{ "metadata": { "name": "", "signature": "sha256:f52bfd7811201b97d412b52a8226e438de6bc215828a85347af9b46efb493219" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5: Heat Transfer by Forced Convection" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1(a) , Page no:209" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.015 ; #m\n", "Q = 0.05 ; #m^3/h\n", "H = 1000 ; #W/m^ 2\n", "Tb = 40 ; #degree C\n", "k = 0.634 ; #W/m K\n", "\n", "#calculations\n", "v = 0.659*10**-6 ; #m^2/ s\n", "Vbar = 4*Q /((3.14)*D**2) ;\n", "ReD = Vbar *D/v;\n", "h = 4.364* k/D; #W/m^2 K\n", "\n", "#result\n", "print\"(a) Local heat transfer coefficient is\",round(h,4),\"W/m^2 K\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Local heat transfer coefficient is 184.4517 W/m^2 K\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1(b) , Page no:209" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.015 ; #m\n", "Q = 0.05 ; #m^3/h\n", "H = 1000 ; #W/m^2\n", "Tb = 40 ; #degree C\n", "k = 0.634 ; #W/m K\n", "\n", "#calculations\n", "v = 0.659*10**-6 ; #m^2/s\n", "Vbar = 4*Q /((3.14)*D**2) ;\n", "ReD = Vbar *D/v;\n", "h = 4.364* k/D;\n", "Tw = H/h + Tb; #the local wal to bulk mean temperature difference\n", "\n", "#result\n", "print\"(b) Wall Temperature Tw =\",round(Tw,4),\"degree C\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(b) Wall Temperature Tw = 45.4215 degree C\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2 , Page no:213" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Pr1=0.01;\n", "Pr2=0.1;\n", "Pr3=100;\n", "\n", "#Calculation\n", "T1 = 0.04305* Pr1 /0.0575; #For Pr = 0.01\n", "T2 = 0.04305* Pr2 /0.0575; #For Pr = 0.1\n", "T3 = 0.04305* Pr3 /0.0575 ; #For Pr = 100\n", "\n", "#result\n", "print\"Lth/Le at Pr =0.01 is\",round(T1,4);\n", "print\"Lth/Le at Pr = 1 is\",round(T2,4);\n", "print\"Lth/Le at Pr = 100 is\",round(T3,4);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Lth/Le at Pr =0.01 is 0.0075\n", "Lth/Le at Pr = 1 is 0.0749\n", "Lth/Le at Pr = 100 is 74.8696\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3(i) , Page no:215" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.015 ; #m\n", "V = 1 ; #m/s\n", "Tw = 90 ; #degree C\n", "Tmi = 50 ; #degree C\n", "Tmo = 65 ; #degree C\n", "k = 0.656 ; #W/m K\n", "rho = 984.4 ; #kg/m^3\n", "Pr = 3.12 ;\n", "rhoin = 988.1 ; #kg/m^3\n", "\n", "#calculations\n", "v = 0.497 * 10**-6 ; #m^2/s\n", "Cp = 4178 ; #J/kg K\n", "mdot =3.14*(D**2)* rhoin *V/4 ; #kg/s\n", "Re = 4* mdot /(3.14*D* rho *v) ;\n", "f = 0.079*( Re)** -0.25 ;\n", "Nu = (f /2) *(Re -1000) *Pr /(1+12.7*( f /2) **(1/2) *(( Pr**(2/3) ) -1));\n", "h = Nu*k/D;\n", "L = mdot *Cp *( Tmo -Tmi)*( math.log ((Tw - Tmi )/(Tw - Tmo )) /(((Tw -Tmi) -(Tw - Tmo ))*h*D*3.14)); #the energy equation\n", "\n", "#result\n", "print\"The length of tube if the exit water temperature is 65 degree C =\",round(L,4),\"m\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The length of tube if the exit water temperature is 65 degree C = 1.0876 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3(ii) , Page no:215" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.015 ; #m\n", "V = 1 ; #m/s\n", "Tw = 90 ; #degree C\n", "Tmi = 50 ; #degree C\n", "Tmo = 65 ; #degree C\n", "k = 0.656 ; #W/m K\n", "rho = 984.4 ; #kg/m^3\n", "Cp = 4178 ; #J/kg K\n", "Pr = 3.12 ;\n", "rhoin = 988.1 ; #kg/m^3\n", "Tmo = 70 ; #degree C\n", "Tb = 60 ; #degree C\n", "k1 = 0.659 ; #W/m K\n", "rho1 = 983.2 ;#kg/m^3\n", "Cp1 = 4179 ;#J/kg K\n", "Pr1 = 2.98 ;\n", "f1 = 0.005928;\n", "Nud = 154.97; #the Gnielinski Eqn\n", "Tmo1 = 73.4 ; #degree C\n", "\n", "#calculations\n", "v = 0.497 * 10**-6 ; #m^2/s\n", "mdot =3.14*(D**2)* rhoin *V/4 ; #kg/s\n", "Re = 4* mdot /(3.14*D* rho *v) ;\n", "f = 0.079*( Re)** -0.25 ;\n", "Nu = (f /2) *(Re -1000) *Pr /(1+12.7*( f /2)**(1/2) *(( Pr**(2/3) ) -1) ); #W/m^2 K\n", "h = Nu*k/D;\n", "L = mdot *Cp *( Tmo -Tmi)* math.log ((Tw - Tmi )/(Tw - Tmo ))/(((Tw -Tmi) -(Tw - Tmo ))*h*D*3.14); #the energy equation\n", "v1 = 0.478 * 10**-6 ; #m^2/s\n", "Re1 = 4* mdot /(3.14*D* rho1 *v1);\n", "h = Nud *k1/D ; #W/m^2 K\n", "\n", "#result\n", "print\"Trial and error method\";\n", "print\"Trial 1\";\n", "print\"Assumed value of Tmo =70 degree C\";\n", "print\"Value of Tmo obtained =73.4 degree C\";\n", "print\"Trial 2\";\n", "print\"Assume Tmo =73.4 degree C\";\n", "print\"Value of Tmo obtained = 73.6 degree C which is in reasonably close agreement with assumed value\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Trial and error method\n", "Trial 1\n", "Assumed value of Tmo =70 degree C\n", "Value of Tmo obtained =73.4 degree C\n", "Trial 2\n", "Assume Tmo =73.4 degree C\n", "Value of Tmo obtained = 73.6 degree C which is in reasonably close agreement with assumed value\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4 , Page no:219" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "Di = 0.05 ; #m\n", "m = 300 ; #kg/min\n", "m1 = m/60 ; #kg/sec\n", "rho = 846.7 ; #kg/m^3\n", "k = 68.34 ; #W/m K\n", "c = 1274; #J/kg K\n", "Pr = 0.00468 ;\n", "\n", "#calculations\n", "v = 0.2937*10**-6 ; #m^2/s\n", "ReD = 4* m1 /(3.14*Di* rho *v);\n", "NuD = 6.3 + 0.0167*( ReD**0.85) *( Pr**0.93) ; #Assuming both temperature and velocity profile are fully developed over the length of tube\n", "h = NuD *k/ Di ;\n", "L = 300/60*1274*(500 -400) /(h*3.14* Di *30); #Equating the heat transferred through the wall of the tube to the change of enthalpy pf sodium\n", "\n", "#result\n", "print\"Length of tube over which the temperature rise occurs =\",round(L,4),\"m\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length of tube over which the temperature rise occurs = 6.8659 m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.5 , Page no:231" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V = 15 ; #m/s\n", "s =0.2 ; #m\n", "rho = 1.128 ; #kg/m^3\n", "k = 0.0276; #W/m K\n", "Pr = 0.699;\n", "\n", "#calculations\n", "Tm = (20+60) /2; ##degree C\n", "v = 16.96*10**-6; #m^2/s\n", "A=s**2;\n", "ReL = V *0.2/ v;\n", "Cf = 1.328/( ReL )**0.5; #the boundary layer may be assumed to be laminar over the entire length.\n", "Fd = 2* Cf *1/2* rho*A*V**2;\n", "Nul = 0.664*( Pr**(1/3) )*( ReL**(1/2) );\n", "h = Nul *k/s;\n", "q = 2*A*h *(60 -20) ; #rate of heat transfer q is\n", "Cf1 = 0.074*( ReL )**( -0.2) ; #boundary layer from leading edge, the drag coefficient is\n", "Fd1 = 2* Cf1 *1/2* rho *A*V**2;\n", "Nul1 = 0.0366*(0.699**(1/3) )*( ReL**(0.8) );\n", "h1 = Nul1 *k/s; #W/m^2 K\n", "q1 = 2*A*h1 *(60 -20) ;\n", "\n", "#result\n", "print\"For Laminar Boundary Layer\";\n", "print\"Rate of Heat transfer =\",round(q,4),\"W\";\n", "print\"Drag force =\",round(Fd,4),\"N\";\n", "print\"For Turbulent Boundary Layer from the leading edge\";\n", "print\"Rate of Heat transfer =\",round(q1,4),\"W\";\n", "print\"Drag force =\",round(Fd1,4),\"N\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For Laminar Boundary Layer\n", "Rate of Heat transfer = 109.447 W\n", "Drag force = 0.0321 N\n", "For Turbulent Boundary Layer from the leading edge\n", "Rate of Heat transfer = 226.3735 W\n", "Drag force = 0.067 N\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6(i) , Page no:235" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.075 ; #m\n", "V = 1.2 ; #m/s\n", "Tair = 20 ; #degree C\n", "Tsurface = 100 ; #degree C\n", "k = 0.0290 ; #W/m K\n", "Pr = 0.696 ;\n", "\n", "#calculations\n", "Tm = ( Tair + Tsurface ) /2;\n", "v = 18.97*10**-6 ; #m^2/s\n", "ReD = V*D/v;\n", "Nu = 0.3 +((0.62*( ReD**(1/2) )*( Pr**(1/3) ))/((1+((0.4/ Pr)**(2/3) ))**(1/4)))*((1+(( ReD/282000)**(5/8)))**(4/5));\n", "h = Nu*k/D ; #W/m^2 K\n", "flux = h*( Tsurface - Tair ); #W/m^2\n", "q = flux *3.14*D *1; #W/m\n", "\n", "#result\n", "print\"Heat transfer rate per unit length =\",round(q,4),\"W/m\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Heat transfer rate per unit length = 258.8849 W/m\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.6(ii) , Page no:235" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.075 ; #m\n", "V = 1.2 ; #m/s\n", "Tair = 20 ; #degree C\n", "Tsurface = 100 ; #degree C\n", "k = 0.0290 ; #W/m K\n", "Pr = 0.696 ;\n", "k = 0.0290 ;\n", "Pr = 0.696 ;\n", "Tassumd = 130 ; #degree C\n", "Tm = 75 ; #degree C\n", "k1 = 0.0301 ; #W/m K\n", "Pr1 = 0.693 ;\n", "Nu1 = 33.99;\n", "Tavgcalc = 129.9 ; #degree C\n", "\n", "#calculations\n", "Tm = ( Tair + Tsurface ) /2;\n", "v = 18.97*10**-6 ; #m^2/s\n", "ReD = V*D/v;\n", "Nu = 0.3 +((0.62*( ReD**0.5) *( Pr**(1/3) )) /((1+((0.4/Pr)**(2/3) ))**(1/4)))*(1+( ReD /282000)**(5/8) )**(5/8);\n", "h = Nu*k/D ; #W/m^2 K\n", "flux = h*( Tsurface - Tair ); #W/m^2\n", "Tavg = 1500/ flux *( Tsurface - Tair );\n", "v1 = 20.56*10** -6 ; #m^2/s\n", "ReD1 = V*D/v1;\n", "h = Nu1*k1/D;\n", "Tdiff = 1500/ h; #degree C\n", "\n", "#result\n", "print\"Assumed average wall temperature =\",round(Tassumd,4),\"degree C\";\n", "print\"Calculated average wall Temperature =\",round(Tavgcalc,4),\"degree C\";\n", "print\"Hence,Average wall Temperature =\",round(Tavgcalc,4),\"degree C\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Assumed average wall temperature = 130.0 degree C\n", "Calculated average wall Temperature = 129.9 degree C\n", "Hence,Average wall Temperature = 129.9 degree C\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7(i) , Page no:241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.0125 ; #m\n", "ST = 1.5* D ;\n", "SL = 1.5* D ;\n", "Vinf = 2 ; #v\n", "N = 5;\n", "Tw = 70; #degree C\n", "Tmi = 30; #degree C\n", "L = 1; #m\n", "rho = 1.165 ; #kg/m^3\n", "Cp = 1.005 ; #kJ/kg K\n", "k = 0.0267 ; #W/m K\n", "Pr = 0.701;\n", "X = 1; #tube arrangement is square\n", "\n", "#calculations\n", "v = 16.00 *10**-6 ; #m^2/s\n", "Vmax = ST /(SL -D)* Vinf ; #m/s\n", "Re = Vmax *D/v ;\n", "f = 0.37/4;\n", "deltaP = 4*f*N*X*( rho * Vmax**2) /2 ; #N/m^2\n", "\n", "#result\n", "print\"(i) Pressure drop of air across the bank is\",round(deltaP,4),\"N/m^2\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Pressure drop of air across the bank is 38.7945 N/m^2\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7(ii) , Page no:241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.0125 ; #m\n", "ST = 1.5* D ;\n", "SL = 1.5* D ;\n", "Vinf = 2 ; #m/s\n", "N = 5;\n", "Tw = 70; #degree C\n", "Tmi = 30; #degree C\n", "L = 1; #m\n", "rho = 1.165 ; #kg/m^3\n", "v = 16.00 *10**-6 ; #[m^2/s]\n", "Cp = 1.005*1000 ; #J/kg K\n", "k = 0.0267 ; #W/m K\n", "Pr = 0.701;\n", "X = 1; #tube arrangement is square\n", "Pr1 = 0.694 ; #At 70 degree C\n", "C1 = 0.27;\n", "m = 0.63;\n", "C2 = 0.93;\n", "\n", "#calculations\n", "#sub all value in the following expression\n", "# q=h*(3.14*D*L)*50*((Tw-Tmi)-(Tw-Tmo))/log((Tw-Tmi)/(Tw-Tmo))-mdot*Cp*(Tmo-Tmi), we get\n", "Tmo=70-40/(math.exp (190.8604/439.064));\n", "\n", "\n", "#Results\n", "print\"Tmo =\",round(Tmo,2),\"oC\"\n", "print\"(ii) Exit temperature of air =\",round(Tmo,4),\"oC\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tmo = 44.1 oC\n", "(ii) Exit temperature of air = 44.1016 oC\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.7(iii) , Page no:241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D = 0.0125 ; #m\n", "ST = 1.5* D ;\n", "SL = 1.5* D ;\n", "Vinf = 2 ; #m/s\n", "N = 5;\n", "Tw = 70; #degree C\n", "Tmi = 30; #degree C\n", "L = 1; #m\n", "rho = 1.165 ; #kg/m^3\n", "k = 0.0267 ; #W/m K\n", "Pr = 0.701;\n", "X = 1; #tube arrangement is square\n", "Pr1 = 0.694 ; #At 70 degree C\n", "C1 = 0.27;\n", "m = 0.63;\n", "C2 = 0.93;\n", "Tmo = 44.10; #in oC\n", "\n", "#calculations\n", "q=439.064*(40-(70-Tmo)); #Heat transfer rate per unit length to air\n", "\n", "#result\n", "print\"(iii) Heat transfer rate per unit length to air =\",round(q,2),\"W (roundoff error)\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(iii) Heat transfer rate per unit length to air = 6190.8 W (roundoff error)\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }