{ "metadata": { "name": "", "signature": "sha256:1d4cc853303bd6904a2e77fb1ceaf3e63a457d8e0eccaf1e37846afba1159436" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4-Electronic structures of atoms and molecules\n" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "v= 240. ##ml\n", "p= 1.25 ##atm\n", "p1= 0.75 ##atm\n", "n= 2.\n", "##CALCULATIONS\n", "v1= v*p/p1\n", "dv= v1-v\n", "V= n*v1\n", "##RESULTS\n", "print'%s %.2f %s'% ('Increase in volume = ',dv,' ml')\n", "print'%s %.2f %s'% ('\\n Final volume = ',V,' ml')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Increase in volume = 160.00 ml\n", "\n", " Final volume = 800.00 ml\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg78" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "v1= 360. ##ml\n", "T1= 15. ##C\n", "v2= 480. ##ml\n", "##CALCULATIONS\n", "T2= v2*(273.+T1)/v1\n", "Tc= T2-273.\n", "##RESULTS\n", "print'%s %.2f %s'% ('Centigrade temperature = ',Tc,' C')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Centigrade temperature = 111.00 C\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "p1= 1.4 ##atm\n", "v1= 250. ##ml\n", "t1= 21. ##c\n", "v2= 300. ##ml\n", "t2= 49. ##c\n", "##CALCULATIONS\n", "p2= p1*v1*(273.+t2)/(v2*(273.+t1))\n", "##RESULTS\n", "print'%s %.2f %s'% ('Final pressure = ',p2,' atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Final pressure = 1.28 atm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg82" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "v= 10. ##lit\n", "p= 75. ##cm of hg\n", "T= 27. ##C\n", "R= 0.082 ##lit-atm/mole K\n", "##CALCULATIONS\n", "n= (p/76.)*v/((273.+T)*R)\n", "##RESULTS\n", "print'%s %.2f %s'% ('Moles of oxygen contained = ',n,' moles')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Moles of oxygen contained = 0.40 moles\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "T= 25. ##C\n", "v= 190. ##ml\n", "pt= 740. ##mm of hg\n", "p1= 23.8 ##mm of hg\n", "p2= 760. ##mm of hg\n", "##CALCULATIONS\n", "p= pt-p1\n", "v= v*p/p2\n", "##RESULTS\n", "print'%s %.2f %s'% ('Partial pressure of dry gas = ',p,' mm')\n", "print'%s %.2f %s'% ('\\n volume of the dry gas = ',v,' ml')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Partial pressure of dry gas = 716.20 mm\n", "\n", " volume of the dry gas = 179.05 ml\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "ma= 0.495 ##gm\n", "Ma= 66. ##gms\n", "mb= 0.182 ##gms\n", "Mb= 45.5 ##gms\n", "p= 76.2 ##cm of hg\n", "##CALCULATIONS\n", "na= ma/Ma\n", "nb= mb/Mb\n", "nt= na+nb\n", "pa= p*na/nt\n", "pb= p*nb/nt\n", "##RESULTS\n", "print'%s %.4f %s'% ('Number of moles of given gas A = ',na,'')\n", "print'%s %.4f %s'% ('\\n Number of moles of given gas B = ',nb,'')\n", "print'%s %.4f %s'% ('\\n Total number of moles = ',nt,'')\n", "print'%s %.2f %s'% ('\\n Partial pressure of A = ',pa,' cm of mercury')\n", "print'%s %.2f %s'% ('\\n Partial pressure of B = ',pb,' cm of mercury')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of moles of given gas A = 0.0075 \n", "\n", " Number of moles of given gas B = 0.0040 \n", "\n", " Total number of moles = 0.0115 \n", "\n", " Partial pressure of A = 49.70 cm of mercury\n", "\n", " Partial pressure of B = 26.50 cm of mercury\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "v1= 125. ##ml\n", "p1= 0.6 ##atm\n", "v2= 150. ##ml\n", "p2= 0.8 ##atm\n", "V= 500. ##ml\n", "##CALCULATIONS\n", "pa= p1*v1/V\n", "pb= p2*v2/V\n", "pt= pa+pb\n", "##RESULTS\n", "print'%s %.2f %s'% ('Partial pressure of A = ',pa,' atm')\n", "print'%s %.2f %s'% ('\\n Partial pressure of B = ',pb,' atm')\n", "print'%s %.2f %s'% ('\\n Total pressure of A = ',pt,' atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Partial pressure of A = 0.15 atm\n", "\n", " Partial pressure of B = 0.24 atm\n", "\n", " Total pressure of A = 0.39 atm\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "t1= 1.44 ##min\n", "t2= 1.8 ##min\n", "mo= 32. ##gms\n", "mh= 2. ##gms\n", "##CALCULATIONS\n", "d2= (t1/t2)**2*(mo/mh)\n", "##RESULTS\n", "print'%s %.2f %s'% ('Approximate density of gas relative to hydrogen = ',d2,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Approximate density of gas relative to hydrogen = 10.24 \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "T= 25. ##C\n", "R= 8.31*10**7 ##ergs deg^-1 mole^-1\n", "M= 32. ##gms\n", "##CALCULATIONS\n", "c= math.sqrt(3.*R*(273.+T)/M)\n", "##RESULTS\n", "print'%s %.2e %s'% ('Mean velocity of oxygen molecules = ',c,' cm sec^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mean velocity of oxygen molecules = 4.82e+04 cm sec^-1\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg96" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "n= 8.41*10**-5 ##poise\n", "p= 1. ##atm\n", "v= 22414. ##ml\n", "m= 2. ##gms\n", "T= 0. ##C\n", "R= 8.31*10**7 ##ergs deg^-1 mole^-1\n", "##CALCULATIONS\n", "d= m/v\n", "c= math.sqrt(8.*R*(273.+T)/(math.pi*m))\n", "l= 3.*n/(d*c)\n", "##RESULTS\n", "print'%s %.2e %s'% ('Density of hydrogen gas = ',d,' gram cc^-1')\n", "print'%s %.2e %s'% ('\\n Mean velocity = ',c,' cm sec^-1')\n", "print'%s %.2e %s'% ('\\n Mean free path of the molecules = ',l,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Density of hydrogen gas = 8.92e-05 gram cc^-1\n", "\n", " Mean velocity = 1.70e+05 cm sec^-1\n", "\n", " Mean free path of the molecules = 1.66e-05 cm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg97" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "t= 1. ##sec\n", "v= 1. ##cc\n", "T= 0. ##C\n", "p= 1. ##atm\n", "d= 8.9*10**-5 ##g cc^-1\n", "n= 8.41*10**-5 ##poise\n", "R= 8.31*10**7 ##ergs deg^-1 mole^-1\n", "M= 4. ##gms\n", "N= 6*10**23 ##molecules\n", "n1= 2. ##moles\n", "##CALCULATIONS\n", "Z= M*(N/(v*22414.))*d*R*(273.+T)/(3.*math.pi*n1*n)\n", "##RESULTS\n", "print'%s %.2e %s'% ('Number of collisions = ',Z,' molecular collisions sec^-1 cc^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of collisions = 1.36e+29 molecular collisions sec^-1 cc^-1\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg98 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "d= 8.9*10**-5 ##g cc^-1\n", "R= 8.31*10**7 ##ergs deg^-1 mole^-1\n", "N= 2.7*10**19 ##molecules\n", "n= 8.41*10**-5 ##poise\n", "T= 0. ##C\n", "n1= 2. ##moles\n", "##CALCULATIONS\n", "s= math.sqrt(n1*d*math.sqrt(R*(273.+T)/(math.pi*n1))/(3.*math.pi*n*N))\n", "##RESULTS\n", "print'%s %.2e %s'% ('Collision diamter of hydrogen = ',s,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Collision diamter of hydrogen = 2.24e-08 cm\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg106" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "n= 4.\n", "n1= 1.\n", "n2= 1.5\n", "R= 2. ##cal deg^-1 mole^-1\n", "m=3.\n", "##CALCULATIONS\n", "Cv= ((3.*n-5.)+n1+n2)*R\n", "Cv1= ((3.*n-6.)+2.*m*(n2-n1))*R\n", "##RESULTS\n", "print'%s %.2f %s'% ('Molar heat capacity of acetylene = ',Cv,' cal deg^-1 mole^-1')\n", "print'%s %.2f %s'% ('\\n Molar heat capacity of ammonia = ',Cv1,' cal deg^-1 mole^-1')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Molar heat capacity of acetylene = 19.00 cal deg^-1 mole^-1\n", "\n", " Molar heat capacity of ammonia = 18.00 cal deg^-1 mole^-1\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg112 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "v= 1.32 ##lit\n", "T= 48. ##C\n", "p= 18.4 ##atm\n", "R= 0.082 ##lit-atm deg^-1 mole^-1\n", "a= 3.6\n", "b= 4.28*10**-2\n", "##CALCULATIONS\n", "P1= R*(273.+T)/v\n", "P2= (R*(273.+T)/(v-b))-(a/v**2)\n", "##RESULTS\n", "print'%s %.2f %s'% ('Pressure by ideal gas equation = ',P1,' atm')\n", "print'%s %.2f %s'% ('\\n Pressure by vander Waals equation = ',P2,' atm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure by ideal gas equation = 19.94 atm\n", "\n", " Pressure by vander Waals equation = 18.54 atm\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg118 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "wa= 52.3 ##gms\n", "wv= 52.96 ##gms\n", "wb= 302. ##gms\n", "T= 100. ##C\n", "p= 752. ##mm\n", "d= 1.29 ##g per litre\n", "wa1= 0.32 ##gms\n", "R= 0.082 ##lit-atm K^-1 mole^-1\n", "v= 0.25 ##lit\n", "##CALCULATIONS\n", "W= wb-wa\n", "Wv= wv-(wa-wa1)\n", "M= Wv*R*(273.+T)/((p/760.)*v)\n", "##RESULTS\n", "print'%s %.2f %s'% ('Molecular weight of choloform = ',M,' gms')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Molecular weight of choloform = 121.17 gms\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16-pg119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "w= 0.241 ##gms\n", "R= 0.082 ##lit-atm mole^-1 K^-1\n", "T= 23. ##C\n", "p= 764. ##mm \n", "v= 47.9 ##ml of air\n", "##CALCULATIONS\n", "M= w*R*(273.+T)/((p/760.)*(v/1000.))\n", "##RESULTS\n", "print'%s %.2f %s'% ('Molecular weight of choloform = ',M,' gms')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Molecular weight of choloform = 121.48 gms\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex17-pg122" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "p= 795. ##mm\n", "v= 0.501 ##lit\n", "w= 1.35 ##gms\n", "m= 92. ##gms\n", "R= 0.082 ##lit-atm mole^-1 K^-1\n", "T= 45. ##C\n", "##CALCULATIONS\n", "a= ((p/760.)*v/((w/m)*R*(273.+T)))-1.\n", "##RESULTS\n", "print'%s %.2f %s'% ('Fraction of N2O4 dissociated into NO2 = ',a,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fraction of N2O4 dissociated into NO2 = 0.37 \n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }