*2-W\n", "#b) At maximum radius\n", "DB=r1-r2*12\n", "BI=1.936#in\n", "AD=a\n", "BI=b\n", "S1=2*(F1*AD/BI-w*(DB+BI)/BI)-W\n", "k=(S1-S2)/sleevelift\n", "\n", "#Result\n", "print \"Stiffness of the spring is %.1f lb/in\"%k" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stiffness of the spring is 59.3 lb/in\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6, Page 475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "c=0.01\n", "W=120#lb\n", "w=15#lb\n", "k=.720\n", "h=8.944#in\n", "\n", "#Calculations\n", "Q=c*(W+2*w/(1+k))\n", "x=(2*c/(1+2*c))*(1+k)*h\n", "P=Q*x\n", "\n", "#Result\n", "print \"Governor power = Q*x = %.3f in lb\"%P\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Governor power = Q*x = 0.415 in lb\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7, Page 475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "r=6#in\n", "a=6#in\n", "b=4#in\n", "#from example 4(using conditions and calculating constants A and B) we get F=11.1r-14.6\n", "#when r=6 , F= 52\n", "F=52#lb\n", "\n", "#Calculations\n", "inc=2*.01*52#increase neglecting very small values\n", "F1=F+inc\n", "F2=2*a*inc/b#Force required to prevent the sleeve from rising \n", "F3=F2/2#Force is uniformly distributed\n", "r2=-14.6/(F1/r-11.1)#from equation 1\n", "x=r2-r#increase in radius of rotation\n", "lift=b*x/a#sleeve lift\n", "P=F3*lift#governor power\n", "\n", "#Result\n", "print \"Governor power = %.3f in lb\"%P" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Governor power = 0.479 in lb\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10, Page 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "fs=3.#lb\n", "W=90#lb\n", "w=15#lb\n", "\n", "#Calculations\n", "#fb=(fs/2)*(1+k)*(r/h) From equation 13.31\n", "k=1#All the arms are of equal length\n", "#fb=fs*(r/h)\n", "#comparing the above result with the one obtained from example 8 , F=(W+w)*(r/h), we get coefficient of insensitiveness = k = (N1-N2)/N = fs/(W+w)\n", "k=fs/(W+w)\n", "K=k*100\n", "\n", "#Result\n", "print \"Coefficient of insensitiveness = %.3f\"%k" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Coefficient of insensitiveness = 0.029\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11, Page 484" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "a=4.5#in\n", "b=2#in\n", "r1=2.5#in\n", "r2=4.5#in\n", "F2=12.25#lb\n", "F1=25.4#lb\n", "fs=1.5#lb\n", "\n", "#Calculations\n", "fb=(fs/2)*(b/a)\n", "#At minimum radii\n", "k1=fb/F2\n", "#At maximum radii\n", "k2=fb/F1\n", "\n", "#Results\n", "print \"Coefficient of insensitiveness\\nAt minimum radii = %.4f\\nAt maximum radii = %.4f\"%(k1,k2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Coefficient of insensitiveness\n", "At minimum radii = 0.0272\n", "At maximum radii = 0.0131\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }