{ "metadata": { "name": "", "signature": "sha256:9fa506139179affa920541319c84daca518a8fdf27be38984d939353608339f4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter14-Electromotive Force" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg441" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "T= 25. ##C\n", "E= 0.0455 ##volt\n", "r= 3.38*10**-4 ##volt degree^-1\n", "F= 96500.\n", "r1= 0.2390\n", "##CALCULATIONS\n", "dH= -F*r1*(E-(273.+T)*r)\n", "##RESULTS\n", "print'%s %.2f %s'% ('Enthalpy = ',dH,' calories ') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Enthalpy = 1273.66 calories \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg450" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "emf= 1.094 ##volt\n", "e1= 0.334 ##volt\n", "##CALCULATIONS\n", "Ezn= (emf-e1)\n", "##RESULTS\n", "print'%s %.2f %s'% ('Ezn = ',Ezn,' volt ') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ezn = 0.76 volt \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg454" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "emf= 0.0455 ##volt\n", "T= 25. ##C\n", "c= 0.1 ##N\n", "emf1= 0.334 ##volt\n", "emf2= 0.799 ##volt\n", "k= 0.05915\n", "##CALCULATIONS\n", "ag= 10**((-emf2+(emf1-emf))/k)\n", "##RESULTS\n", "print'%s %.2e %s'% ('aAg+ = ',ag,' g ion per 1000 grams per litre ') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "aAg+ = 2.34e-09 g ion per 1000 grams per litre \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "k= 0.059\n", "e= -0.401 ##volt\n", "c1= 10**-14 ## g ion per litre\n", "c2= 10**-7 ## g ion per litre\n", "##CALCULATIONS\n", "E1= e+k*math.log10(c1)\n", "E2= e+k*math.log10(c2)\n", "##RESULTS\n", "print'%s %.2f %s'% ('oxidation potential = ',E1,' volt ') \n", "print'%s %.2f %s'% ('\\n oxidation potential = ',E2,' volt ') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "oxidation potential = -1.23 volt \n", "\n", " oxidation potential = -0.81 volt \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg464" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "e= 0.761 ##volt\n", "e1= -0.34 ##volt\n", "k= 0.02958 ##volt\n", "##CALCULATIONS\n", "r= 10**((e-e1)/k)\n", "##RESULTS\n", "print'%s %.2e %s'% ('K for the reaction = ',r,'') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "K for the reaction = 1.66e+37 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg468" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "c1= 0.1 ##M\n", "c2= 0.01 ##M\n", "k= 0.05915 ##volt\n", "t1= 0.172\n", "t2= 0.828 \n", "##CALCULATIONS\n", "El= (t1-t2)*k*math.log10(c2/c1)\n", "##RESULTS\n", "print'%s %.3f %s'% ('Liquid junction potential = ',El,'') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Liquid junction potential = 0.039 \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg472" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variable\n", "k= 0.05915 ##volt\n", "n= 2. ##moles\n", "c= 0.1 ##M\n", "c1= 1. ##M\n", "##CALCULATIONS\n", "r= k*math.log10(c/c1)/n\n", "##RESULTS\n", "print'%s %.2f %s'% ('EMF = ',r,' volt ') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "EMF = -0.03 volt \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg477" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "e1= 0.31 ##volt\n", "e2= 0.78 ##volt\n", "##CALCULATIONS\n", "e= e1+e2\n", "##RESULTS\n", "print'%s %.2f %s'% ('Decomposition voltage = ',e,'') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Decomposition voltage = 1.09 \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg478" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "k= 0.059 ##volt\n", "c= 10**-7 ##M\n", "e= 2.71 ##volt\n", "c1= 6 ##M\n", "e1= -0.4 ##volt\n", "e2= -1.36 ##volt\n", "e3= 0.6 ##volt\n", "##CALCULATIONS\n", "E1= -math.log10(c)*k\n", "E2= e-k*math.log10(c1)\n", "E3= e1+k*math.log10(c)\n", "E4= e2+k*math.log10(c1)\n", "E5= E3-e3\n", "##RESULTS\n", "print'%s %.2f %s'% ('EH = ',E1,' volt ') \n", "print'%s %.2f %s'% ('\\n ENa = ',E2,' volt ') \n", "print'%s %.2f %s'% ('\\n EO = ',E3,' volt ') \n", "print'%s %.2f %s'% ('\\n ECl = ',E4,' volt ') \n", "print'%s %.2f %s'% ('\\n Oxygen evolution potential = ',E5,' volt ') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "EH = 0.41 volt \n", "\n", " ENa = 2.66 volt \n", "\n", " EO = -0.81 volt \n", "\n", " ECl = -1.31 volt \n", "\n", " Oxygen evolution potential = -1.41 volt \n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }