{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12: Dynamics of Machines. Turning Moment. The Flywheel" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2, Page 414" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "ne=31\n", "na=25\n", "nb=90\n", "nc=83\n", "Ta=10 #lbft\n", "\n", "#Calculations\n", "#Ne-Nf/(Nc-Nf)=-83/31\n", "k=114./83#k=Nc/Nf As Ne = 0, on simplification we get Nc/Nf= 114/83\n", "j=-90./25#j=Na/Nb\n", "#Nc=Nb, Thus Na/Nc=-90/25\n", "#Na/Nf=(Na/Nc)*(Nc/Nf) ie Na/Nf=k*j\n", "#Tf*Nf=Ta*Na\n", "Tf=Ta*k*j\n", "\n", "#Result\n", "print \"Torque exerted on driven shaft = %.1f lb.ft\"%Tf" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Torque exerted on driven shaft = -49.4 lb.ft\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, Page 415" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "D=9.#in\n", "stroke=24.#in\n", "d=2#in\n", "l=60.#in\n", "CP=l\n", "N=120\n", "theta=40#degrees\n", "x=theta*math.pi/180\n", "P1=160#lb/in^2\n", "P2=32#lb/in^2\n", "\n", "#Calculations\n", "OC=stroke/2\n", "F=math.pi*(D/2)**2*P1-math.pi*(D/2)**2*P2+math.pi*(d/2)**2*P2\n", "#Ft*Vc=F*Vp; Where Vc and Vp are velocities of crank and pin respectively\n", "#Vp/Vc=IP/IC=OM/OC - From similar triangles ; fig 274\n", "n=CP/OC\n", "OM=OC*(math.sin(x) + (math.sin(2*x)/(2*n)))#from 3.11\n", "T=F*OM/12#torque exerted on crankshaft\n", "Torque=math.floor(T)\n", "\n", "#Result\n", "print \"The torque exerted on crankshaft= F*OM = %.f lb ft\"%Torque" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The torque exerted on crankshaft= F*OM = 6110 lb ft\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4, Page 420" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "AB=12.5#in\n", "IB=10.15#in\n", "IA=10.75#in\n", "IX=2.92#in\n", "IY=5.5#in\n", "w=3#lb\n", "Fi=5#lb\n", "Fa1=9#lb\n", "\n", "#Calculations\n", "Fb1=(Fa1*IA-w*IY-Fi*IX)/IB\n", "#From the polygon of forces\n", "Fa2=7.66#lb\n", "Fb2=3.0#lb\n", "Fa=(Fa1**2+Fa2**2)**(1./2)\n", "Fb=(Fb1**2+Fb2**2)**(1./2)\n", "\n", "#Results\n", "print \"The total force applied to the link AB at the pin A = Fa = %.2f lb\\nThe total force applied to the link AB\" \\\n", " \"at the pin B = Fb = %.2f lb\"%(Fa,Fb)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total force applied to the link AB at the pin A = Fa = 11.82 lb\n", "The total force applied to the link ABat the pin B = Fb = 7.13 lb\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, Page 424" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "CP=60.#in\n", "l=CP/12\n", "a=41.\n", "cg=19.\n", "g=32.2#ft/s^2\n", "m1=580.#lb\n", "Mr=500.#lb\n", "n=5.#from example 12.3\n", "x=40*math.pi/180\n", "N=120.\n", "r=1.#ft\n", "k=25.\n", "\n", "#Calculations\n", "w=N*math.pi/30\n", "Rm=m1+(cg/CP)*Mr\n", "fp=w**2*r*(math.cos(x)+math.cos(2*x)/n)\n", "Fp=-Rm*fp/g\n", "OM=0.7413#ft -from example 12.3\n", "Tp=Fp*OM#from 12.6\n", "L=a+k**2/a#length for simple equivalent pendulum\n", "L1=L/12\n", "Tc=-Mr*(a/12)*(l-L1)*w**2*math.sin(2*x*math.pi/180)/(g*2*n**2)#from 12.10\n", "Tw=-Mr*a*math.cos(x*math.pi/180)/(n*12)\n", "T=Tp+Tc+Tw\n", "\n", "#Results\n", "print \"Tp= %.f lbft\\nTc = %.1f lbft\\nTw = %.1f lbft\\nTotal torque exerted on the crankshaft due to the inertia of \"\\\n", " \"the moving parts = Tp+Tc+tw = %.1f lbft\"%(Tp,Tc,Tw,T)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tp= -2149 lbft\n", "Tc = -1.3 lbft\n", "Tw = -341.6 lbft\n", "Total torque exerted on the crankshaft due to the inertia of the moving parts = Tp+Tc+tw = -2492.3 lbft\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6, Page 428" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "AB=2.5#in\n", "BC=7.#in\n", "CD=4.5#in\n", "AD=8.#in\n", "ED=2.3#from figure\n", "N=180\n", "w=N*math.pi/30\n", "m=3.#lb\n", "k=3.5#radius of gyration\n", "g=32.2#ft/s**2\n", "QT=1.35#inches from figure\n", "\n", "#Calculations\n", "alpha=w**2*(QT/CD)\n", "Torque=m*(k/12)**2*alpha/g\n", "Torque1=Torque*12\n", "Tadd=m*ED#additional torque\n", "Tc=Tadd+Torque1#total torque\n", "Fc1=Tc/CD\n", "#link BC\n", "M=5#lb\n", "gA=1.8#in\n", "fg=w**2*(gA/12)\n", "F=M*fg/g\n", "OaG=5.6#in\n", "Kg=2.9#in\n", "GZ=Kg**2/OaG\n", "#scaled from figure\n", "IB=9#in\n", "IC=5.8#in\n", "IX=2.49#in\n", "IY=1.93#in\n", "Fb1=(Fc1*IC+F*IX+M*IY)/IB\n", "Tor=Fb1*AB\n", "#from force polygon\n", "Fc2=1#lb\n", "Fb2=15.2#lb\n", "Fb=(Fb1**2+Fb2**2)**(1./2)\n", "Fc=(Fc1**2+Fc2**2)**(1./2)\n", "\n", "#Results\n", "print \"The torque which must be exerted on AB in order to overcome the inertia of the links = Fb1*AB = %.1f lb.in\"\\\n", " \"\\nThe total force applied to the link BC \\nAt pin C = %.2f lb\\nAt pin B = %.1f lb\"%(Tor,Fc,Fb)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The torque which must be exerted on AB in order to overcome the inertia of the links = Fb1*AB = 14.5 lb.in\n", "The total force applied to the link BC \n", "At pin C = 3.92 lb\n", "At pin B = 16.3 lb\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7, Page 441" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "N=210#rpm\n", "w=N*math.pi/30\n", "F=50\n", "\n", "#Calculations\n", "p1=F*120/(N*2)#N*p=F*120\n", "p2=math.floor(p1)#no of poles must be a whole number ; P2=P/2\n", "p=2*p2\n", "N1=F*120/p\n", "n=3#no of impulse per second\n", "Ks=n/(6*p)#equation 12.13\n", "\n", "#Results\n", "print \"Ks = %.4f\\n\\nActual speed = %.1f rpm\\nNumber of poles = %.f\"%(Ks,N1,p)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ks = 0.0179\n", "\n", "Actual speed = 214.3 rpm\n", "Number of poles = 28\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8, Page 443" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "N=120#rpm\n", "k=3.5#ft\n", "Ef=2500#ft lb\n", "Ks=.01\n", "g=32.2#ft/s^2\n", "\n", "#Calculations\n", "w=math.pi*N/30#angular velocity\n", "W=g*Ef/(w**2*k**2*Ks*2240)#Weight of flying wheel\n", "\n", "#Result\n", "print \"Weight of flying wheel, W = %.2f tons\"%W" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Weight of flying wheel, W = 1.86 tons\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9, Page 443" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "N=270#rpm\n", "ihp=35.8\n", "k=2.25#ft\n", "g=32.2#ft/s^2\n", "ke=1.93#from table on p 440\n", "\n", "#Calculations\n", "E=ihp*33000/N\n", "Ef=ke*E\n", "w=math.pi*N/30\n", "W=1000#lb\n", "MOI=2*W*k**2#moment of inertia of both wheel\n", "ks=Ef*g/(MOI*w**2)#formula for ks\n", "p=ks/2\n", "\n", "#Results\n", "print \"The fluctuation speed is therefore %.1f%% or %.1f%% on either side of the mean speed\"%(ks*100,p*100)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fluctuation speed is therefore 3.4% or 1.7% on either side of the mean speed\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10, Page 444" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "ihp=25.\n", "N=300.#rpm\n", "Ks=2./100#given\n", "u=2.3#work done by gases during expansion is u(2.3) times that during compression\n", "\n", "#Calculations\n", "E=ihp*33000/N#indicated work done per revolution\n", "E1=E*2#indicated work done per cycle\n", "We=E1/(1-1./u)#work done by gases during expansion\n", "AB=We*2./math.pi#the maximum torque from fig 290\n", "AC=E/(2*math.pi)#mean turning moment\n", "CB=AB-AC#maximum excess turning moment\n", "Ef=(CB/AB)**2*We#fluctuation of energy\n", "Ke=Ef/E\n", "w=math.pi*N/30#angular speed\n", "g=32.2#ft/s^2\n", "moi=g*Ef/(w**2*Ks)#moment of inertia\n", "\n", "#Result\n", "print \"Moment of inertia of the flywheel = %.f lb ft^2\"%moi\n", "\n", "#answer is not EXACT due to the approximations in calculations done by the author of the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Moment of inertia of the flywheel = 13710 lb ft^2\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11, Page 445" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "N=100#rpm\n", "ke=1.93#As per given figure\n", "l=15#1 inch of fig = 15 ton ft \n", "x=40#degrees; 1 inch = 40 degree\n", "I=150#ton ft^2\n", "g = 32.2\n", "\n", "\n", "#Calculations\n", "w=math.pi*N/30#angular speed\n", "E=l*x*math.pi/180#energy\n", "Ef=E*ke#fluctuation energy\n", "Ks=Ef*g/(w**2*I)#from equation 12.14\n", "p=Ks*100/2#dummy variables\n", "q=p*2#dummy variables\n", "\n", "#Results\n", "print \"The total fluctuation of speed is %.2f percent and the variation in speed is %.2f percent on either side of \"\\\n", " \"\\n the mean speed\"%(q,p)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total fluctuation of speed is 3.96 percent and the variation in speed is 1.98 percent on either side of \n", " the mean speed\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }