{ "metadata": { "name": "", "signature": "sha256:9b1229db232c49aaabbc7f0d29465c24cc6508532c6b435aa2f1e98a362531bd" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ " Chapter 1:Introduction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1 , Page no:5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "v=28.8*10**-6; #the viscosity of water at 100 degree Celsius in kgf s/m^2\n", "g=9.81; #Acceleration due to gravity in m/s^2\n", "\n", "#calculations\n", "v=28.8*10**-6*g; # Conversion of unit\n", "\n", "#result\n", "print (\"The viscosity of water at 100 degree Celsius = {:.4e}\".format(v)),\"N s/m^2 (or kg/m s)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The viscosity of water at 100 degree Celsius = 2.8253e-04 N s/m^2 (or kg/m s)\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2, Page no:14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#variable declaration\n", "i=950; # radiation flux [W/m^ 2 ]\n", "A=1.5; # area [m^ 2 ]\n", "Ti=61; # inlet temperature\n", "To=69; # outlet temperature\n", "m=1.5; # mass flow rate\n", "M=1.5/60; # kg/sec\n", "Qconductn=50; # W\n", "t=0.95; # transmissivity\n", "a=0.97; # absoptivity\n", "Cp=4183; # J/kg K\n", "\n", "#calculations\n", "q=M*Cp*(To-Ti); # heat gain rate\n", "n=q/(i*A); # thermal efficiency\n", "n_percent=n*100; # thermal efficiency\n", "Qreradiated=(i*A*t*a)-Qconductn-q; # rate at which energy is lost by re-radiation\n", "\n", "#result\n", "print \"Useful heat gain rate is \",round(q,4),\"W\"\n", "print \"Thermal efficiency is\",'%.4E'%n,\"i.e\",round(n_percent,3),\"%\"\n", "print \"The rate at which energy is lost by re-radiation and convection is \", round(Qreradiated,6),\"W\"\n", " \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Useful heat gain rate is 836.6 W\n", "Thermal efficiency is 5.8709E-01 i.e 58.709 %\n", "The rate at which energy is lost by re-radiation and convection is 426.5375 W\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3, Page no:16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#variable declaration\n", "vi=10; # velocity at inlet in m/s\n", "q=1000; # heat in w\n", "di=0.04; # inside diameter in m\n", "do=0.06; # outside diameter in m\n", "den1=0.946; # density in kg/m^3 at 100 degree C\n", "Cp=1009; # specific heat in J/kg k\n", "den2=0.773; # specific heat at To=183.4 degree C\n", "\n", "#calculations\n", "m=den1*(3.14/4)*(di**2)*vi; # kg/s\n", "dh=q/m; # j/kg\n", "To=dh/Cp+100; # Exit Temperature\n", "vo=m/(den2*(3.14/4)*(do)**2); # Exit velocity \n", "dKeKg=(vo**2-vi**2)/2; # Change in Kinetic Energy per kg\n", "\n", "#result\n", "print \"Exit Temperature is\",round(To,4),\"degree C\"\n", "print \"Exit velocity is \",round(vo,4),\"m/s\"\n", "print \"Change in Kinetic Energy per kg =\",round(dKeKg,5),\"J/kg\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Exit Temperature is 183.4119 degree C\n", "Exit velocity is 5.4391 m/s\n", "Change in Kinetic Energy per kg = -35.20795 J/kg\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }