{ "metadata": { "name": "", "signature": "sha256:68af0c4a8337e2d1285b325265301de0a726e4a41ce7ffd072403aa9458bcfde" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Mass Transfer" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1, Page no:349" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "wa = 0.76 ;\n", "wb = 0.24 ;\n", "ma = 28 ; #kg/kg mole\n", "mb = 32 ; #kg/kg mole\n", "\n", "#calculations\n", "xa = ( wa /ma)/( wa /ma+ wb /mb);\n", "xb = ( wb /mb)/( wa /ma+ wb /mb);\n", "\n", "#result\n", "print\"The molar fractions are given by\";\n", "print\"xa =\",round(xa,5);\n", "print\"xb =\",round(xb,5);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The molar fractions are given by\n", "xa = 0.78351\n", "xb = 0.21649\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2, Page no:350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#calculations\n", "#From Table 9.1 at 1 atm and 25 C\n", "Dab = 0.62*10**-5 ; #m^2/s\n", "#Therefore at 2 atm and 50 C\n", "Dab2 = Dab*(1/2)*(323/298)**1.5 ;\n", "\n", "#result\n", "print\"Dab at 2 atm & 50 C =\",'%.4E'%Dab2,\"m^2/s\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dab at 2 atm & 50 C = 3.4982E-06 m^2/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 (a), Page no:352" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "t = 0.04 ; #m\n", "A = 2 ; #m^ 2\n", "rho1 = 0.10 ;\n", "rho2 = 0.01 ;\n", "\n", "#calculations\n", "D400 = 1.6*10**-11 ; #at 400K [m^2/ s ]\n", "#Mass Diffusion in solid solution, assuming Ficks law is valid & steady state and one dimensional diffusion\n", "#Subtituting the values in eqn 9.3.3 , At 400 K\n", "m400 = A* D400 *( rho1 - rho2 )/t; #kg / s\n", "\n", "#result\n", "print\"Rate of diffusion of Hydrogen at 400 K =\",m400,\"kg/s\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of diffusion of Hydrogen at 400 K = 7.2e-11 kg/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 (b), Page no:352" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "t = 0.04 ; #m\n", "A = 2 ; #m^2\n", "rho1 = 0.10 ;\n", "rho2 = 0.01 ;\n", "\n", "#calculations\n", "D1200 = 3.5*10**-8 ; #at 1200k [m^2/s]\n", "#Mass Diffusion in solid solution, assuming Ficks law is valid & steady state and one dimensional diffusion\n", "#At 1200 K\n", "#From eqn 9.3.3\n", "m1200 = A* D1200 *( rho1 - rho2 )/t ; #At 1200 K\n", "\n", "#result\n", "print\"b) Rate of diffusion of Hydrogen at 1200 K =\",m1200,\"kg/s\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "b) Rate of diffusion of Hydrogen at 1200 K = 1.575e-07 kg/s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 (a), Page no:356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "L = 1 ; #m\n", "D = 0.005 ; #m\n", "Pa1 = 1 ; #atm\n", "Pa2 = 0 ;\n", "R = 8314 ;\n", "T = 298 ; #K\n", "\n", "#calculations\n", "#Assuming Equimolal counter diffusion\n", "#From Table 9.1\n", "Dab = 2.80*10**-5 ; #m^2/s\n", "#Substituing in eqn 9.4.12\n", "Na = -( Dab /(R*T)*( Pa2 - Pa1 ) *(1.014*10**5) /L )*(3.14*(D/2)**2) ;\n", "RNH3 = Na *17 ; #kg/s\n", "\n", "#result\n", "print\"Na = -Nb =\",'%.4E'%Na,\"(kg mole)/m^2 s\";\n", "print\"Rate at which ammonia is lost through the tube =\",'%.3E'%RNH3,\"kg/s\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Na = -Nb = 2.2489E-11 (kg mole)/m^2 s\n", "Rate at which ammonia is lost through the tube = 3.823E-10 kg/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 (b), Page no:356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "L = 1 ; #m\n", "D = 0.005 ; #m\n", "Pa1 = 1 ; #atm\n", "Pa2 = 0 ;\n", "R = 8314 ;\n", "T = 298 ; #K\n", "\n", "#calculations\n", "#Since the tank is large and the pressure and temperature at the two ends of the same tube are same, \n", "#we are assuming Equimolal counter diffusion\n", "Dab = 2.80*10**-5 ; #m^2/s\n", "#Substituing in eqn 9.4.12\n", "Na = -(Dab /(R*T)*( Pa2 - Pa1 ) *(1.014*10**5) /L )*(3.14*(D/2)**2) ;\n", "#Since equimolal counter diffusion is taking place\n", "Nb = - Na ; \n", "#therefore rate at which air enters the tank\n", "Rair = abs (Nb)*29 ; #kg/s\n", "\n", "#result\n", "print\"Rate at which air enters the tank =\",'%.4E'%Rair,\"kg/s\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate at which air enters the tank = 6.5219E-10 kg/s\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5 , Page no:359" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.04 ; #m\n", "h = 0.20 ; #m\n", "hw = 0.03 ; #m\n", "R = 8314 ; #J/kg mole K\n", "Psat = 0.02339 ; #bar\n", "xa2 = 0 ; #mole fraction at open top\n", "\n", "#calculations\n", "#Evaporation of water, one dimensional\n", "Tw = 20+273 ; #K\n", "P = 1.014*10**5; #Pa\n", "xa1 = Psat /1.014 ; #mole fraction at liq-vap interface\n", "c = P/(R* Tw );\n", "#From Table 9.2\n", "Dab = 2.422*10**-5 ; #m^2/s\n", "#Substituting above values in eqn 9.4.18\n", "flux = 0.041626* Dab /0.17* math.log ((1 -0) /(1 - xa1 )); #kg mole/m^2 s\n", "rate = flux *18*(3.14/4) *(D**2) ;\n", "\n", "#result\n", "print\"Rate of evaporation of water =\",'%.4E'%rate,\"kg/s\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of evaporation of water = 3.1290E-09 kg/s\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6 , Page no:364" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "l = 1; #length, m\n", "w = 0.25; #width, m\n", "T = 293 ; #Temperature, K\n", "rhoinfinity = 0; #kg/m^3\n", "R = 8314; #J/ kg K\n", "paw = 2339; #Saturation pressure of water at 20 degree C. [N/m^2]\n", "rhoainf = 0 ; #since air in the free stream is dry\n", "\n", "#calculations\n", "#From Table A.2\n", "v = 15.06*10**-6; #m^2/s\n", "# From Table 9.2\n", "Dab = 2.4224*10**-5; #m^2/s\n", "Re = 2.5/ v;\n", "Sc = v/ Dab ;\n", "#Since Re > 3*10^5, we may assume laminar boundary layer\n", "Sh = 0.664* Sc**(1/3) *Re**(1/2) ; #Sherwood number\n", "h = Sh*Dab;\n", "rhoaw = paw /(R /18* T); #kg/m^3\n", "mh = h *(2* l*w)*( rhoaw - rhoinfinity );\n", "\n", "#result\n", "print\"Rate of evaporation from plate =\",'%.4E'%mh,\"kg/s\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of evaporation from plate = 4.8335E-05 kg/s\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7 (a) , Page no:366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.04 ; #m\n", "V = 1.9 ; #m/s\n", "rho = 1.177 ; #kg/m^3\n", "Pr = 0.7015 ;\n", "Cp = 1005 ; #J/kg K\n", "k = 0.02646 ; #W/m K\n", "\n", "#calculations\n", "#a) Colburn anology and Gnielinski equation\n", "#Properties of air at 27 degree C\n", "v = 15.718*10**-6 ; #m^2/s\n", "# From Table 9.2\n", "Dab = 2.54 * 10**-5 ; #m^2/s\n", "Sc = v/ Dab ;\n", "Re = V*D/v;\n", "#The flow is turbulent and eqn 9.6.5 may be applied\n", "#let r = h/hm\n", "r = rho*Cp *(( Sc/Pr)**(2/3) ); #let r = h/hm \n", "#From Blasius equation 4.6.4a\n", "f = 0.079* Re**( -0.25) ;\n", "#Substituting this value into Gnielinski\n", "Nu = ((f /2) *(Re -1000) *Pr )/(1+12.7*(( f/2)**(1/2) )*(( Pr**(2/3) ) -1));\n", "h = Nu*k/D;\n", "hm = h/r; #m/s\n", "\n", "#result\n", "print\"hm using Colburn anology and Gnielinski equation =\",round(hm,6);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hm using Colburn anology and Gnielinski equation = 0.009495\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7 (b) , Page no:366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.04 ; #m\n", "V = 1.9 ; #m/s\n", "rho = 1.177 ; #kg/m^3\n", "Pr = 0.7015 ;\n", "Cp = 1005 ; #J/kg K\n", "k = 0.02646 ; #W/m K\n", "\n", "#calculations\n", "#(b) mess transfer correlation equivalent to the Gleilinski equation\n", "#Properties of air at 27 degree C\n", "v = 15.718*10**-6 ; #m^2/s\n", "#From Table 9.2\n", "Dab = 2.54 * 10**-5 ; #m^2/s\n", "Sc = v/ Dab ;\n", "Re = V*D/v;\n", "#From Blasius equation 4.6.4a\n", "f = 0.079* Re**( -0.25) ;\n", "#Substituting in eqn 9.6.7\n", "ShD = ((f /2) *(Re -1000) *Sc )/(1+12.7*(( f/2)) *(( Sc**(2/3) ) -1));\n", "hm1 = ShD * Dab /D;\n", "\n", "#result\n", "print\"(b) hm =\",round(hm1,6);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(b) hm = 0.007258\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7 (c) , Page no:366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.04 ; #m\n", "V = 1.9 ; #m/s\n", "rho = 1.177 ; #kg/m^3\n", "Pr = 0.7015 ;\n", "Cp = 1005 ; #J/kg K\n", "k = 0.02646 ; #W/m K\n", "\n", "#calculations\n", "#c) To show that mass flux of water is very small compared to the mass flux of air flowing in the pipe\n", "#Properties of air at 27 degree C\n", "v = 15.718*10**-6 ; #m^2/s\n", "#From Table 9.2\n", "Dab = 2.54 * 10**-5 ; #m^2/s\n", "Sc = v/ Dab ;\n", "Re = V*D/v;\n", "#The flow is turbulent and eqn 9.6.5 may be applied\n", "#let r = h/hm \n", "r = rho*Cp *(( Sc/Pr)**(2/3) ); #let r = h/hm\n", "#From Blasius equation 4.6.4a\n", "f = 0.079* Re**( -0.25) ;\n", "#From steam table\n", "rhoaw = 1/38.77 ; #kg/m^3\n", "#let X = (m_a/A)_max\n", "X = f* rhoaw ; #kg/m^2 s\n", "#let Y = mass flux of air in pipe = (m/A)\n", "Y = rho*V ; #kg/m^2 s\n", "ratio = X/Y ;\n", "percent = ratio *100;\n", "\n", "#result\n", "print\"(c) (ma/A)max/(ma/A) =\",round(percent,6),\"percent Thus,\\nmass flux of water is very small compared to the mass flux of air flowing in the pipe.\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(c) (ma/A)max/(ma/A) = 0.010927 percent Thus,\n", "mass flux of water is very small compared to the mass flux of air flowing in the pipe.\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8 , Page no:369" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V = 0.5 ; #m/s\n", "Th = 30 ; #C\n", "Tc = 26 ; #C\n", "#From table A.2\n", "rho = 1.173 ; #kg/m^3\n", "Cp = 1005 ; #J/kg K\n", "k = 0.02654 ; #W/m K\n", "Psat = 3363; #From steam table\n", "PP30 = 4246 ; #From steam table partial pressure of water vapour at 30 C, N/m^2\n", "\n", "#calculations\n", "Tm = (Th+ Tc )/2;\n", "#From Table 9.2 at 301 K\n", "alpha = k/( rho *Cp); #m^2/s\n", "Dab = 2.5584*10**-5 ; #m^2/s\n", "hfg = 2439.2*10**3 ; #J/kg\n", "#Substituting in equation 9.7.5\n", "#let difference = rho_aw-rho_a infinity\n", "difference = rho *Cp *(( alpha /Dab)**(2/3) )*( Th - Tc )/hfg ;\n", "#From steam table\n", "rhoaw = Psat /(8314/18*299) ;\n", "rhoinf = rhoaw - difference ;\n", "x = rhoinf / rho ; #mole fraction of water vapour in air stream\n", "PP = rhoinf *8314/18*303; #Partial pressure of water vapour in air stream\n", "relH = PP/ PP30 ;\n", "percent = relH *100;\n", "\n", "#result\n", "print\"Relative humidity =\",round(relH,4),\"i.e.\",round(percent,4),\"percent\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relative humidity = 0.7441 i.e. 74.4122 percent\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }