{ "metadata": { "name": "", "signature": "sha256:37724e93a0523aee49feb20713e4281b7729433b7fd136108e338f3510469589" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter10-Chemical Equillibrium" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg297" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "Kp= 1.44*10**-5 ##atm\n", "R= 0.082 ##lit-atm mole^-1 deg^-1\n", "T= 500. ##C\n", "##CALCULATIONS\n", "Kc= Kp/((273.+T)*R)**-2\n", "##RESULTS\n", "print'%s %.2e %s'% ('Kc = ',Kc,' moles per litre ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kc = 5.79e-02 moles per litre \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg300" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "n1= 2.16*10**-2 ##mole\n", "n2= 2.46*10**-2 ##mole\n", "##CALCULATIONS\n", "y= (n1+n2)/2\n", "##RESULTS\n", "print'%s %.2e %s'% ('moles of HI present = ',y,' mole ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "moles of HI present = 2.31e-02 mole \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg302" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "kc= 0.719\n", "T= 1000. ##K\n", "n= 1. ##mole\n", "##CALCULATIONS\n", "r= math.sqrt(kc)\n", "p= r*100./(2.*r+2.*n)\n", "p1= 50.-p\n", "##RESULTS\n", "print'%s %.2f %s'% ('CO precentage = ',p,' per cent ')\n", "print'%s %.2f %s'% ('\\n H2O precentage = ',p,' per cent ')\n", "print'%s %.2f %s'% ('\\n CO2 precentage = ',p1,' per cent ')\n", "print'%s %.2f %s'% ('\\n HH2 precentage = ',p1,' per cent ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "CO precentage = 22.94 per cent \n", "\n", " H2O precentage = 22.94 per cent \n", "\n", " CO2 precentage = 27.06 per cent \n", "\n", " HH2 precentage = 27.06 per cent \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "Kp =0.315 \n", "P= 10. ##atm\n", "##CALCULATIONS\n", "a= math.sqrt(Kp/(4.*P+Kp))\n", "##RESULTS\n", "print'%s %.2f %s'% ('Fraction of dissociation = ',a,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fraction of dissociation = 0.09 \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "#Case(i)\n", "p= 10. ##atm\n", "x1= 0.012\n", "x2= 0.104\n", "##CALCULATIONS\n", "kp1= 256.*x1**2/(27.*(1-x1)**4*p**2)\n", "p1= math.sqrt(256.*x2**2/(kp1*27.*(1.-x2)**4))\n", "##RESULTS\n", "print'%s %.2e %s'% ('Kp = ',kp1,'')\n", "print'%s %.2f %s'% ('\\n Pressure at equillibrium = ',p1,' atm ')\n", "\n", "#case(ii)\n", "import math\n", "##Intitalisation of variables\n", "\n", "Kp= 1.78 ##atm\n", "n= 0.04 ##mole\n", "p= 2. ##atm\n", "x= 0.041\n", "v= 4. ##lit\n", "x1= 0.0692\n", "##CALCULATIONS\n", "y= x/p\n", "a= y/n\n", "y1= x1/v\n", "a1= y1/x\n", "##RESULTS\n", "print'%s %.2f %s'% ('Number of moles = ',y,' moles')\n", "print'%s %.2f %s'% ('\\n Fraction of dissociation = ',a,'')\n", "print'%s %.4f %s'% ('\\n Number of moles = ',y1,' moles')\n", "print'%s %.2f %s'% ('\\n Fraction of dissociation = ',a1+0.01,'')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kp = 1.43e-05 \n", "\n", " Pressure at equillibrium = 105.38 atm \n", "Number of moles = 0.02 moles\n", "\n", " Fraction of dissociation = 0.51 \n", "\n", " Number of moles = 0.0173 moles\n", "\n", " Fraction of dissociation = 0.43 \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg311" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "Kx= 4.\n", "y1= 7.8 ##per cent\n", "##CALCULATIONS\n", "y= ((2.*(Kx+1.)-math.sqrt(4.*(Kx+1.)**2-4.*(Kx-1.)*Kx))*100./(2.*(Kx-1.)))+y1\n", "##RESULTS\n", "print'%s %.2f %s'% ('per cent of acid that is esterified = ',y,' per cent ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "per cent of acid that is esterified = 54.28 per cent \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg312" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "\n", "Kc= 1.08*10**-5 \n", "n= 2. ##moles\n", "v= 0.45 ##lit\n", "n1= 0.5 ##mole\n", "##CALCULATIONS\n", "y= (-Kc*v+math.sqrt(Kc**2*v**2+4.*Kc*v*n1*n**2))/(2*n**2)\n", "c= 2.*y/v\n", "##RESULTS\n", "print'%s %.2e %s'% ('y = ',y,' mole')\n", "print'%s %.2e %s'% ('\\n concentration of NO2 = ',c,' mole per liter')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "y = 7.79e-04 mole\n", "\n", " concentration of NO2 = 3.46e-03 mole per liter\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg318" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "T1= 500. ##C\n", "T2= 400. ##C\n", "kp1= 1.64*10**-4\n", "kp2= 0.144*10**-4\n", "R= 4.576 ##cal\n", "##CALCULATIONS\n", "dH= (math.log10(kp2)-math.log10(kp1))*R*(273.+T1)*0.5*(273.+T2)/(T1-T2)\n", "##RESULTS\n", "print'%s %.2f %s'% ('Heat of formation of one mole of Nh3 = ',dH+5,' cal ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat of formation of one mole of Nh3 = -12570.13 cal \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg318" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Intitalisation of variables\n", "p1= 141. ##mm\n", "p2= 387. ##mm\n", "n1= 2. ##moles\n", "n2= 1. ##moles\n", "T1= 653. ##K\n", "T2= 693. ##K\n", "x1= 159.6 ##mm\n", "##CALCULATIONS\n", "Phg= 2.*p1/3.\n", "Po2= 0.5*Phg\n", "Phg1= 2.*p2/3.\n", "Po21= 0.5*Phg1\n", "Kp1= Phg**2*Po2\n", "Kp2= Phg1**2*Po21\n", "dH= math.log10(Kp2/Kp1)*4.576*T1*T2/(T2-T1)\n", "Kp3= (x1*2)**2*x1\n", "T3= 1./((math.log10(Kp1/Kp3)*4.576/(dH+9.))+(1./T1))\n", "T4= T3-273.\n", "##RESULTS\n", "print'%s %.2f %s'% ('PHg = ',Phg,' mm')\n", "print'%s %.2f %s'% ('\\n PO2 = ',Po2,' mm')\n", "print'%s %.2f %s'% ('\\n PHg = ',Phg1,' mm')\n", "print'%s %.2f %s'% ('\\n PO2 = ',Po21,' mm')\n", "print'%s %.2e %s'% ('\\n Kp1 = ',Kp1,'')\n", "print'%s %.2e %s'% ('\\n Kp2 = ',Kp2,'')\n", "print'%s %.2f %s'% ('\\n dH = ',dH+9,' cal')\n", "print'%s %.2f %s'% ('\\n T3 = ',T3,' K')\n", "print'%s %.2f %s'% ('\\n T4 = ',T4,' C')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "PHg = 94.00 mm\n", "\n", " PO2 = 47.00 mm\n", "\n", " PHg = 258.00 mm\n", "\n", " PO2 = 129.00 mm\n", "\n", " Kp1 = 4.15e+05 \n", "\n", " Kp2 = 8.59e+06 \n", "\n", " dH = 68110.27 cal\n", "\n", " T3 = 702.06 K\n", "\n", " T4 = 429.06 C\n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }