{
 "metadata": {
  "name": "",
  "signature": "sha256:e411d60f25996f3b9e2550f135c48ac7fbdc47ae72fe918b9fb1f21a04765972"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 12: Liquid-Liquid and Fluid Solid Separation Processes"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.1.1 Page Number 699"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Adsorption  Isotherm for Phenol in Wastewater\n",
      "import numpy as np\n",
      "from scipy.optimize import curve_fit\n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable Declaration\n",
      "c = np.array([0.322,0.117,0.039,0.0061,0.0011])         #kg Phenol per m3 solution\n",
      "q = np.array([0.150,0.122,0.094,0.059,0.045])           #kg Phenol per kg Carbon\n",
      "\n",
      "#Langmuir Isotherm Fitting function\n",
      "def fit_func(x, q0, K):\n",
      "    return q0*c/(K+c)\n",
      "\n",
      "params = curve_fit(fit_func, c, q)\n",
      "[q0, K] = params[0]\n",
      "\n",
      "#Results\n",
      "plt.grid(True, which='both')\n",
      "print 'Langmuir Isotherm Fitting parameters are '\n",
      "print \"q0  = \", round(q0,3) ,\" K = \", round(K,3)\n",
      "\n",
      "qi = q0*c/(K+c)\n",
      "plt.figure(1)\n",
      "plt.title('Langmuir Isotherm Fit giving a poor fit')\n",
      "plt.ylabel('q,  kg phenol adsorbed/kg carbon')\n",
      "plt.xlabel('c, kg phenol/m3 waste water')\n",
      "plt.plot(c,q,'ro-',label='Expt. Data')\n",
      "plt.plot(c,qi,'bo-',label='Fitted Data')\n",
      "plt.legend(loc = 'lower right')\n",
      "\n",
      "#Freundlich Isotherm Fitting function\n",
      "def fit_func(c, K, n):\n",
      "    return K*c**n\n",
      "\n",
      "params = curve_fit(fit_func, c, q)\n",
      "[K, n] = params[0]\n",
      "\n",
      "qi = K*c**n \n",
      "\n",
      "plt.figure(2)\n",
      "plt.grid(True, which='both')\n",
      "plt.title('Freundlich Isotherm Fitting')\n",
      "plt.ylabel('q,  kg phenol adsorbed/kg carbon')\n",
      "plt.xlabel('c, kg phenol/m3 waste water')\n",
      "\n",
      "plt.loglog(c,q,'ro-',basex=10,basey=10,label='Expt. Data')\n",
      "plt.loglog(c,qi,'bo-',basex=10,basey=10,label='Fitted Data')\n",
      "plt.legend(loc = 'best')\n",
      "plt.plot()\n",
      "\n",
      "#plt.LogFormatterExponent(base=10)\n",
      "#Results\n",
      "print 'Freundlich Isotherm Fitting parameters are '\n",
      "print \"K  = \", round(K,3) ,\" n = \", round(n,3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Langmuir Isotherm Fitting parameters are \n",
        "q0  =  0.134  K =  0.007\n",
        "Freundlich Isotherm Fitting parameters are "
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "K  =  0.194  n =  0.223\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEZCAYAAABvpam5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlclNX+x9/DooAgoKLEIiQg4gbupimYKaJplpmUiZS3\ntFsupaWJFuaWpuVWV+taXs3M7HoTRc00QSzJJZdf4opgiCuKiMo2cH5/TIyOLDPILDx63q/XvJhz\nnrN8nmeG851zvmdRCSEEEolEIpFUAStLC5BIJBKJ8pDGQyKRSCRVRhoPiUQikVQZaTwkEolEUmWk\n8ZBIJBJJlZHGQyKRSCRVRhoPiVH566+/cHJyoibMALeysuLMmTOWllEpffv2ZdWqVUYpqyrP/vXX\nX2fGjBlGqVepXLp0ie7du1O3bl0mTJjA7NmzefXVVy0tSzkISY3Cx8dHbN++3dIyzIox7jk0NFT8\n+9//1olTqVQiNTW1WuUai+HDh4tatWoJR0dH7ev777/XSfP111+Lxx9/3EIKHz4+/PBDMWjQoHKv\npaWlCZVKJYqLi82sSjnInkcNQ6VSoVKpLC3DJAghyv1VbIx7NuUzU6vV1S5DpVIxceJEcnNzta/B\ngwcbQZ3EEEpKSsrEnT17lqCgoErzlfd9lWiQxkMhXL9+naeeeoqGDRtSr149+vfvT2ZmpvZ6WFgY\n77//Po8//jh169YlPDycq1evaq+vXLkSHx8fGjRowIwZM/D19eWXX34BIDY2lsGDBzNs2DDq1q1L\n69atOXXqFLNnz6ZRo0b4+Pjw888/a8vy9fVlx44d2nBsbCzDhg0DID09HSsrK+0/a1hYGFOmTKFr\n167UqVOHtLS0Su/z9OnThIaG4uLigpubG5GRkdprv/32Gx06dMDFxYWOHTuyZ88eAGJiYkhKSuLN\nN9/EycmJMWPGaPP8/PPPNG3aFFdXV958802dur766iuaN29OvXr16NOnD3/99Zf2mpWVFZ9//jkB\nAQEEBgaSmJiIl5cXH3/8MQ0bNsTDw4Mff/yRzZs307RpU+rXr89HH32k51MsS1hYGMuXL+f48eOM\nGjWKPXv24OTkRL169cpNn5aWph1q6dWrF2+88Ua5z37t2rV06NBBJ++nn37K008/DUB0dDRTp04F\nICEhAS8vLz755BMaNWqEh4cHK1as0Oa7evUq/fv3x9nZmY4dOzJlyhS6detW4T0NHjyYRx55BBcX\nF0JDQ0lJSan0/t977z06deqEs7MzAwcOJDs7W3s9Li6OFi1a4OrqSo8ePTh+/Lj22rFjxwgLC8PV\n1ZWWLVuyceNG7bXo6Ghef/11+vbti6OjIwkJCTr1RkdHs3LlSubOnUvdunXZsWOHzve4e/fuALi4\nuODk5MTvv/9e4T08tFi45yO5B19fX7Fjx44y8VevXhXr168XeXl5Ijc3VwwePFgMHDhQez00NFT4\n+/uLU6dOiby8PBEWFiYmTZokhBDi6NGjwtHRUfz666+isLBQTJgwQdja2mrr+eCDD4SdnZ3Ytm2b\nUKvVIioqSvj4+IhZs2YJtVotvvzyS/Hoo49WqDE2Nla89NJLQoiy3f3Q0FDh4+MjUlJSRHFxsSgq\nKqr0niMjI8WsWbOEEEIUFBSIX3/9VXv/Li4u4ptvvhHFxcVizZo1wtXVVVy7dk0IIURYWJhYvny5\nTrkqlUr0799f5OTkiL/++ku4ubmJrVu3CiGE+PHHH4W/v784fvy4KC4uFjNmzBBdunTRydu7d2+R\nnZ0t8vPzxc6dO4WNjY2YPn269pnUr19fvPjii+LmzZvi6NGjwt7eXqSnp5f7uUZHR4spU6aUib9b\n94oVK/QOW3Xu3Fm88847oqioSOzevVvUrVtXDBs2rMyzv3XrlnBychKnTp3S5m3fvr1Yu3atVs/U\nqVOFEEJ7bx988IFQq9Vi8+bNwsHBQVy/fl0IIcSQIUPECy+8IPLy8kRKSorw9vYW3bp1q1Dj119/\nLW7evCkKCwvFuHHjREhISIVpQ0NDhaenpzh69Ki4deuWGDRokPa7dOLECVGnTh2xfft2oVarxdy5\nc4W/v78oKioShYWFws/PT8yePVsUFRWJX375RTg5OYkTJ04IITTDhM7OzuK3334TQgiRn59fpu67\nn4EQut/j9PR0OWylB9nzUAj16tXjmWeewc7ODkdHRyZPnkxiYqL2ukql4uWXX8bf3x87Ozuef/55\nDh06BMAPP/zAgAED6NKlC7a2tnz44Ydlhnm6d+9Or169sLa25rnnnuPq1atMmjQJa2trhgwZQnp6\nOjdu3ChXm6ika69SqYiOjiYoKAgrKytsbGwqvc9atWqRnp5OZmYmtWrVokuXLgDEx8cTGBjI0KFD\nsbKyIjIykmbNmhEXF1epjkmTJlG3bl28vb3p0aMHhw8fBmDp0qW89957BAYGYmVlxXvvvcehQ4fI\nyMjQ5n3vvfdwcXGhdu3aANja2hITE6N9JteuXWPcuHHUqVOH5s2b07x5c+0zL+8ZzZs3D1dXV1xd\nXWnYsGGVniNoHOL79+/nww8/xMbGhq5duzJgwIBy8zk4OPD000+zZs0aAE6dOsWJEycYMGBAufXZ\n2try/vvvY21tTUREBI6Ojpw4cYLi4mLWr1/PtGnTsLOzIygoiOHDh1eqNTo6mjp16mBra8sHH3zA\n4cOHyc3NLTetSqUiKiqK5s2b4+DgwPTp0/n++++1vaennnqKnj17Ym1tzYQJE8jLy+PXX38lOTmZ\nW7duMWnSJGxsbOjRowdPPfWU9n4BBg4cyGOPPQag/Qzv5e77qOi9pHyk8VAIt2/fZuTIkfj6+uLs\n7ExoaCg5OTk6X3J3d3fte3t7e27evAnA+fPn8fLy0rlWv359nfLvbszs7e1p0KCB1sDY29sDaMur\nKt7e3gannTt3LkIIOnbsSMuWLfn666+199C4cWOdtD4+Ppw/f14bLs/vcfczcXBw0N7D2bNnGTt2\nrLYxL30edw8F3qu7fv36ZZ5Jo0aNtNft7e25detWufelUql45513yM7OJjs7m8uXL+t5EmU5f/48\n9erVw87OrkKNd/Piiy9qG9Nvv/1W++OjPOrXr4+V1Z3moPRZXblyBbVarVPP3d+leykpKWHSpEn4\n+/vj7OzMo48+ikqlIisrq8I8d5fduHFjioqKyMrK4sKFCzqfuUqlwtvbm8zMTC5cuFDm3u/+PpSm\nlZgOaTwUwvz58zl58iR79+4lJyeHxMTECh3Q9+Lh4cG5c+e04by8PB1/SFWpU6eOTiN58eLFStNX\nxZndqFEjvvjiCzIzM1m2bBn//Oc/SU1NxdPTk7Nnz+qkPXv2LJ6enlWuAzSN1BdffKFtzLOzs7l1\n6xadO3e+L92GoO+z0lffI488wrVr18jLy9PG3e2nuZcnn3ySK1eucPjwYb777jtefPHFKtUH4Obm\nho2NjU6P7O7397J69Wri4uLYsWMHOTk5pKWl6f2e3n0Pf/31F7a2tri5ueHh4aHzmQshyMjIwMvL\nCw8PDzIyMnTKvfv7cD/c/Twe1EkrxkQajxpIYWEh+fn52pdarebmzZvY29vj7OzMtWvXmDZtWpl8\nFf2DDho0iI0bN7Jnzx4KCwuJjY2tVrc8JCSE7777DrVazf79+/nvf/9b6T9bVepat26d1tC5uLig\nUqm0QyknT55kzZo1qNVq1q5dy/Hjx3nqqacAjdFJTU2ttOy7G7FRo0Yxa9YsrTM3JyeHdevWGayz\nqhjyDBo1asS5c+coKioq97qPjw/t27cnNjaWoqIi9uzZw6ZNmyp89ra2tgwePJgJEyaQnZ1Nr169\ndPQYosna2ppnn32W2NhY8vLyOH78OKtWraqwzps3b1K7dm3q1avHrVu3mDx5cqXlCyH45ptvOHbs\nGLdv3+b9999n8ODBqFQqBg8eTHx8PL/88gtFRUXMnz8fOzs7unTpQseOHXFwcGDu3LkUFRWRkJDA\npk2btBMsDLm3e9PcHXZzc8PKykrvd+phRhqPGkjfvn1xcHDQvj788EPGjRtHXl4eDRo0oEuXLkRE\nRJT5B773l1NpuEWLFixevJjIyEg8PDxwcnKiYcOG2nHg8qbKVhaePn06qampuLq6Ehsby9ChQw3O\nq4/9+/fTuXNnnJycePrpp1m0aBG+vr7Ur1+fTZs2MX/+fBo0aMC8efPYtGmTdlbS2LFj+eGHH6hX\nrx7jxo0rt+y773PgwIFMnDiRyMhInJ2dadWqFT/99FOlmqtzX4ZMR+7ZsyctWrTA3d29XJ8IaH7Z\n79mzh/r16zN16lSGDBlCrVq1KtT04osvsmPHDgYPHqwzLHWvnsq0LVmyhJycHNzd3Rk+fDgvvPCC\nTp13ExUVhY+PD56enrRs2ZLHHnus0rJVKhXDhg0jOjqaRx55hMLCQhYtWgRAYGAg33zzDaNHj8bN\nzY34+Hg2btyIjY0NtWrVYuPGjWzZsgU3NzfefPNNVq1aRdOmTcu9v4rqruh/xsHBgZiYGLp27Yqr\nqyt79+6ttKyHElN647ds2SICAwOFv7+/+Oijj8pcP3bsmOjcubOoXbu2mDdvns617OxsMWjQINGs\nWTMRFBQk9uzZY0qpDxW5ubnCxsamwplBEuXw/PPPi9jYWLPW+e6774ro6GijlFXeLDmJMjBZz6O4\nuJg333yTrVu3kpKSwpo1azh27JhOmvr167N48WImTJhQJv/YsWPp27cvx44d48iRI3oX80gqZ+PG\njdy+fZtbt24xYcIEWrdujY+Pj6VlSarI/v37SU1NpaSkhC1bthAXF8fAgQNNWueJEyc4cuQIQgj2\n7t3LV199xTPPPGO08oWc2aRITGY89u7di7+/P76+vtja2hIZGcmGDRt00ri5udG+fXtsbW114nNy\nckhKSuKVV14BwMbGBmdnZ1NJfSiIi4vD09MTT09PUlNT+e677ywtSXIfXLx4kR49euDk5MRbb73F\n0qVLCQ4ONmmdubm5DBo0CEdHRyIjI5kwYYLOlN/qIp3TyqTySffVIDMzs8z0PkNXaaalpeHm5sbL\nL7/M4cOHadeuHQsXLsTBwcFUch94vvzyS7788ktLy5BUk6eeeko7ScBctG/fnlOnTpmk7J07d5qk\nXInpMVnPozq/JtRqNX/88Qf//Oc/+eOPP6hTp859bf0gkUgkEtNgsp6Hp6dnmbnhlS0uuhsvLy+8\nvLy0e/M899xz5RoPT09PnUViEolEItGPn58fp0+frlYZJut5lHZ109PTKSwsZO3atRWOk97rMHN3\nd8fb25uTJ08CsH37dlq0aFEm3/nz57Xz1ZX4+uCDDyyuQeq3vI6HUb+StT8I+o2xfsVkPQ8bGxuW\nLFlCeHg4xcXFjBgxgqCgIJYtWwbAyJEjuXjxIh06dODGjRtYWVmxcOFCUlJScHR0ZPHixQwdOpTC\nwkL8/Py021Q8SKSnp1taQrWQ+i2LkvUrWTsoX78xMJnxAIiIiCAiIkInbuTIkdr37u7uFW51EBwc\nzL59+0wpTyKRSCT3iVxhbkGio6MtLaFaSP2WRcn6lawdlK/fGKiEEIpdoaNSqVCwfIlEIrEIxmg7\nZc/Dgtx7upnSkPoti5L1K1k7KF+/MZDGQyKRSCRVRg5bSSQSyUOGHLaSSCQSiUWQxsOCKH3cVOq3\nLErWr2TtoHz9xsCk6zwkEolEUjm74uPZtmgRNgUFqGvXpveYMXTv18/SsvQifR4SiURiIXbFx/PT\n2LHMvGu7kBg/P8IXLjSpAZE+D4lEIlEiBQVw4ADb3n1Xx3AAzExN5efFiy0kzHCk8bAgSh83lfot\ni5L1K1k7VFF/QQHs3w/LlsFrr0G7duDqCtHR2Fy9Wm4W6/x84wg1IdLnIZFIJMYiPx/+7//gwIE7\nr+PHwd9fYzTatYOXX4bgYHBwQB0eDtu2lSmm2M7OAuKrhvR5SCQSyf2Qnw9HjugaihMnICDgjqFo\n105jKOztyy2iPJ/HZD8/+ijA5yGNh0QikegjL6+soTh5Epo21TUUrVtXaCgqYld8PD8vXox1fj7F\ndnb0Gj3a5LOtpPFQuPFISEggLCzM0jLuG6nfsihZf43WnpcHhw/rGopTpyAwUGskEoCwl18GBQwv\nlYcx2k7p85BIJA8vt2+XNRSnT0OzZhpD0bEjvP46tGqlaygSEhRrOIyF7HlIJJKHg9u34dAhXUOR\nmgpBQbpDT61aQe3allZrUuSwlTQeEomkPG7dKmsozpyB5s11DUXLlg+8oSgPuUhQ4TxUc91rIFK/\n5TCq9ps3YfduWLgQoqKgRQto2BDeeguOHYPHH4eVK+H69bLrLe7TcCj52RsLkxqPrVu30qxZMwIC\nApgzZ06Z68ePH+exxx7Dzs6O+fPnl7leXFxMmzZt6N+/vyllSiQSpXDzJiQlwYIFMGyYpifRqBGM\nH6+ZJhsaCqtXawzF3r3wr3/Bq69C27ZQq5al1T9QmGzYqri4mMDAQLZv346npycdOnRgzZo1BAUF\nadNcuXKFs2fP8uOPP+Lq6sr48eN1yvjkk084cOAAubm5xMXFlRUvh60kkgeXGzfKDj399ZfGJ3H3\n0FPz5mBra2m1iqJGz7bau3cv/v7++Pr6AhAZGcmGDRt0jIebmxtubm7Ex8eXyX/u3Dk2b95MTEwM\nn3zyialkSiSSmsCNG/DHH7qG4tw5zbqJdu2gZ094912Nc1saihqByYatMjMz8fb21oa9vLzIzMw0\nOP9bb73Fxx9/jJXVg+uWUfq4qdRvWRSrPyeHhE8/hXnz4IUXNAvtPDxg8mRIT4feveGHHyAnB/bs\ngSVLNFt6tG5dYwyHYp+9ETFZz0OlUt133k2bNtGwYUPatGkjPySJRMlcv162R3HhAvj6whNPQJ8+\nEBOjWVdhI5edKQmTfVqenp5kZGRowxkZGXh5eRmU97fffiMuLo7NmzeTn5/PjRs3iIqKYuXKlWXS\nRkdHa4fGXFxcCAkJ0a5cLTU8NTVcGldT9Ej9NUuf4vRv3AgnTxJWXAwHDpCwezdcu0ZY6arsRx+F\n8HDCoqIIs7a+k79ly5qhvwrhsLCwGqVHXzghIYEVK1YAaNvL6qLXYb57926mTZtGeno6arVak0ml\n4syZM5UWrFarCQwMZMeOHXh4eNCxY8cyDvNSYmNjcXJyKuMwB0hMTGTevHls3LixrHjpMJdILEN2\ntm5v4sABuHwZQkJ0ndmBgWBtbWm1knswi8N8xIgRLFiwgLZt22JdhS+BjY0NS5YsITw8nOLiYkaM\nGEFQUBDLli0DYOTIkVy8eJEOHTpw48YNrKysWLhwISkpKTg6OuqUVZ0hsJrM3b8alYjUb1nMpv/a\ntbKGIivrjqEYMACmTdP4LgxsI+SzVz56jYeLiwsRERH3VXhERESZvCNHjtS+d3d31xnaKo/Q0FBC\nQ0Pvq36JRFJFrl4tayiuXoU2bTSGYuBAmD5ds+247FE81Ogdtpo0aRLFxcU8++yz1L5rNWbbtm1N\nLk4fcthKIqkGWVllDUV29h1DUfoKCACrB3fW48OIWfa2CgsLK3fYaOfOndWq2BhI4yGRGMiVK2UN\nxfXrmpXXdxsKf39pKB4C5MaICjceSh83lfotS4X6L18uayhu3ChrKPz8LGYoHthnrxDM4jC/fv06\n06ZNY9euXYCmJ/L+++/j7OxcrYolEokRuHSprKG4efOOoYiMhI8/hiZNZI9CYlT09jyeffZZWrVq\nxfDhwxFCsGrVKo4cOcL69evNpbFClN7zkEiqxMWLZQ3F7dtlexRNmsADOkNRYhzMMmwVHBzM4cOH\n9cZZAmk8JA8sFy6UNRR5ebpGol07ePRRaSgUTnz8LhYt2kZBgQ21a6sZM6Y3/fp1N2mdZhm2sre3\nJykpiW7dugGaRYMODg7VqlSiQenjplK/kTh/vqyhKCi4YyCiojRnVfj66hiKhIQEwpo0sZzualBj\nnv19Yiz98fG7GDv2J1JTZ2rjUlNjAExuQKqLXuOxdOlSoqKiyMnJAcDV1ZX//Oc/JhcmkTxwCFG+\noSgqumMooqNh8WLw8ZE9ihqOEJqPLj9f0ynMy7vzvry48t5/++02/vprpk65qakzWbx4ao03HgbP\ntrpx4wYAdevWNamgqiCHrSQ1FiEgM7OsoSguLjv01LixNBTVpKTk/hrv6r63sgI7O7C317z0vb83\nbvnyWM6ciS1zP6GhsSQklI03FmYZtsrKymLatGns3r0blUpFt27deP/996lfv361KpZIHhiE0Jw9\nca+hEOKOgfjHPzSn2nl7P9CGQggoLDRf4136vqhI0xhXpSG/+72z8/3lq+5GwImJasrbJtDOrrh6\nBZsBvbceGRlJaGgo69evRwjBt99+y5AhQ9i+fbs59D3QyHFfy3Jf+oWAjIyyhkKlumMoSs/H9vIy\nqaHQp7+42PSN971x+fmaXUv0Nbw3bybQuHFYmXhX18p/qVf0vnZt89pkY333x4zpTWpqjI7Pw89v\nMqNH96l22aZGr/G4ePEiU6dO1YanTJnC2rVrTSpK8mBjidkl94UQmmNP7zUU1tZ3DMWoUZq/np4V\ntl5CaPzfxm6wz5/XNJ4VpVWr7+/XdOmrXr37a8gN2fIqIQEU/LvDaJR+7xcvnkp+vjV2dsWMHt2n\nZv4/3INen8fbb79Nhw4dGDJkCADr1q1j7969zJ8/3ywCK0P6PJRHebNL/PxiWLgw3Cz/MGp1BY1t\nniAv/RJ5f6aSfzydvFMZ5J25SL6VA3me/uS7+5LXwIs8Fw/yreuQl68yuNEvKNAcgHe/DXlVx9FL\n39vaPtAjZJJqYNJ1Ho6Ojto9rW7duqU9DrakpIQ6deqQm5tbrYqNgTQeyiM8fArbts0oE9+t21Q+\n/3y6ycfHhQB7e4F97RLsVQXYldzGvigH+/xs7KwKsXeujX19B+waOmHv4Yp9/TrVbsjt7OTibknN\nwqQO85s3b1JSUsK5c+do3LhxtSqRlM/D5DMQAs6cgbNny//K7d1rzZAhhjfSDRsa+Ou8tsD+8lns\njh3E/s992B7apzkW1c6OBB8fwsLD7wxBPfKIEZ+O6VHy90fJ2kH5+o1BpT4PKysr+vbty59//mku\nPZIHhJISOHYMdu2689LEq8tNHxZWzNat1ay01ELd7Z/44w9wcLhjIMaN0/x1d5cD7xJJNdDr8xg+\nfDhvvPEGHTt2NJcmg5HDVjUHtRoOHdIYiaQkzcvFBbp3v/N69FHYvLk8n8dkFi6sopNQCEhNLWso\nHB3LrqNo1MgEdyyRKBez7G0VGBjI6dOn8fHxoU6dOtqKjxw5Uq2KjYE0HpajoAD27bvTq9izR7PW\nrdRQdOsGHh7l542P38XixT/fNbukV+WGo6SkfENRt25ZQ9GwoWluWCJ5gDDLIsGffvqpWhVIKkZJ\n46Y3b2oMRKmxOHAAvLwS6NcvjNdfh9WrwdB1o07k0l7sxYYC1KI2TnS+c7GkBE6f1jUUBw9qujGl\nBmLiRM1Osm5u1bonJT3/8lCyfiVrB+XrNwZ6jYevry8Aly9fJj8/v8oVbN26lXHjxlFcXMw//vEP\nJk6cqHP9+PHjvPzyyxw8eJCZM2cyfvx4ADIyMoiKiuLy5cuoVCpee+01xowZU+X6JffHtWuwe7dm\n+GnXLjh6VNNed+8OMTHw2GOadr2q/z+74uP5aexYZqamauNiDh+Gxx6je3a2xlDUq3fHULz3nqbi\nBg2Me4MSiaR6CD1s2LBB+Pv7CwcHB+Hr6ytUKpVo3ry5vmxCCCHUarXw8/MTaWlporCwUAQHB4uU\nlBSdNJcvXxb79u0TMTExYt68edr4CxcuiIMHDwohhMjNzRVNmzYtk9cA+RIDOX9eiLVrhXjjDSFa\ntRLCyUmI3r2FmDFDiMREIfLyjFNPTO/eQmg8FjqvKQEBQmzbJkRWlnEqkkgkFWKMtlNvz2PKlCns\n2bOHXr16cfDgQXbu3MmqVasMMkx79+7F399f23uJjIxkw4YNBAUFadO4ubnh5uZGfHy8Tl53d3fc\n3d0BzZqToKAgzp8/r5NXcn8IAenpujOhrl2Dxx/X9CyGD4c2baq/b08ZsrOxOXas3EvWHh7Qq5eR\nK5RIJKZC79IlW1tbGjRoQElJCcXFxfTo0YP9+/cbVHhmZibe3t7asJeXF5mZmVUWmZ6ezsGDB+nU\nqVOV89ZkEhISzFKPEJCSAkuXwtChGsd2166wZYtmZOh//4MrV2DDBhg/Hjp0MMxwGKz/1i2YPRua\nNkVdUlJukmI7O8NvyEiY6/mbCiXrV7J2UL5+Y6C3iXB1dSU3N5du3boxdOhQGjZsiKOjo0GFq4yw\nN8LNmzd57rnnWLhwYbn1RkdHa3s2Li4uhISEaB1ZpR9wTQ0fOnTIJOV36xbG4cPw1VcJHD4Mx4+H\nUbcuBAQk0Lo17NwZhp8fJCZq0rdsaSL927bBpk2ErVsHoaEkzJ+PW2YmMcuXMzM1FU1q2ObnR5/R\nox+Y5y/1y3BNCyckJLBixQrgjh+7uuidqnvr1i3s7OwoKSlh9erV3Lhxg6FDhxq0JXtycjKxsbFs\n/Xv11+zZs7GysirjNAeYNm0ajo6OWoc5QFFREU899RQRERGMGzeurHg5VRfQTJvdv//OENRvv2k2\ndL172qyXlxkFqdWwahVMmwYtW8KMGRASor28Kz6enxcvxjo/n2I7O3qNHk33fv3MKFAiebgxyzqP\ntLQ03N3dsbe3ByAvL49Lly4ZZL3UajWBgYHs2LEDDw8POnbsyJo1a8r1W8TGxuLk5KQ1HkIIhg8f\nTv369fn000/LF/+QGo9bt+5Mm01K0qy3aNbsjrF4/HELTU4qKYH//hemTtWs4J41C7p0sYAQiURS\nGUZpO/V51Nu2bSsKCgq04fz8fNGuXTuDPfKbN28WTZs2FX5+fmLWrFlCCCGWLl0qli5dKoTQzKry\n8vISdevWFS4uLsLb21vk5uaKpKQkoVKpRHBwsAgJCREhISFiy5YtOmUbIL9Gs3PnToPSXbsmxMaN\nQrzzjhCdOglRp44QXbsK8d57QmzZIkROjml1VoRWf0mJEJs3C9GmjRDt22tmTZWUWEZUFTD0+ddU\nlKxfydrp1B4PAAAgAElEQVSFUL5+Y7Sden0excXF1KpVSxuuXbs2RUVFBhuniIgIIiIidOJGjhyp\nfe/u7k5GRkaZfI8//jglFThXH3QuXryzvmLXLs12TZ07a3oVc+ZAx46aTf9qBElJMHmyZrrWjBkw\ncKDcB1wieQjQO2z15JNPMnr0aJ5++mkANmzYwKJFi9ixY4dZBFbGgzBsJQScPXtnCGrXLs3Mp9Jp\ns926adbI2dpaWuk9HDgAU6bAiRMa38aLLxp2CpBEIrE4ZvF5nD59mqFDh3L+/HlAM9121apV+Pv7\nV6tiY6BE4yGEpr29e41FYaHuBoItW9bg8x+OHYP339d45adMgREj4K6eqUQiqfmYxXiUUnr4k5OT\nU7UqNCY1zXiUd7xqnz7dOXLkjqFISoI6dTRGomHDBF59NYyAAAWM9KSna3oY8fHwzjvwxhsk7N2r\nnRaoRBIUvj+RkvUrWTsoX79ZNkYspSYZjZpIecer7t4dA4CPT3e6dYNnn4VPP9Us0gPNcRJNm1pA\nbFW4eBFmzoRvv4U334RTp8DZ2dKqJBKJhTG451ETqUk9j4qOV+3RYyq//DLdAoqqybVr8PHH8MUX\nEB0NkyZVexdbiURSMzBG21lTR9YVR0FB+Z24khKFOZFv3tT0NAIDNQbk8GGYP18aDolEooNe4/Hf\n//6X9evX67x27NjB5cuXzaFPMdSuXf7xqnZ2xRXmKd0+oEaQnw8LF4K/v2YjrN9+g2XLKl2aXqP0\n3wdSv+VQsnZQvn5joNfn8dVXX7Fnzx569OgBaB5a27ZtSUtL4/333ycqKsrkIpVAz569+eWXGNRq\n3eNVR4/uY0FVBqBWw3/+o3GGh4TAtm3QurWlVUkkkhqOXp9H7969WbVqFY3+Pgf60qVLDBs2jDVr\n1tC9e3eOHj1qFqHlUZN8HoMGQcOGu0hLq8LxqpakpATWrdNMu/Xw0Gwl8thjllYlkUjMgFlmW2Vk\nZGgNB0DDhg3JyMigfv36OivPH2bS0iAxEdLTu+PoWEONRSlCwObNmuMAa9WCzz6Dnj0VMFdYIpHU\nJPT6PHr06EG/fv34z3/+w4oVKxgwYABhYWHcunULFxcXc2is8SxeDK+8AgbuVK/F7OOmiYmapesT\nJ0JsLPz+Ozz55H0bDqWP+0r9lkPJ2kH5+o2B3p7HZ599xn//+19+/fVXAIYPH86gQYNQqVTs3LnT\n5AJrOjduwIoV8PfRCjWT/fs1PY3TpzW+jRdekFuJSCSSaqHX57Fly5YyGxsuXbqUUaNGmVSYIdQE\nn8eiRbB7N3z/vUVllE9KimZ79ORkzd9XXpFbiUgkEvOs85g+fbrOJohz587lxx9/rFalDwrFxZrZ\nrW+9ZWkl95CWpjmIPCxM4wQ/fRpGjZKGQyKRGA29xiMuLo6YmBiSkpKIiYnh999/Jy4uzhzaajyb\nNmkOXerc+f7yG33c9MIFeOMNaN8eHn1UYzQmTDDZ/u1KH/eV+i2HkrWD8vUbA70+jwYNGhAXF0fP\nnj1p3749P/zwg1HOJn8Q+PRTTa/D4o/j6lWYOxf+/W94+WXNtr0WOUpQIpE8LFTo83B0dNQxEoWF\nhdja2qJSqVCpVNy4ccNsIivCkj6Pgwehf3/NCJHFztrIzYUFCzRjZ889p9ki3ayHlUskEiVi0nUe\n165dk+s4KmHBAs0msxYxHPn58K9/aY4VfPJJjUO8BpyvIpFIHh4q9Hl06dKFgQMHsnTpUtLT080o\nqeZz8SLExcFrr1WvnCqPmxYVwZdfQkCAZs3Gzz/DN99YzHAofdxX6rccStYOytdvDCo0Hvv37+fT\nTz9FCMG4ceNo374948aNY9u2bRQUFBhU+NatW2nWrBkBAQHMmTOnzPXjx4/z2GOPYWdnx/z586uU\n15L8618QGQn16pmpwpIS+O47aNEC1q6FH36AH3+EVq3MJEAikUh0Mfg8j8LCQpKSkti6dSuJiYm4\nubkRHx9fYfri4mICAwPZvn07np6edOjQgTVr1hAUFKRNc+XKFc6ePcuPP/6Iq6sr48ePNzgvWMbn\nkZ8PPj6aH/7Nmpm4MiE0J/fFxGhmTM2cqdlKRCKRSKqBWU8SrFWrFj179qTn343XuXPnKk2/d+9e\n/P398fX1BSAyMpINGzboGAA3N7dyjZAheS3Ft99Cu3ZmMBwJCTB5ssYpPnOmxjtv8WldEolEoqHC\nYatWrVpV+GrdujVeemb1ZGZm4u3trQ17eXmRmZlpkKjq5DUlQmgc5cZaFFjuuOm+fdC7N/zjHxqP\n/KFDMGBAjTQcSh/3lfoth5K1g/L1G4MKex4bN24E4PPPPwdg2LBhCCFYvXq1QQVXZy1IVfJGR0dr\neyguLi6EhIRoD6Yv/YCNFf7kkwRu3IAnnzROeYf+3hArLCwMjh4lYdQoOH6csJkz4eWXSfj1V0hK\nMtn9GFV/DdAj9dcsfTJcc8IJCQmsWLECQNteVhuhh+Dg4DJxISEh+rKJPXv2iPDwcG141qxZ4qOP\nPio3bWxsrJg3b16V8xog36g89ZQQX3xh5EJTU4UYNkyIhg2FmD9fiNu3jVyBRCKR6GKMtlPv9iRC\nCHbv3q0N//rrrwY5Wtq3b8+pU6dIT0+nsLCQtWvXMmDAgArruN+85uLkSc0O5i+9ZKQCMzPh9deh\nY0fNVNtTp+Dtt022lYhEIpEYFX3WZf/+/aJVq1aicePGonHjxqJ169biwIEDBlmmzZs3i6ZNmwo/\nPz8xa9YsIYQQS5cuFUuXLhVCCHHhwgXh5eUl6tatK1xcXIS3t7fIzc2tMO+9GCDfaLzxhhAxMUYo\n6MoVISZMEKJePbFzyBAhsrKMUKhl2Llzp6UlVAup33IoWbsQytdvjLZT72yrdu3aceTIEXJychBC\nVOkAqIiIiDLbuY8cOVL73t3dnYyMDIPzWorsbM0sqz//rEYhN25oNsNavBiefx7+7/803Zn69Y2m\nUyKRSMyF3nUeFy9eJCYmhszMTLZu3UpKSgp79uxhxIgR5tJYIeZa5/Hxx3DkCKxadR+Z8/Lg8881\nGxeGh2tO8GvSxNgSJRKJxGCM0XbqNR59+vTh5ZdfZubMmRw5coSioiLatGnDn9X6GW4czGE81GpN\nW/+//2nWd1TGrvh4ti1ahE1BAepategdEED3DRs0fo0PP4SWLU2qVSKRSAzBLIdBZWVlMWTIEKz/\nPrbU1tYWGxuD1xYqnvXrwdfXMMPx09ixzNi2jdjERGb8/DM/ff01u95+W1NIOYajdCqdUpH6LYuS\n9StZOyhfvzHQazwcHR25evWqNpycnIyzs7NJRdUkFiyAceP0p9u2aBEzU1N14mbm5fHztm0mUiaR\nSCSWQ++w1YEDBxg9ejRHjx6lRYsWXLlyhR9++IHg4GBzaawQUw9b/f67ZgPE06fh745XhcSGhRGb\nmFg2PjSUWPkrRSKR1CDMsrdVu3bt2LVrFydOnEAIQWBgILYWO/3IvCxYAGPG6DccAOqionLji+3s\njKxKIpFILI/eYau8vDwWLlzIlClTeP/991myZAn5+fnm0GZRMjLgp5/AoEllxcX0zsoixs1NJ3qy\nnx+9Ro+uMJvSx02lfsuiZP1K1g7K128M9PY8oqKiqFu3LmPGjEEIwbfffsuwYcNYt26dOfRZjM8+\ng6goqFvXgMSLF9Pd3R3mzWPqZ59hnZ9PsZ0dfUaPpnu/fibXKpFIJOZGr8+jefPmpKSk6I2zBKby\nedy6pTmzY+9eA5ZkpKVBhw7w22/QtKnRtUgkEomxMctU3bZt27Jnzx5tODk5mXb65q0qnJUroVs3\nAwyHEDByJEyYIA2HRCJ5qNB7nseBAwfo2rUrPj4++Pr60qVLF/bv329OjWalpAQWLjRsei4rV8KV\nK/D3CYhVRenjplK/ZVGyfiVrB+XrNwZ6z/Mor3tTnbM6ajpbt4KDA3TvrifhpUvw7ruwZQs8JLPP\nJBKJpJRKfR5qtZqWLVty/Phxc2oyGFP4PHr31my7HhWlJ+GQIZql53PmGLV+iUQiMTUm93nY2NgQ\nGBjI2bNnq1WJUvjzT81ryBA9CePi4I8/NJscSiQSyUOIXof5tWvXaNGiBU888QT9+/enf//+Fj+Y\nyVQsXKg5n6l27UoS5eTAG2/Al19W++AmpY+bSv2WRcn6lawdlK/fGOhd5zF9+nTgjp9DCPFA+jyu\nXIEffoATJ/QknDgRIiLg73OCJRKJ5GFE7zoP0JzpsW/fPlQqFR07dqRhw4bm0KYXY/o8ZsyA9HT4\n978rSZSYCEOHasa2qnAolkQikdQkzLLO4/vvv6dTp06sW7eO77//no4dOz5wq8sLCzXnNY0dW0mi\nvDx49VVYskQaDolE8tCj13jMmDGDffv2sXLlSlauXMm+ffu0Q1kPCmvXQosW0KpVJYk+/BCCg2Hg\nQKPVq/RxU6nfsihZv5K1g/L1GwO9xkMIgdtdG/7Vr1/f4O7O1q1badasGQEBAcypYErrmDFjCAgI\nIDg4mIMHD2rjZ8+eTYsWLWjVqhUvvvgiBQUFBtVZVYTQHC1e6aLAgwdh+XLN+eMSiUQiAaGHCRMm\niF69eomvv/5afPXVVyI8PFy88847+rIJtVot/Pz8RFpamigsLBTBwcEiJSVFJ018fLyIiIgQQgiR\nnJwsOnXqJIQQIi0tTTz66KMiPz9fCCHE888/L1asWFGmDgPk6yUxUYimTYUoLq4gQVGREG3bCvHV\nV9WuSyKRSGoCxmg79c62mjt3LuvXr+fXX38FYOTIkTzzzDN6jdLevXvx9/fH19cXgMjISDZs2EBQ\nUJA2TVxcHMOHDwegU6dOXL9+nUuXLlG3bl1sbW25ffs21tbW3L59G09Pz6pbRgNYsEDj67CqqA/2\nySdQrx5ER5ukfolEIlEieoetbt++zcCBA/nkk08YOXIkVlZWFFVw8NHdZGZm4u3trQ17eXmRmZlp\nUJp69eoxfvx4GjdujIeHBy4uLjz55JNVuS+DOHMGdu2qZDX5qVMwdy4sWwYmmJ6s9HFTqd+yKFm/\nkrWD8vUbA709j27durF7926ys7MJDw+nQ4cOfP/996xevbrSfIauBRHl+E9SU1NZsGAB6enpODs7\nM3jwYFavXs3QoUPLpI2Ojtb2blxcXAgJCSHs7zUYpR9wReF3302gVy9wdCznuhAkDB4Mzz9P2N/b\n6+orr6rhQ4cOGbU8c4elfqlfhpURTkhIYMWKFQDa9rLa6BvXCgkJEUIIsWjRIjFnzhwhhBCtW7fW\nOx62Z88eER4erg3PmjVLfPTRRzppRo4cKdasWaMNBwYGiosXL4rvvvtOjBgxQhu/cuVK8c9//rNM\nHQbIr5CcHCHq1RPir78qSPDFF0J06CCEWn3fdUgkEklNpDptZyl6h60A9uzZw+rVq+n396l4JSUl\nevO0b9+eU6dOkZ6eTmFhIWvXri2zrcmAAQNYuXIloDknxMXFhUaNGhEYGEhycjJ5eXkIIdi+fTvN\nmzevmlXUw1dfQa9ecNeo2R3On4fJkzUrBg05wFwikUgeMvQajwULFjB79myeeeYZWrRoQWpqKj16\n9NBbsI2NDUuWLCE8PJzmzZszZMgQgoKCWLZsGcuWLQOgb9++NGnSBH9/f0aOHMnnn38OQEhICFFR\nUbRv357WrVsD8Nprr1XnPnUoLoZFiyqYniuEZu+qUaPg77pNRWm3UqlI/ZZFyfqVrB2Ur98oVL8D\nZDnuV/769UJ07lzBxXXrhGjWTIi/pwmbkp07d5q8DlMi9VsWJetXsnYhlK/fGE1/hXtb9e/fX/v+\n3n1QVCoVcXFxprZrernf/VlCQ+Gf/yxn6/Vr16BlS1i3Drp2NY5IiUQiqWEYY2+rCmdbjf/7aNX/\n/e9/XLx4kZdeegkhBGvWrKFRo0bVqtSS/PEHpKXBs8+Wc3HCBM0FaTgkEomkcvR1Tdq2bWtQnCUw\nQH4Zhg0T4u9JY7r8/LMQjRsLceNG9YUZiNK7vlK/ZVGyfiVrF0L5+u+n7bwXgxYJpqamasNnzpzh\n9u3bJjRnpuPCBdi4UbM5rg63bsFrr8G//gVOThbRJpFIJEpC73keW7du5bXXXuPRRx8FID09nS++\n+ILw8HCzCKyMqo7bTZ2qcWt89tk9F8aPh0uX4JtvjCtQIpFIaiDG8HkYdBhUfn4+x48fR6VS0axZ\nM2pXek6r+ajKA8jLAx8fSEqCwMC7LuzbB/37aw54atDANEIlEomkBmGWw6AATp06xYkTJzh06BBr\n167VLuxTEt9+Cx073mM4CgthxAjN5ocWMBxKnysu9VsWJetXsnZQvn5joHdvq9jYWBITEzl69Cj9\n+vVjy5YtPP7440RVuJtgzaP0zI4FC+65MHeuZon5Cy9YRJdEIpEoFb3DVi1btuTw4cO0bduWw4cP\nc+nSJYYOHcr27dvNpbFCDO16bd8Ob70FR47ctTnusWPQvTscOACNG5tWqEQikdQgzDJsZW9vj7W1\nNTY2NuTk5NCwYUMyMjKqVam5KT0pUGs4Sko0U65iY6XhkEgkkvtAr/Ho0KED2dnZvPrqq7Rv3542\nbdrQpUsXc2gzCidOwP798OKLd0X+61+av6+/bhFNpSh93FTqtyxK1q9k7aB8/cZAr8+jdLPCUaNG\nER4ezo0bNwgODja5MGOxcCGMHAn29n9H/PWXpseRlFTJ8YESiUQiqQyDpurWVPSN2127Bn5+kJIC\njzyCxnPerx906QJTpphPqEQikdQgzDZVV6n8+9+aJRyPPPJ3xLffwrlz8O67FtUlkUgkSueBNR5F\nRbB48V1ndly5ollJvnw51KplUW2lKH3cVOq3LErWr2TtoHz9xqBCn8e1a9cqzVivXj2jizEm69dD\nkybQtu3fEePGwdCh0KGDRXVJJBLJg0CFPg9fX19U2rmt92RSqThz5oxJhRlCZeN2nTvDpEkwcCAQ\nHw9jxmgWetSpY16REolEUsMw6Xke6enp1SrYEsTH72LRom1cuWLD8eNqrKx6Q24bzclPy5dLwyGR\nSCRGwiCfx4YNGxg/fjwTJkxg48aNptZ0X8TH72Ls2J/Ytm0GBw/Gkpc3g7ff/on4yFehZ0948klL\nSyyD0sdNpX7LomT9StYOytdvDPQaj0mTJrFo0SJatGhBUFAQixYt4r333jOo8K1bt9KsWTMCAgKY\nM2dOuWnGjBlDQEAAwcHBHDx4UBt//fp1nnvuOYKCgmjevDnJycmV1rVo0TZSU2fqxKWmzmTx9nMw\nf75BeiUSiURiIPpOi2rZsqVQq9XasFqtFi1bttR7ypRarRZ+fn4iLS1NFBYWiuDgYJGSkqKTJj4+\nXkRERAghhEhOThadOnXSXouKihLLly8XQghRVFQkrl+/XqaOu+WHhn4gNAs5dF+hzf+pV6tEIpE8\nTBjQ9OtFb89DpVJx/fp1bfj69esVOtLvZu/evfj7++Pr64utrS2RkZFs2LBBJ01cXBzDhw8HoFOn\nTly/fp1Lly6Rk5NDUlISr7zyCgA2NjY4OztXWl/t2upy4+28XfVqlUgkEknV0Gs83nvvPdq2bcvw\n4cMZPnw47dq1Y/LkyXoLzszMxNvbWxv28vIiMzNTb5pz586RlpaGm5sbL7/8Mm3btuXVV1/Ve/Tt\nE4+54GLzkk6ci82L9OjsolerpVD6uKnUb1mUrF/J2kH5+o2B3r2tXnjhBUJDQ9m3bx8qlYo5c+bg\n7u6ut2BDeidAmeliKpUKtVrNH3/8wZIlS+jQoQPjxo3jo48+4sMPPyyTPzo6Gl9fX35ZtYrn1Bn8\nSBauuNKE04Sq/+TPzachdgJw5wMPCwurEeFDhw7VKD1Sf83S96Drl2HzhRMSElixYgWgWYZhDAza\n2yozM5P09HTUarXWKHTv3r3SPMnJycTGxrJ161YAZs+ejZWVFRMnTtSmGTVqFGFhYURGRgLQrFkz\nEhMTEULw2GOPkZaWBsDu3bv56KOP2LRpk674u+Yqx4aFEZuYyDOs5yW+YRDrNfGhocTKXwkSiUSi\nxaTrPEqZOHEia9eupXnz5lhbW2vj9RmP9u3bc+rUKdLT0/Hw8GDt2rWsWbNGJ82AAQNYsmQJkZGR\nJCcn4+LiQqNGjQDw9vbm5MmTNG3alO3bt9OiRYtK61P/fa56Fg1oQJY2vtjOTt8tSiQSiaSq6POo\nBwQEiPz8/Pvyxm/evFk0bdpU+Pn5iVmzZgkhhFi6dKlYunSpNs0bb7wh/Pz8ROvWrcWBAwe08YcO\nHRLt27cXrVu3Fs8884ze2VaJmzaJyX5+ohkp4k+aCwHiPT8/kbhp031pNwc7d+60tIRqIfVbFiXr\nV7J2IZSv34CmXy96ex5+fn4UFhZS++9f9lUhIiKCiIgInbiRI0fqhJcsWVJu3uDgYPbt22dwXd37\n9YNr11gQ1YCvOwdg7+xNn9GjNfESiUQiMSp6fR7PPvsshw8fpmfPnloDolKpWLRokVkEVsa943Yl\n331PrRcHkVdgja2tBYVJJBJJDcYsPo8BAwYwYMAAraNcCGHwTCpzc/3nfTjZDcDW1lp/YolEIpHc\nN3rXeURHR/P888/TqVMnhg8fTnR0tHZhX00ja1cKDRpYWoXhJCh8FpjUb1mUrF/J2kH5+o2BXuMR\nFxdHmzZt6NOnDwAHDx5kwIABJhdWZbKyyLpQRAOPqvtmJBKJRFI19Po82rZtyy+//EKPHj20Gxe2\nbNmSP//80ywCK0Nn3O5//yNuxhG+9PiAGrrxr0QikdQIzHKGua2tLS4uult8WFnVwNNrExPJerSD\nooatJBKJRKnotQItWrRg9erVqNVqTp06xejRo+nSpYs5tFWNxESyGrVQlPFQ+rip1G9ZlKxfydpB\n+fqNgV7jsXjxYo4ePUrt2rV54YUXqFu3LgsWLDCHNsO5fh1OnybLzktRxkMikUiUikF7W9VUtON2\nmzbBggW80ng7XbvCiBGWViaRSCQ1F7Os8zhx4gTz5s3TboxYWvEvv/xSrYqNSmIihIaStQ/Z85BI\nJBIzoHfYavDgwbRt25YZM2bw8ccfa181ilLjkaUs46H0cVOp37IoWb+StYPy9RsDvT0PW1tbXn/9\ndXNouT9ycyElBTp2JCsL6te3tCCJRCJ58KnQ53Ht2jWEECxevBg3NzeeffZZnc0R69WrZzaRFaFS\nqRBbt8KsWZCYSL16cPKksnofEolEYm6M4fOo0Hj4+vpWuIeVSqXizJkz1arYGKhUKj7w9kZta8sT\nny6m97N9KSgAa7m1lUQikVSISRcJpqenk5aWVu6rJhiOUmIzMphx5gxxY2NxrFOoKMOh9HFTqd+y\nKFm/krWD8vUbA70+j7y8PD7//HN2796NSqWiW7duvP7669jVsBP6Rqbn8k2dS4C3paVIJBLJA4/e\ndR6DBw+mbt26vPTSSwgh+Pbbb8nJyWHdunXm0lghKpWKUvFJPM7Qup/zV04ri2qSSCSSmo5Z1nkc\nPXqUlJQUbfiJJ56gefPm1arUFGTRAHu7XEvLkEgkkocCves82rZty549e7Th5ORk2rVrZ1JR98OX\nbs0JCPGytIwqofRxU6nfsihZv5K1g/L1GwO9xmP//v107doVHx8ffH196dKlC/v376dVq1a0bt26\n0rxbt26lWbNmBAQEMGfOnHLTjBkzhoCAAIKDg7VbvpdSXFxMmzZt6N+/f4V1xIaGMjU8HK+IYbRs\n01jf7UgkEonECOj1eaSnp1dagK+vb7nxxcXFBAYGsn37djw9PenQoQNr1qwhKChIm2bz5s0sWbKE\nzZs38/vvvzN27FiSk5O11z/55BMOHDhAbm4ucXFxZcXfNW43fjw88ghMmFCpXIlEInnoMYvPoyLj\noI+9e/fi7++vzR8ZGcmGDRt0jEdcXJz2SNtOnTpx/fp1Ll26RKNGjTh37hybN28mJiaGTz75RG99\nWVnQSvrKJRKJxCyY7FSnzMxMvL3vTJv18vIiMzPT4DRvvfUWH3/8scEHTyltXytQ/rip1G9ZlKxf\nydpB+fqNgd6ex/1S0er0e7m36ySEYNOmTTRs2JA2bdro/ZCio6Px9fXl0CHYvt0FR8cQwsLCgDsf\ncE0NHzp0qEbpkfprlr4HXb8Mmy+ckJDAihUrgPsfTboXk53nkZycTGxsLFu3bgVg9uzZWFlZMXHi\nRG2aUaNGERYWRmRkJADNmjUjISGBRYsWsWrVKmxsbMjPz+fGjRsMGjSIlStX6oq/a9zOzw9++gn8\n/U1xNxKJRPLgYJYzzJ2cnMq8vLy8eOaZZyrdpqR9+/acOnWK9PR0CgsLWbt2LQMGDNBJM2DAAK1B\nSE5OxsXFBXd3d2bNmkVGRgZpaWl89913PPHEE2UMx71cvaq8YSuJRCJRKnqNx9ixY5k3bx6ZmZlk\nZmYyf/58hg4dypAhQ3jllVcqzGdjY8OSJUsIDw+nefPmDBkyhKCgIJYtW8ayZcsA6Nu3L02aNMHf\n35+RI0fy+eefl1uWviGwoiK4dQucnfXdTc2itFupVKR+y6Jk/UrWDsrXbwz0+jzi4uI4cuSINvza\na68REhLCnDlzmD17dqV5IyIiiIiI0IkbOXKkTnjJkiWVlhEaGkpoaGilaa5ehXr1wEA3i0QikUiq\nid6eh4ODA2vXrqWkpISSkhK+//577aaIhjrFTY0SZ1rBHceWUpH6LYuS9StZOyhfvzHQazxWr17N\nqlWraNiwIQ0bNmTlypV888035OXl6e01mAulGg+JRCJRKnqNh6urK5s2bSIrK4usrCw2bdqEtbU1\n9vb2PP744+bQqBelGg+lj5tK/ZZFyfqVrB2Ur98Y6PV5PPXUU2zZsgXnv73RKSkpDB48mKNHj5pc\nnKEo1XhIJEqiXr16ZGdnW1qGpAq4urpy7do1k5Std51HfHw8c+bMYfPmzZw4cYKoqChWr15NSEiI\nSQRVhdK5yjNmQF4ezJxpaUUSyYOLMdYGSMxLRZ+ZWfa26tevH4WFhfTq1YubN2+yfv16AgMDq1Wp\nsXAlFAAAABwGSURBVMnKAh8fS6uQSCSSh4cKjcfo0aN1wjdu3MDPz48lS5agUqlYtGiRycUZSlYW\n1MAjRvSSkJCg6FkbUr9lUbp+ibKp0Hi0a9dOZypuaVgIUWOm6JYifR4SiURiXky2t5U5KDVm7dvD\nv/4FHTpYWpFE8uAifR7Kw5Q+D5NtyW5OZM9DIpFIzMsDYTyUuimi0ueKS/2WRen6jY2vry8ODg46\nm7iOGTOm2uVGR0czdepUg9MnJCRgZWWl1eDt7c2QIUPYv3+/wWXExsYybNiw+5FrNkx2noe5yM+H\nwkJwdLS0Eonk4WVXfDzbFi3CpqAAde3a9B4zhu79+pm1DJVKxaZNm3jiiSeqKt/oeHp6kpGRAWgO\nvfviiy/o1q0b8fHxNUKfURAKBhDnzgnxyCOWViKRPPhU1FwkbtokJvv5CQHa12Q/P5G4aZPBZRuj\nDF9fX7Fjx45yr40aNUoMGjRIG3733XdFz549hRBC7Ny5U3h6eopZs2aJBg0aCF9fX7F69WohhBDL\nli0Ttra2olatWsLR0VEMGDBAr46dO3cKLy+vMvFvvvmmaN++vTY8ZswY4e3tLerWrSvatWsnkpKS\nhBBCbNmyRdSqVUvY2toKR0dHERISIoQQ4quvvhJBQUHCyclJNGnSRCxbtkyvloo+M2M0/Yo3HocO\nCdGqlaWVSCQPPhU1ODG9e+s0+qWvKeHhBpdtjDJ8fX3F9u3by712+/Zt0bRpU7FixQqxa9cu0aBB\nA5GZmSmE0DT2NjY2Yvz48aKwsFAkJiaKOnXqiJMnTwohhIiOjhZTp041WEdFxmPHjh3CyspK3L59\nWwghxDfffCOuXbsmiouLxfz584W7u7soKCgQQggRGxsrhg0bppM/Pj5enDlzRgghRGJionBwcBB/\n/PFHpVpMaTwU7/NQsrNc6WPWUr9lqSn6bQoKyo23/uknzTkJBrxstm0rv4z8fIN1CCEYOHAgrq6u\n2tfy5csBsLe3Z9WqVbz11lsMGzaMJUuW4OHhoZN/+vTp2Nra0r17d/r168fatWu15QojzDLz8PBA\nCMH169cBGDp0KK6urlhZWfH2229TUFDAiRMnKqyzb9++PProowB0796d3r17k5SUVG1d90uVjcdn\nn33G2rVrUavVptBTZZRsPCSSBwF17drlxheHh5fTlyj/pe7du/wy/j7+wRBUKhUbNmwgOztb+xox\nYoT2eseOHWnSpAkAgwcP1snr6uqKvb29Nuzj48OFCxe05RqDzMxMVCoVLi4uAMybN4/mzZvj4uKC\nq6srOTk5ZGVlVZh/y5YtdO7cmfr16+Pq6srmzZu5evWqUbTdD1U2HkIIkpKSeOaZZ0yhp8oo2Xgo\nfXWw1G9Zaor+3mPGEOPnpxM32c+PXvfsUmHqMvTx2WefUVhYiIeHB3PnztW5lp2dze3bt7Xhs2fP\nansmxjIe//vf/2jXrh329vYkJSXx8ccfs27dOq5fv052djbOzs7a3sa9dRYUFDBo0CDeffddLl++\nTHZ2Nn379rXoupsqz7Z68803TaHjvlGy8ZBIHgRKZ0RNXbwY6/x8iu3s6DN6dJVmShmjDKDCxvTk\nyZNMnTqVxMRE7O3t6dixIxEREQQHB2vTfPDBB8yaNYvk5GTi4+OZPn06AI0aNeLMmTNV0nG3nvPn\nz/Pvf/+b5cuXs3HjRgByc3OxsbGhQYMGFBYW8tFHH3Hjxg1tPnd3d7Zv367d0aOwsJDCwkIaNGiA\nlZUVW7ZsYdu2bbRq1eq+dBkDvcZj/vz5OqsRSy1i6U29/fbblebfunUr48aNo7i4mH/84x9MnDix\nTJoxY8awZcsWHBwcWLFiBW3atCEjI4OoqCguX76MSqXitddeK3fOdlYWBAQYdK81DqXvTST1W5aa\npL97v35VbuhNUUb//v2xtrbWhnv37s3333/PsGHDmDRpkraxnTVrFsOGDePAgQOAprF2dXXFw8OD\nOnXqsGzZMpo2bQrAiBEjGDx4MK6urvTo0YP169fTt29funfvzqRJk8poUKlUnD9/HicnJ4QQODs7\n07VrVxITE+nYsSMAffr0oU+fPjRt2pQ6derw1ltv0bhxY20ZgwcP5ptvvqF+/fo0adKE/fv3s2jR\nIp5//nkKCgro378/Tz/9dLWeVbXR51F/4YUXhL+/v3j77bfFW2+9JQICAsSLL74oYmNjRWxsbKV5\n1Wq18PPzE2lpaaKwsFAEBweLlJQUnTTx8fEiIiJCCCFEcnKy6NSpkxBCiAsXLoiDBw8KIYTIzc0V\nTZs2LZMXEJGRQvw9q05x7Ny509ISqoXUb1nMrd+A5kKRVDQ76kGgos/MGJ+l3p5HRkYGf/zxB05O\nTgBMmzaNvn37snr1ar2Gae/evfj7++Pr6wtAZGQkGzZsICgoSJsmLi6O4cOHA9CpUyeuX7/OpUuX\ncHd3x93dHQBHR0eCgoI4f/68Tl5Q9rBVTfnVeL9I/ZZF6folykavw/zy5cvY2tpqw7a2tly+fNmg\nwjMzM/H29taGvby8yMzM1Jvm3LlzOmnS09M5ePAgnTp1KlOHko2HRCKpGdS0ncKVgF7jERUVRceO\nHYmNjeWDDz6gU6dO2p6CPgz9QMQ9Tq678928eZPnnnuOhQsX4ljOHiRK3dcKas48/ftF6rcsStdf\nUwgLC+Ovv/6ytAzFoXfYKiYmhj59+pCUlIRKpdI6tA3h7v1dQDME5uXlVWmac+fO4enpCUBRURH/\n3969B0VZ/X8Afy9oYgKh5CCIiKyCIrC7yF1uoQSilJe8g5ZW1ghNl0lFc3L6jY5pViaa1iRYmpZm\n3kDECWi9gCijg2leWEUEpVQkwERh/Xz/4MczLiy4y7LsPvZ5zTAjeM7zvPfAcnhu5zNp0iQkJCRg\n/PjxWvdx/bockZG2CAqSIiBABrlcLhzON7+5zPXzM2fOmFUezm9e+cwtPxOvvLw8pKenA4BwGcFQ\nRq3n0djYCA8PD/z2229wcnJCQEAAtm/frnHdIjMzE6mpqcjMzERBQQHeffddFBQUgIgwe/Zs2Nvb\n44svvtAeXiIB0BRfKl2CtWtjMHZsuLFeDmP/aVzPQ3xEW8+jW7duSE1NRUxMDDw9PTF16lQMGzYM\nmzZtwqZNmwA0PXLv5uaGwYMHY968ediwYQMA4NixY9i6dStyc3OhUCigUCiQlZXV5r5UquVYt+6w\nMV8OY4yx/yf6SoLNRx4AEBGxDHl5y0yWR1/mdJ9+R3B+0+rq/HzkIT6iPfLoalZWalNHYIyx/4Sn\n5shDKl2MtWtj+ZoHY0Yi1iMPGxsbnD17ttMuFLe0bNkyqFQq/PDDD0bZviH4yKMdERHLEBOzlCcO\nxv7jWpahtbW1RWVlJWpra4WJQ1tJWVdXV+Tk5HR4v+09kpD3FJekFf3kkZe3DFlZ/yfKiUPs9+lz\nftMyp/wZGUrExHyEyMhliIn5CBkZyi7fRnMZ2traWtTW1qKmpkZYpeJJ/Yx5RNW/f38hU0FBAYYO\nHYqwsDCDJiyzYPACJyYk8vi8tpKJcX79tPV+O3Dgd5JKF2sU6JBKF9OBA7/rvO3O2EZbZWglEgmV\nlJS0KikbHx9PiYmJZGFhQT179iRra2tavXo1ERHl5+dTcHAw2dnZkUwmo7y8PGF7V65cofDwcLKx\nsaHo6GhKSkqihIQErZlMXZK2re9ZZ/zuFPVvX7FPHoyJSVvvtxdfXKK1wlNMzEc6b7szttFWGVqJ\nREIqlYqItJeUbTnplJeXk729PR08eJCIiA4fPkz29vZ0+/ZtIiIKCgoSStYqlUqysbFpVTK2malL\n0hpz8hD9aSvGmGk9eKB9oYpDhyx1rUKL7Gzt26ivt9T6dW2oRRnaiRMnttmuPVu3bkVcXBxiY2MB\nAKNHj4afnx8yMjJQVlaGU6dOCSVrw8LCEB8fr/dpr6ehJC1PHiZkTuesO4Lzm5a55O/RQ3tJ6pgY\nta5VaPHii9q3oc/t9y3L0O7evbtDr+fatWvYuXOnRi30Y8eOobKyEjdu3NBaslZfT0NJWp48GGMG\neeedFyGVLtH4mlS6GMnJ0V26DV1ouzOq5ddcXFyQmJioUQu9trYWCxYsgKOjo9aStfquyvs0lKTV\nuwwt6zxifroZ4PymZi75m+90XLduKerrLWFlpUZysn63znfGNnShraSsg4MDVCoVoqKiAAAJCQnw\n9/dHdnY2Ro0ahYaGBhQUFGDIkCEYOHAg/Pz8hJK1J06cwIEDB3Sq6kdPW0lag6+amJDI4zMmKub+\nfmvrbisLCwvhgvnly5dJLpeTnZ0dTZgwgYiI9u7dSy4uLmRnZ0dr1qwhIqITJ05QREQE9enTh/r2\n7Uvjxo2jsrIyImq62yosLIysra0pOjqakpOT27xgnpeXRxYWFmRtbU29evUiJycnmjx5Mp04cUJo\no1arac6cOWRra0uOjo60atUqGjRokPBa7ty5Q6GhodS7d28aMWIEERGtX7+eHBwcyM7OjhITE2n6\n9OmtbgQgMu4Fc9E/YS7i+Ly2kolxfv2I/f32X8RPmDPGGDMrfOTBGNMJv9/Eh488GGOMmRWePEzI\nXO7T7yjOb1piz8/EjScPxhhjeuNrHowxnfD7TXyMec2DHxJkjOmkd+/eej9JzUyrd+/eRtu2UU9b\nZWVlYejQoRgyZAg+/fRTrW3eeecdDBkyBDKZDKdPn9arr9iJ/Zw15zetrs5fVVUlLNJn6Edubm6n\nbcsUH2LJX1VVZbSfB6NNHmq1GklJScjKysL58+exfft2/PnnnxptMjMzUVJSgsuXL+Obb77B22+/\nrXPfp8GZM2dMHcEgnN+0xJxfzNkB8efvDEabPAoLCzF48GC4urqie/fumDZtGvbu3avRZt++fZg9\nezYAIDAwENXV1aisrNSp79OgeTlmseL8piXm/GLODog/f2cw2uRRUVGBAQMGCJ87OzujoqJCpzY3\nbtx4Yl/GGGOmY7TJQ9cLa//luzdKS0tNHcEgnN+0xJxfzNkB8efvDEa726p///64fv268Pn169fh\n7Ozcbpvy8nI4OzujoaHhiX0BQCqViv7ujy1btpg6gkE4v2mJOb+YswPizi+VSg3ehtEmDz8/P1y+\nfBmlpaVwcnLCTz/9hO3bt2u0eemll5Camopp06ahoKAAdnZ2cHBwgL29/RP7AkBJSYmx4jPGGGuH\n0SaPbt26ITU1FTExMVCr1Zg7dy6GDRuGTZs2AQDmzZuHuLg4ZGZmYvDgwejVqxfS0tLa7csYY8w8\niPoJc8YYY6Zhtmtbif0BQ0Pyu7q6wsfHBwqFAgEBAV0VWfCk7BcuXEBwcDCsrKywZs0avfp2BUPy\nm3rsgSfn37ZtG2QyGXx8fDBy5EgUFxfr3LcrGJJfDOO/d+9eyGQyKBQKjBgxAjk5OTr37QqG5Ndr\n/MkMNTY2klQqpatXr9LDhw9JJpPR+fPnNdpkZGTQmDFjiIiooKCAAgMDde5rzvmJmspp3rlzp0sz\nN9Ml+99//00nT56kJUuW0GeffaZXX3POT2TasSfSLf/x48epurqaiIgOHjwoup/9tvITiWP86+rq\nhH8XFxeTVCrVua855yfSb/zN8shD7A8YdjT/X3/9Jfw/mehsoi7Z+/btCz8/P3Tv3l3vvsZmSP5m\nphp7QLf8wcHBeO655wA0/eyUl5fr3Nec8zcz9/Hv1auX8O+6ujo8//zzOvc15/zNdB1/s5w8xP6A\noSH5gaZnZEaPHg0/Pz98++23XRNah1zG7NtZDM1gyrEH9M//3XffIS4urkN9jcGQ/IB4xn/Pnj0Y\nNmwYxowZg6+++kqvvsZkSH5Av/E3y1V1xf6AoaH5jx49CicnJ9y6dQvR0dEYOnQowsLCOjNimwx5\nbsYcnrkxNMOxY8fg6OhokrEH9Mufm5uLzZs349ixY3r3NRZD8gPiGf/x48dj/PjxOHLkCBITE3Hh\nwgUjJ9NNR/NfvHgRgH7jb5ZHHoY8YKhLX2PraP7+/fsDAJycnAA0nV6ZMGECCgsLuyC19lz6jJ9Y\nxr49jo6OAEwz9oDu+YuLi/HGG29g3759wrLbYhp/bfkB8Yx/s7CwMDQ2NqKqqgrOzs6iGf9mzfnv\n3LkDQM/xN/QCjTE0NDSQm5sbXb16lR48ePDEC875+fnCRTdd+ppz/nv37lFNTQ0RNV3YCgkJoUOH\nDplV9mYff/yxxgVnsYx9s5b5TT32RLrlv3btGkmlUsrPz9e7r7EZkl8s419SUkKPHj0iIqKioiJy\nc3PTua8559d3/M1y8iAiyszMJHd3d5JKpbRixQoiItq4cSNt3LhRaDN//nySSqXk4+NDRUVF7fbt\nah3Nr1KpSCaTkUwmo+HDh5sk/5Oy37x5k5ydncnW1pbs7OxowIABVFtb22ZfseQ3h7HXJf/cuXOp\nT58+JJfLSS6Xk7+/f7t9xZJfLOP/6aef0vDhw0kul1NoaCgVFha221cs+fUdf35IkDHGmN7M8poH\nY4wx88aTB2OMMb3x5MEYY0xvPHkwxhjTG08ejDHG9MaTB2OMMb3x5MG6RHp6OpKTkzt9u66urqiq\nqur07ba3j7feegvHjx/XqW99fT0CAwMhl8vh6emJlJQUY8UU/PPPP/j666+Nvp9mW7Zswc2bN7ts\nf8w88OTBuoSx1l2SSCRGX+OsZfYTJ04gODhYp75WVlbIzc3FmTNnUFxcjNzcXBw9etQYMQV3797F\nhg0bjLqPx6Wnp+PGjRt69VGr1UZKw7oKTx6sw77//nvIZDLI5XLMmjVL534ZGRkICQlBVVUVVCoV\ngoKC4OPjg48++gg2Njat2peWlmLo0KFISEiAp6cnJk+ejPv37wv/v27dOowYMQI+Pj7CAm/37t3D\nnDlzEBgYCF9fX+zbtw9A0y+6iRMnYsyYMXB3d8fChQuF7Wzfvh0+Pj7w9vbGokWLtGb/888/4eHh\nAYlEgsjISLz//vvw9/fHsGHDcPLkSUyYMAHu7u5YunSp0OfZZ58FADx8+BBqtRp9+vTR2KZarYab\nmxsAoLq6GpaWlsIEEx4eDpVKhcLCQoSEhMDX1xcjR47EpUuXAADnzp1DYGAgFAoF5HI5SkpKsGjR\nIqhUKigUCuH1rV69GgEBAZDJZFi2bFmr17Vz50588MEHAIC1a9dCKpUCAK5cuYLQ0FAAwCeffIKA\ngAB4e3tj3rx5AIBdu3bh1KlTmDlzJnx9fVFfX4+ioiJERkbCz88PsbGxqKysBABERkbivffeg7+/\nv8ZKrkykjPiUPHuK/fHHH+Tu7i4Ujqmqqmq3fXp6OiUlJdHu3bspLCxMKAY0duxY2rFjBxE1LaFg\nbW3dqu/Vq1dJIpHQ8ePHiYhozpw5wppUrq6ulJqaSkREGzZsoNdff52IiFJSUmjr1q1ERHT37l1y\nd3ene/fuUVpaGrm5uVFNTQ3V19fTwIEDqby8nCoqKsjFxYVu375NjY2NFBUVRXv27BH20fw616xZ\nQ2lpaUREFBkZSYsWLSIiorVr15KjoyNVVlbSgwcPyNnZWRiTxsZGkslkZG1tTR9++KHW8YmNjaVz\n587R/v37yd/fn5YvX0719fU0aNAgIiKqqamhxsZGIiI6fPgwTZo0iYiIkpKSaNu2bUTUtK7R/fv3\nqbS0lLy8vIRtHzp0iN58800iIlKr1TRu3DhSKpUa+6+srBSWCZk0aRIFBARQRUUFpaen0+LFi4lI\n83ucmJhI+/fvF8aheXmdhw8fUnBwMN2+fZuIiHbs2EFz5swR2s2fP1/r62fiw0cerENycnIwZcoU\n4a/ox1dG1YaIkJOTg1WrViEzM1MoBlRQUIDJkycDAKZPn95m/wEDBginihISEjRO/UycOBEA4Ovr\ni9LSUgBAdnY2Vq5cCYVCgRdeeAEPHjxAWVkZJBIJRo0aBRsbG/To0QOenp4oLS3FyZMnERkZCXt7\ne1haWmLmzJlQKpWtcmRnZyM2Nlb4/KWXXgIAeHl5wcvLCw4ODnjmmWfg5uaGsrIyAIClpSXOnDmD\n8vJyKJVK5OXltdpuWFgYlEoljhw5gpSUFBw9ehSnTp2Cv78/gKYjkldeeQXe3t54//33cf78eQBA\nSEgIVqxYgVWrVqG0tBRWVlatTuNlZ2cjOztbKDt68eJFlJSUaLRxcHBAXV0d6urqUF5ejhkzZkCp\nVOLo0aPCktw5OTnCUWJOTo6Qofn7CwAXL17EuXPnMHr0aCgUCixfvlyjnsTUqVO1fn+Z+PDkwTpE\n32sNEokEUqkUdXV1wqklfffXjIg0Pu/RoweApl/SjY2Nwtd3796N06dP4/Tp08Kpr8fbP96n5XWN\nlvsAgH///RfV1dXo169fq31bWFhobNfCwqLVef3nnnsOY8eOxalTp1q9vvDwcCiVShQWFiIuLg7V\n1dXIy8tDeHg4AGDp0qUYNWoUzp49i/379wun7aZPn479+/ejZ8+eiIuLQ25urtbxS0lJEcbi0qVL\neO2111q1CQkJQVpaGjw8PBAaGgqlUon8/HyMHDkS9fX1mD9/Pn755RdhOfX6+nqhb/NYERGGDx8u\n7Ku4uBhZWVlCu8er2DFx48mDdUhUVBR27twp3IV09+5dAMCvv/6KxYsXt2pPRBg4cCB27dqFWbNm\nCX+1BgUFYdeuXQCAHTt2tLm/srIyFBQUAAB+/PHHJxYIiomJ0Tivfvr0aSFHSxKJBAEBAfj9999x\n584dqNVq7NixAxERERrtcnNzERUV1e5+H0dEuH37NqqrqwEA9+/fx+HDh6FQKFq1DQgIwPHjx2Fp\naYkePXpAJpNh06ZNwuRRU1Mj1HlJS0sT+l25cgWDBg1CcnIyXn75ZZw9exa2traora3VGIvNmzfj\n3r17AJqqzd26datVhrCwMKxevRoRERFQKBTIzc2FlZUVbGxshInC3t4edXV12Llzp9DPxsYGNTU1\nAAAPDw/cunVL+F41NDRoHKGwpwdPHqxDPD09sWTJEkREREAulwsXW1UqlXBK6nESiQQSiQQeHh7Y\ntm0bJk+ejKtXr+LLL7/E559/Drlc3mZfoOmX0vr16+Hp6Yl//vkHb7/9trDdlvsAmv5Sb2hogI+P\nD7y8vPDxxx+3avO4fv36YeXKlXjhhRcgl8vh5+eH+Ph4oQ8R4eDBgxqnrLS9vpZfu3nzJqKioiCX\nyxEYGIj4+HiMGjWqVf9nnnkGLi4uCAoKAtB0JFJXVwdvb28AwIIFC5CSkgJfX1+o1WphXz///DO8\nvLygUChw7tw5zJo1C3369MHIkSPh7e2NhQsXIjo6GjNmzEBwcDB8fHwwZcoU1NXVtcoQGhqKiooK\nhIeHw8LCAi4uLsLFcjs7O7zxxhvw8vJCbGwsAgMDhX6vvvoq3nrrLfj6+uLRo0fYtWsXFi5cCLlc\nDoVCgfz8fK1jxsSNl2RnnSoxMRFffvkl7O3tdWp///599OzZE0DTkcdPP/2EX3/9VaNNaWkp4uPj\ncfbs2U7Pq48RI0agsLAQlpaWJs3BmDkwyxrmTLx++OEHvdoXFRUhKSkJRITevXtj8+bNWtuZQ33u\noqIiU0dgzGzwkQdjjDG98TUPxhhjeuPJgzHGmN548mCMMaY3njwYY4zpjScPxhhjeuPJgzHGmN7+\nB+ATG4xA5ktqAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x6192b10>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEeCAYAAACdYvI/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVNX7B/DPDCDIJoMLqCAoriiyCTooiEuCmpYaLimC\nWGblbpZrWmZlWZmamb/cUlNzKUWUTAVBG1FU3HBFSUVxQURBlgae3x98mUAZZt/0eb9e88p77rnn\nPjOnmcM9z10ERERgjDHGlCQ0dACMMcZMCw8cjDHGVMIDB2OMMZXwwMEYY0wlPHAwxhhTCQ8cjDHG\nVMIDBzM5a9euRXBwsGxZKBTi2rVrAIB3330Xn332mcI2QkNDsWrVKp3FqIxn34cxunHjBuzs7KDK\nWfvJyclo3bq1DqNihsYDB6uRu7s7rK2tYWdnBzs7O9jb2yM7O9vQYcn1448/Yvbs2QrrCQQCCAQC\npdpMTEyEq6urRnFlZmZCKBSirKxMo3Z0SSgUwtbWVtbXjo6OaNKkCZ48eSL7rKobcCsP3AAQHByM\nixcv6jV2pl/mhg6AGTeBQIDdu3eje/fucutIpVKYm/P/SsrQ1fW2paWlMDMz07idM2fOoFmzZnLX\nyxts+TrilwsfcTC1CIVCLF++HC1atECrVq0AALt374aPjw9EIhE6d+6Ms2fPVqlf+a/S6OhozJkz\nB0D5X/QuLi749ttv4eTkhEaNGmHt2rWyujk5Oejfvz/q1KmDjh07IiMjQ25cldsFgJ07d8LHxwd1\n6tRB8+bNsW/fPtm6zMxMdOnSBfb29ggLC0NOTo5S733t2rXw8PCAvb09mjVrhl9//RVA+Y/nZ599\nBnd3dzg5OSEqKgqPHz8GAISEhAAAHBwcYG9vj6NHj8p+hKdNmwZHR0c0a9YM8fHxsv3k5eVh9OjR\naNSoEVxcXDBnzhzZEcvatWvRuXNnTJkyBfXq1cO8efMwatQovPfee+jTpw/s7OwQHByM7OxsTJw4\nESKRCG3atEFaWppS77HyZyQUClFaWopZs2YhOTkZ48aNg52dHcaPH4+uXbsCALy9vWFnZ4etW7c+\nd4Tm7u6Ob775Bt7e3nBwcMDQoUNRXFwsW//VV1/J3uPPP//83P8rzAgRYzVwd3en/fv3P1cuEAio\nV69elJubS0VFRXTy5Elq0KABHTt2jMrKymjdunXk7u5OJSUlsvoZGRmy7aOjo2nOnDlERJSQkEDm\n5uY0d+5ckkqltGfPHrK2tqZHjx4REdGQIUNoyJAh9PTpUzp37hw1btyYgoODq8RS0XbldlNSUqhO\nnTqy+LOysujixYtERNS1a1fy8PCgK1euUGFhIYWGhtL06dOr/QwSEhLIxcWFiIjy8/PJ3t6eLl++\nTERE2dnZdP78eSIiWrVqFTVv3pyuX79O+fn5NHDgQIqMjCQioszMTBIIBFRaWiprd82aNWRhYUE/\n//wzlZWV0Y8//kiNGjWSrX/99ddp7Nix9PTpU7p37x4FBgbSTz/9JNvW3Nycli1bRqWlpVRYWEhR\nUVFUr149OnnyJBUVFVH37t3Jzc2N1q9fT2VlZTR79mzq1q2b3L4WCAR09erVKmXXr1+vEndoaCit\nWrXque0q923lz4uo/P+hjh070p07d+jhw4fUpk0bWrFiBRER7d27l5ydnSk9PZ2ePn1Kw4cPJ6FQ\nWKU9Znz4iIPViIjw+uuvQyQSQSQSYeDAgbJ1M2bMgIODAywtLbFy5Uq88847CAgIgEAgwMiRI2Fp\naYmjR4/W2HYFCwsLfPzxxzAzM0Pv3r1ha2uLS5cuobS0FDt27MCnn36K2rVro23btoiKilJqamTV\nqlUYPXo0evToAQBo1KiR7OhIIBAgJiYGzZs3h5WVFQYPHqz0X+NCoRBnz55FYWEhnJyc4OnpCQDY\nuHEjpk6dCnd3d9jY2OCLL77A5s2bUVZWJjdeNzc3jB49WvaZ3blzB/fu3cPdu3exd+9efPfdd6hd\nuzbq16+PSZMmYfPmzbJtGzVqhPfffx9CoRBWVlYQCAQYOHAgfH19YWlpiQEDBsDGxgYjRoyAQCDA\n4MGDcerUqRrfm5+fn6yvJ02aVG0dZT77Z02YMAHOzs4QiUTo16+f7LP+7bffEBMTgzZt2qB27dr4\n5JNPeNrLBPDAwWokEAiwc+dO5ObmIjc3Fzt27JCtqzwd8c8//+Cbb76R/eiIRCLcunULt2/fVmo/\ndevWhVD43/+O1tbWyM/Px/379yGVSqvsq0mTJkq1eevWLXh4eMhd7+zsLPt37dq1kZ+fr7BNGxsb\nbNmyBStWrECjRo3w6quv4tKlSwCAO3fuwM3NrUqcUqkUd+/eVSoGa2trAEB+fj7++ecf/Pvvv2jY\nsKHs8xw7dizu378vq19dwr5Bgwayf1tZWVVZVuY9njp1StbXixcvrraOsicVVPbsZ11QUACg/DOr\n/D5cXFxUbpvpHw8cTG2Vf0CaNGmCWbNmyX50cnNzkZ+fjyFDhgAo/1F8+vSprP6dO3eU+gGqX78+\nzM3NcePGDVlZ5X/XxNXVFVevXlX27SitV69e2LdvH7Kzs9G6dWu8/fbbAMqPADIzM6vEaW5uDicn\nJ5V/bF1dXWFpaYmcnBzZ55mXl1clb6TOD7imtL3Phg0b4ubNm7Llyv9mxosHDqYVb7/9NlasWIFj\nx46BiFBQUIC4uDjZX7g+Pj7YuHEjSktLER8fj6SkJKXaNTMzw8CBAzFv3jwUFhYiPT0d69atk1uf\niGRTHaNHj8aaNWtw8OBBlJWVISsrS3Z0UFFXVffu3cPOnTtRUFAACwsL2NjYyM5mGjZsGL777jtk\nZmYiPz8fM2fOxNChQyEUClG/fn0IhcIaE/uVNWzYEL169cKUKVPw5MkTlJWVISMjo8bPTR9TPE5O\nTs+9h+rKFKmIdfDgwVizZg0uXryIp0+fYv78+VqLlekODxxMLc/+5env74//+7//w7hx4+Do6IgW\nLVrgl19+ka3//vvvERsbC5FIhF9//RUDBgyosb3Kli1bhvz8fDg7OyMmJgYxMTFV6j/774rlgIAA\nrFmzBpMnT4aDgwNCQ0OrHK3I266m91tWVobvvvsOjRs3Rt26dZGcnIwff/wRABATE4PIyEiEhISg\nWbNmsLa2xtKlSwGUH3HNmjULnTt3hqOjI1JSUqrdZ+XlX375BSUlJfD09ISjoyMiIiJk19DI21bR\ne1LmPdZUPnHiRGzbtg2Ojo6yHMi8efMQFRUFkUiEbdu2KfVZVqwPDw/HhAkT0K1bN7Rs2RJisRgA\nYGlpKXd7ZngCMtJMVEFBAd577z1YWloiNDQUb775pqFDYozp2IULF+Dl5YWSkpIqOS9mXIy2Z3bs\n2IHBgwdj5cqV2LVrl6HDYYzpyO+//47i4mLk5ubio48+Qv/+/XnQMHJ67Z2YmBg4OTnBy8urSnl8\nfDxat26NFi1aYOHChQCArKws2dkW2rgiljFmnFauXAknJyc0b94cFhYWsqk/Zrz0OnCMGjWqypWx\nQPmtEsaNG4f4+Hikp6dj06ZNuHDhAlxcXGRnWBjz/X0YY5rZu3cvHj16hJycHGzfvh1OTk6GDokp\noNeBIzg4GCKRqErZsWPH0Lx5c7i7u8PCwgJDhw7Fzp07MXDgQGzfvh3vvfce+vfvr88wGWOM1cDg\nd6arPCUFlF8AlJKSAmtra6xevbrGbRs3bqz0BWaMMcbKeXh4aHSNk8EzUJpcUHT79m3ZefuGfM2d\nO9fgbamynTJ1FdWRt16Vcm1+bsbQd6bSf6quM9a+M8X+M5bvnqrX3TzL4ANH48aNn7ty1NRuO+Dg\n4GDwtlTZTpm6iurIW69KeeWrrA1Fm32nSXv67D9V1xlr3wGm13/G8t3TlMEHjg4dOuDKlSvIzMxE\nSUkJtmzZYnI5DR8fH4O3pcp2ytRVVEfeelXLDU3bcZlC/6m6zlj7DjC9/ntRvnt6vQBw2LBhOHTo\nEHJyctCgQQN8+umnGDVqFPbu3YtJkyahtLQUo0ePxowZM5RqTyAQQI/hMy1LTExEaGioocNgauC+\nM22a/nYa7ZXjyhAIBIiKikJ0dDRCQ0ORmJgIALL/oXmZl3mZl3n5v+W0tDQ8evRI89vXkwkzlvAT\nEhIM3pYq2ylTV1EdeetVKdfm56YubcdgCv2n6rqKMpFIRAD4ZUIvkUhUbZ9q+ttp8NNxGWOmITc3\nl6eGTYyubr1v8lNVJhw+YyaFv2+mR16fadqXBj+rijHGmGnhgUMLKpJQhmxLle2Uqauojrz1qpRr\n83NTl7ZjMIX+U3WdMfQTU58u+s/kcxzR0dEGP6uqgrbOejCleDWJPy0tTSfvz5Cftyn0X03bVxc/\nezFU9O+jR480botzHIwxpRj7983d3R337t2r8hiGUaNGYcmSJRq1Gx0dDVdXV6Ufa5uYmIju3bvD\nxsYGQPmV20FBQZg2bRo6dOigVBvz5s1DRkYG1q9fr3bcgO5yHCZ/xMEYM7ykuDjsW7IE5sXFkFpa\noteECQjp21evbQgEAuzevRvdu3dXNXytq3wrpaysLKxcuRLBwcGIi4szivg0ptHJvAZmLOHzdRzq\nlfN1HOptZ6jrOOR93w7t3k0zPTyIANlrpocHHdq9W2Gc2mzD3d2dDhw4UO26sWPH0qBBg2TLH374\nIfXo0YOIyt9f48aN6fPPP6d69eqRu7s7bdy4kYiIfvrpJ7KwsKBatWqRra0t9e/fX2EcCQkJ5OLi\n8lz5uHHjqEOHDrLlCRMmkKurK9nb25O/vz8lJycTEdHevXupVq1aZGFhQba2tuTj40NERKtXr6Y2\nbdqQnZ0dNWvWjH766SeFsQDQyXUcnBxnjGlk35IlWPDM3VYXZGTgr6VL9doGALnTL99++y3Onj2L\ndevWITk5GatXr8Yvv/wiW3/37l3k5OTg9u3bWLduHcaMGYMrV65gzJgxGD58OD766CM8efIEO3fu\nVCmeygYMGICTJ0+isLAQABAYGIjTp08jNzcXb775JiIiIlBSUoLw8HDMnDkTQ4cOxZMnT3Dq1CkA\ngJOTE+Li4vD48WOsWbMGkydPlq3TO42GHQMz8fAZMynyvm9zu3atcqRQ8ZpbTZm8l7y6c7t2VTo+\nNzc3srW1JQcHB9nr559/lq1PSUkhkUhEbm5utHnzZll5QkICmZub09OnT2VlgwcPpvnz5xMRUVRU\nFM2ePVvpOOQdcVy4cIEEAgHdvn272u1EIhGdOXOGiIjmzp1LI0aMqHE/r7/+On3//fc11pHXZ5r+\ndpr8EUd0dLTs7I/ExMQqZ4LwMi/zsvaW5ZFaWlZbXhoWpvTQIe3Vq/o2rKwU7r+CQCDAzp07kZub\nK3uNHj1atj4wMBDNmjUDAERERFTZViQSoXbt2rJlNzc33LlzR9auNmRlZUEgEMhuc75o0SJ4enrC\nwcEBIpEIeXl5ePDggdzt9+7di06dOqFu3boQiUTYs2cPcnJylN5/YmIiFi9ejHnz5mn6Vkz7T3Zj\nCZ9zHOqVc45Dve1MIccxQws5DlXbqCnHQUS0bNky8vLyIrFYTF988YWsvOKIo6CgQFY2ePBg+uyz\nz4iIaNSoUVo54nj//fcpICCAiIiSkpKoQYMGdO7cOdl6kUgki3/evHlVjjiKioqodu3atH37dpJK\npURUfsQxZ86cGmOBjnIcfFYVY0wjFWc+zVm6FGZFRSi1skL4+PEqnRGljTYA+TmOy5cvY86cOTh0\n6BBq166NwMBA9O7dG97e3rI6c+fOxeeff46jR48iLi5Odvqtk5MTrl27plIcleO5ffs2fv75Z6xa\ntQqxsbEAgCdPnsDc3Bz16tVDSUkJvvzySzx+/Fi2nbOzM/bv3w8igkAgQElJCUpKSlCvXj0IhULs\n3bsX+/btg5eXl1pxaUyjYcfATDx8xkyKsX/f3N3dqXbt2mRrayt7DRw4kKRSKQUGBtLChQtldX/8\n8Ufy8vKikpIS2RHCggULqF69euTm5kYbNmyQ1b1y5Qr5+PiQg4MDDRgwgIiIevfuXeWopbLExEQS\nCoVka2tLNjY21KhRI4qIiKCUlBRZndLSUoqJiSF7e3tq2LAhffXVV9S0aVPZEUdOTg516dKFRCIR\n+fv7ExHRDz/8QE5OTuTg4ECRkZE0bNgwpY44VClXFl8AyBhTyov6fUtMTERkZGSVR1i/KPgmh0ZM\nmQSirttSZTtl6iqqI2+9KuXa/NzUpe0YTKH/VF1nDP3E1KeL/uOBgzH20tPVcyteVDxVxRhTCn/f\nTA/fq0oOY7g7Li/z8suwzExbYqL27o5r3KdJKGAs4fN1HOqV83Uc6m1nbNdxMOMFvlcVY4wxY8A5\nDsaYUvj7ZnoMluM4fPgwPvnkE2RmZkIqlcp2qu6VlIwxxkybwqmq0aNHY8qUKTh8+DCOHz+O48eP\n49ixY/qIzWRo8zxpU7gOoKb1qpTr4vxyVWk7BlPoP1XXGUM/acLOzg6ZmZk6a3/evHmIjIzUWfua\n0kX/KRw4HBwc0Lt3bzg5OaFevXqyF2OMGRN3d3dYW1vDzs4OdnZ2sLe3R3Z2Np48eQJ3d3cA5Wdh\nzpkz57ntDh48qPZ+a7oGJDExEUKhUBaTq6srhgwZgtTUVKXbN8aBSeFUVbdu3TBt2jQMHDgQlpVu\nn+zn56fTwEyJNk9XVLctVbZTpq6iOvLWq1JuDKd5ajsGU+g/Vdcps7+4uCQsWbIPxcXmsLSUYsKE\nXujbN0ThdtpsQ91Hx+o6d2Pox8jq5Hum6LSrrl27Umho6HMvYwCAoqKiZKebJSQkVDn1jJd5mZe1\ntyzv52L37kPk4TGzygM2PDxm0u7dh6qtr6s25N1WXSAQ0NWrV597DGy/fv0oMjKShEKh7OaIX3/9\nNRERSSQSEovF5ODgQN7e3pSYmChr79q1axQSEkJ2dnb0yiuv0Lhx4+Q+dCkhwbCPka3cZwkJCfTd\nd9/R3LlzNT4d16RPzNb0zWtL5S+XodpSZTtl6iqqI2+9KuXa/NzUpe0YTKH/VF1XUSbv+9ar16xq\nn84UFqb8Myy00Ya7uzvt37//uXKBQEAZGRlERBQdHf3cHWWfHXBu3bpFdevWpb179xIR0V9//UV1\n69alBw8eEBFRp06daOrUqVRSUkJJSUlkZ2dHkZGR1cYkb+A4cOAACYVC2VMHN2zYQA8fPqTS0lL6\n5ptvyNnZmYqLi4mo/Nkcz7YfFxdH165dIyKiQ4cOkbW1NZ08efK5/cBQ13E8evQIkydPhr+/P/z9\n/TF16lTk5eVp/9CHMWaSiourn/H+808zCARQ6rVvX/VtFBWZKR0HEeH111+HSCSCSCTCwIED5dar\nyYYNG9CnTx+Eh4cDAHr27IkOHTogLi4ON27cQGpqKubPnw8LCwsEBwejX79+Kk91NWrUCEQku4p7\n+PDhEIlEEAqFmDJlCoqLi3Hp0iVZvM+236dPHzRt2hQAEBISgl69eiE5OVmlGDShcOCIiYmBvb09\ntm7dit9++w12dnYYNWqUPmIzGZzjUK+ccxzqbWdsOQ5LS2m15WFhpUo/dLxXr+rbsLIqrXHflT37\n6NgdO3YovW1l//zzD7Zu3SobgEQiEY4cOYLs7Gzcvn272sfMqkqfj5HVxfdMYXI8IyOjSgfMmzev\nylOzGGMvtwkTeiEjYxYyMhbIyjw8ZmL8+HC9tqGM6s6AerasSZMmiIyMxMqVK5+r+88//yA3NxdP\nnz6FtbW1rMzMTPkjIwD4/fff4e/vj9q1ayM5ORlff/01Dh48iLZt2wIAHB0dZUcZz8ZXXFyMQYMG\nYcOGDXjttddgZmaGAQMG6PXiTIVHHBVvrMLhw4dlHxgrx9dxqFduDNcH8HUcitcp2l/fviH4/vsw\nhIXNQdeu8xAWNgfffx+u0hlR2mhDGdU9BtbJyQkZGRmy5REjRiA2Nhb79u1DaWkpioqKkJiYiKys\nLLi5uaFDhw6YO3cu/v33Xxw+fBi7d+9Wat9EhKysLHzyySdYtWoVPv/8cwDPP0b2008/fe4xspmZ\nmbKBQd5jZOXRxfdM4RHHihUrMHLkSFleQyQSYd26dVoPhDFmuvr2DdH4R14bbVSn8l/so0ePRkRE\nBEQiEbp164YdO3ZgxowZGD9+PD788EPMmTMHU6ZMwc6dO/Hhhx9i2LBhMDMzQ8eOHbF8+XIAwK+/\n/oqoqCg4OjpCLBYjKipK7h1nBQIBbt++DTs7OxAR6tSpg86dO+PQoUMIDAwEAISHhyM8PBwtW7aE\njY0NJk+ejCZNmsjaiIiIwIYNG1C3bl00a9YMqampWLJkCQYPHozi4mL069cPr732mtY/t5oofa+q\nihHQ3t5epwGpgu+dw5j+8PfN9Bjs0bEPHjzA+PHj0bVrV4SGhmLixIlykzCMMcZefAoHjqFDh6JB\ngwbYsWMHtm3bhvr162PIkCH6iM1kcI5DvXLOcai3nbHlOJhxM0iOIzs7u8q9XWbPno0tW7ZoPRDG\nGGOmQeHA0atXL2zatEl2lLF161b06tVL54Ep60V8dGwFVbbX9vtX1F5N66uLv7r6FXVM8fPWdnv6\n7j914memqXL/auvRsXKT47a2trKzEQoKCiAUls9qlZWVwcbGBk+ePNF455riZB1j+sPfN9Oj9+R4\nfn4+8vLycP78eZSVlUEqlUIqlaKsrMwoBg1jos05RFOYI69pvSrluph7VZW2YzCF/lN1nTH0E1Of\nLvqvxqkqoVCIPn364Ny5c1rfMWPMtIhEohqfPcGMj0gk0km7Cq/jiIqKwvvvvy+7WMWY8KEzY4yp\nTtPfToUDR6tWrXD16lW4ubnBxsZGttMzZ86ovVNt4YGDMcZUp/MLAP/8809kZGTg4MGDiI2NRWxs\nLHbt2qX2Dl9EnONQr9wY5s45x6F4nbH2HWB6/Wcs3z1NKTwdt+JZvffu3UNRUZHWA2CMMWZaFE5V\n7dq1C1OnTsXt27fRoEED/PPPP2jTpg3Onz+vrxjl4qkqxhhTnc6nqmbPng2JRIKWLVvi+vXrOHDg\nADp27Kj2DhljjJk2hQOHhYUF6tWrh7KyMpSWlqJbt25ITU3VR2wmg3Mc6pUbwzy5qc2RK1uXcxz6\nbY9zHM8QiUR48uQJgoODMXz4cDRo0AC2trZaD4QxxphpUJjjKCgogJWVFcrKyrBx40Y8fvwYw4cP\nR926dfUVo1yc42CMMdXp/DqO69evw9nZWfZw9sLCQty9e1d2tpUh8cDBGGOq0/S3U+FU1RtvvAGJ\nRCJbFgqFeOONN4wmz2EMd8etKNNGe2lpaZg0aZLK2z8bi6bxKmpP3np58VdXf/HixfDx8THo3XHV\n/by13Z4++6+m7auLv7r6qsTL/ada+8+2qex6ed+nyvW1dXdckALe3t7PlbVv317RZnqhRPh6kZCQ\nYPC2VNlOmbqK6shbr0q5Nj83dWk7BlPoP1XXGWvfEZle/xnLd0/T306FU1U9e/bE+PHjZQ9D37lz\nJ5YsWYIDBw5oPmppiKeqGGNMdTrPcVy9ehXDhw/H7du3AQAuLi5Yv349mjdvrvZOtYUHDsYYU53O\nLwBs3rw5UlJSkJ6ejvT0dEgkEqMYNIxJ5blEQ7WlynbK1FVUR956Vcq1+bmpS9sxmEL/qbrOWPsO\nML3+M5bvnqYUJscr2NnZaX3njDHGTI/CqSpjxlNVjDGmOp1PVTHGGGOVKRw4tm/fjh07dlR5HThw\nAPfu3dNHfCaBcxzqlRvDPLmpzZErW5dzHPptj3Mcz1i9ejUkEgm6desmC8LPzw/Xr1/Hxx9/jJEj\nR2o9KMYYY8ZLYY6jV69eWL9+PZycnAAAd+/eRWRkJDZt2oSQkBCDPpeDcxyMMaY6nec4bt68KRs0\nAKBBgwa4efMm6tati1q1aqm9Y8YYY6ZJ4cDRrVs39O3bF+vWrcPatWvRv39/hIaGoqCgAA4ODvqI\n0ehxjkO9cmOYJze1OXJl63KOQ7/tcY7jGT/88AO2b9+OI0eOAACioqIwaNAgCAQCJCQkaD0gxhhj\nxk1hjmPv3r3o3bt3lbIVK1Zg7NixOg1MGZzjYIwx1ek8xzF//vwqNzT86quv8Mcff6i9Q8YYY6ZN\n4cCxa9cuzJo1C8nJyZg1axZSUlKwa9cufcRmMjjHoV65McyTm9ocubJ1Oceh3/Y4x/GMevXqYdeu\nXejRowc6dOiAbdu2QSAQaD0QxhhjpkFujsPW1rbKAFFSUgILCwsIBAIIBAI8fvxYb0HKwzkOxhhT\nnc6ex1FSUmL012nwwMEYY6rT2TPHg4KC4OLigvDwcISHh8Pd3V3tnegSP3Ocnzn+Mj2zunIdddur\naXt+5jg/c1wpNT1X9tq1a7R8+XJ67bXXyN/fnyZOnEh//vknFRUVafS8Wm1REL7e8DPH1Ss3hudW\nm9ozq5Wty88c1297/MxxOUpKSpCcnIz4+HgcOnQI9evXR1xcnOYjlwZ4qooxxlSn82eOy3Pr1i24\nuLiovWNt4IGDMcZUp7MLAL28vOS+2rdvb/BBw5hUnks0VFuqbKdMXUV15K1XpVybn5u6tB2DKfSf\nquuMte8A0+s/Y/nuaUpucjw2NhYAsHz5cgBAZGQkiAgbN27UehCMMcZMh8KpKh8fH6SlpVUp8/X1\nxalTp3QamDJ4qooxxlSn83tVEREOHz4sWz5y5Aj/WDPG2EtM4cCxevVqvPfee3Bzc4Obmxvee+89\nrF69Wh+xmQzOcahXbgzz5KY2R65sXc5x6Lc9znE8w9/fH2fOnEFeXh6IiB/exBhjLzmFOY7s7GzM\nmjULWVlZiI+PR3p6OiQSCUaPHq2vGOXiHAdjTNvi4pKwZMk+FBebw9JSigkTeqFv3xBDh6VVOr+O\nIzw8HKNGjcKCBQtw5swZ/Pvvv/D19cW5c+fU3qm28MDBGNOmuLgkjHlrB25nL5aVNXKehJU/D3yh\nBg+dJ8cfPHiAIUOGwMzMDABgYWEBc3OFM1wvFc5xqFduDPPkpjZHrmxdznGoZ+qkr6sMGgBwO3sx\nPv245ssQOMfxDFtbW+Tk5MiWjx49ijp16mg9EMYYM5TCQuDEgUe4db2s2vXZ1+/rOSLjpnCq6sSJ\nExg/fjy3zxIRAAAgAElEQVTOnz+Ptm3b4v79+9i2bRu8vb31FaNcPFXFGFMVEXDjbB4kv92EJLEI\nknQHnH/UCJ6Ci7hM3+MxrXtuGw9RGK4+/NMA0eqGXu5VJZVKcenSJRARWrVqBQsLC7V3qE08cDDG\nFCl6kI8Tv2VAEp8HSZoVJLfdUFYGiEWXIPbMgzjUEv6D3GHdvjmGdOiGE6eckYEtsu09MBgdfO9i\n88lDBnwX2qXzHEdhYSG+//57zJ49Gx9//DGWLVuGoqIitXf4IuIch3rlxjBPzjkOxeuMte+AauIo\nLMTNnSfxW0w8Jnv+iY7WZ1C3vgATplki8zphUO9CHNn9CHeK6+L3nBB8mNwPwfN7wdqnJSAUIigi\nHH7OpxCGAHRFKMIQAF/nNLw3/0PV4tCg3guR4xg5ciTs7e0xYcIEEBF+/fVXREZGYuvWrVoPhjHG\nlFZSgpLzlyHZ+wiSQyWQXBRBkueJEnN3iBsLIfYrwVdTaqPDIAvYiFoDaK2wSW+xGL7t2+OvpUth\nVlSEUqu6eGX8PIT07av792NCFE5VeXp6Ij09XWGZIfBUFWMvCakUuHABt/48D8lfTyA5bQPJPQ+c\ngRdaie5D3O4xxN2tIY5wQbM2lhAIDB2wcdPZo2Mr+Pn5QSKRQCwWAyg/q8rf31/tHTLGWI3KyoDL\nl1Fy9CRO7c2G5JgZJDddIBGI8dSsL8Qe9yF+zQyfv9YAASG1YWvrZuiIXzoKn8dx4sQJdO7cGW5u\nbnB3d0dQUBBSU1P1GaPR4xyHeuXGME/OOQ7F63Tad0RARgawZQtuj/0U29t+jA+slqGzTwFEbw3E\nO8kjcMnrDfRd1hsH0hvhfqEdYs83w8yf3NCtT22kpmopjv/Rdf8Zy3dPUwqfx1HdIY2AjwMZY9VY\nOG8Rflq2H2VSKwjNi/DOuJ74aN4H5SuJgJs3gdRUlKScwumEh5Ccs8PfCIIE3ZGPfujkVYCgaTaY\n38MaAQGAnZ2VYd8Qq1aNOQ6pVIp27drh4sWL+oxJaZzjYMx4LJy3CF8uSMMj6QZZmYPZm5jeOQ9R\nFiJIUs0h+TcAEqtQnHrSAs0aF0HcxRziHtYQi4GWLcG5CT3R+XUcr732GpYsWQI3N+ObR+SBgzEj\nIZWiWb1wXM/b/9wqM3wAe9vP0SmgFOJQK4iDBAgMBOztDRAnA6CH6zgePnyItm3bonv37ujXrx/6\n9euH/v37q73DFxHnONQr5xyHetsZRY7jzz+BxERg/nzcCx2MnXYjkJNX/R+XTrY38SCvFvYcrI05\nHwvQs6f2Bg1T6z9j+e5pSuFZVfPnzwfwX16DiDjHwdjL5uFD4MgRSA8dwZl9d/B7egF+dngLEul7\neCi1Q8cgQCgZCxQ+v6mV5WMIFf6JykyJUrccyc7OxvHjxyEQCBAYGIgGDRroIzaFeKqKMR25eRNI\nTsb9fadwNOEp/s5uBol1T5x42hpNGkohDrWEONgcYjHQujUgFMrJcZgPx/RZvv8lyJlR0HmO47ff\nfsO0adPQtWtXAEBSUhK+/vprREREqL1TbeGBgzEtIAIuXIA08TDO7c6E5KgAkqfekJh3wf1SRwR6\nF0P8ih3EnYXo2BEQieQ3tXDeIqxcdgClUkuYmRdjzLgePGgYIY1/O0kBLy8vunv3rmz53r175OXl\npWgzjV27do1Gjx5Nb7zxhtw6SoSvFwkJCQZvS5XtlKmrqI689aqUa/NzU5e2YzCF/kv46y+io0fp\n/rxlFBv4Kc2s/Q11szpCdhZPyVUUS6MGPqKVP5XR2bNEUqnx9h2R6fWfsXz3NP3tVJjjICLUr19f\ntly3bl29/JXftGlT/Pzzz0ZxZMOYScvPR+mRozj/+2X8nVCM36/mYIz527iLGAS2yoN4jDWmhdmj\nY0fgzBlbhIby83ZYzRROVU2bNg2nT5/Gm2++CSLCli1b0L59e3z11VdK7SAmJgZxcXFo0KABzp49\nKyuPj4/HpEmTUFpairfeegsfffRRtdtHRETIvaEiT1UxVo379/FwbwqO/n4HkhQhJHeb4bggAM51\nCiH2LYa4ryOCelrD0xP434M92UtG5zkOIsKOHTtw5MgRAEBwcDAGDBig9A6Sk5Nha2uLkSNHygaO\n0tJStGrVCvv370fjxo0REBCATZs2ITU1FSdPnsS0adPQqFEjADxwMFYjIpRmZCJ9y1lI4h9BcsYW\nkvx2uC1wQYDbPYg7CyEe4IxOIbVQt66hg2XGQuc5jvz8fJJKpUREdPHiRfrjjz+opKREpfmw69ev\nU7t27WTLf//9N4WFhcmWv/jiC/riiy+qbJOTk0PvvPMONW/enL788stq21UifL3gHId65cYwT25q\nc+RUWkq7lqymPe/uojme26hnrUNkL8ijFrZZNDIwnX6c+Q+lnZDS/v3y26sx/6FkPxlD3xGZXv8Z\ny3dP099OhTmO4OBgHD58GLm5uQgLC0NAQAB+++03bNxY88Pba5KVlQVXV1fZsouLC1JSUqrUcXR0\nxIoVKxS2FR0dDXd3dwCAg4MDfHx8EBoaCuC/C190vVxBG+2lpaWZVLyaxJ+WlqaT92fIz1uV9sZE\nv4vY30/AUtAIxXQb/Qb4483oIVXqlxWXwOlePUj+yMaOpPM4n+OEe+SMTs5N0cj9CLqPI2yabod6\n9e2RmHgZAODt1wSJier1f3Xx11Tf0MuG7D9dtV9B1fXyvk8V/167di0AyH4vNaFwqsrX1xenTp3C\n0qVLUVhYiA8//BDe3t44ffq00jvJzMxEv379ZFNV27dvR3x8PP7v//4PALBhwwakpKRg6dKlqgXP\nU1XMRFV/zcMITHy/HcT1e5Y/5vScHVIetUQ9yycQN80uv6/TYFd4dasHc4V/8jEmn86fxwEAEokE\nGzduxKpVqwAAZWVlau8QABo3boybN2/Klm/evAkXFxeN2mTMlPy0bD8eSeOrlD2SbsCn389ASB1z\niNta4P1JFlg/wgwNPFwBuFbfEGMGoPBGAIsXL8YXX3yBAQMGoG3btsjIyEC3bt002mmHDh1w5coV\nZGZmoqSkBFu2bDHp+189ewhpiLZU2U6ZuorqyFuvSrk2Pzd1aTuGmtp7/Bj467dcfDr4LO48bPXs\nlgAAV/sLSHzkgy+OhKD/XF808LBTaR/K1FF1nbH2HcD3qtKkXBMKjzi6du0qu2ocADw8PLBkyRKl\ndzBs2DAcOnQIOTk5cHV1xaeffopRo0Zh2bJlCAsLQ2lpKUaPHo02bdqo9w4YM0JEwKVLgOTPx5DE\n3ofklBWu54rgJ7wAsfsd1LG4iaKS57cztyjWf7CMqUhujqNfv37/VXpmPkwgEGDXrl26j04BgUCA\nqKgoREdHIzQ01CiSdbz8ci4/eQKsXJmI9BOFuHPRBynpdrCQ7kVbnMfrrRtC3NMGj1o+hXkrD4T2\n6IGF8xZh/vw/UVA2C0B5ezbCnngzsgVWrv3R4O+Hl1/M5bS0NDx69AiffPKJbq7jqNjp77//juzs\nbIwYMQJEhE2bNsHJyQmLFy9We6fawslxZghEwJUrgEQCSA4WQnKoGBlZteFT6zzE0sMQt3sCcV9H\nNHwtEPDxkXuVHd/XiRmKzq/j8PPzU6rMEJQIXy/4Og71yo3hWgBlYnjyhOjAAaLPPiPq+0ox1bUr\noiZ2OTSkzh5abPkhpQRNouLPFxEdO0YJ+/frLA5V6qp6rUZN64y174j4Og51yzX97VSY43j69Cky\nMjLg4eEBALh27RqePn2q/kjFmBEjAjIy/nc0IQEkh6W4fBnwFt1EkDQJowr2Y2UnQqPw9kBoKOC3\nAFXOjTWSpDFjuqTwOo74+HiMGTMGTZs2BVB+TcbKlSsRFhamlwBrwlNVTFMFBcDx4/8NFEclZbCk\nIogdL0Gcvx/ivHj4drGBZffO5QOFvz/4Igpm6nR+ryoAKCoqwsWLFyEQCNC6dWtYWlqqvUNt4oGD\nqYIIuH69fID4++/y/166RGjvmgux9RmIH8ZB/CAWLl3cyweJioHCwsLAkTOmXXq5APDKlSu4dOkS\nioqKZFeMjxw5Uu2dalN0dLTBz6qqKNPWWQ+TJk1SeftnY9E0XkXtyVsvL/7q6i9evFint4iJj0/E\npUtAUVEoJBLg0KFEmAnLENqqNcQWx+F5bzme/nsY09y6AKGhSLR3x9VWy+DSs+d/7R058sL1X03b\nVxd/dfVViVfXZwmp83lruz1lPw9l2n+2TWXXy/s+Va5fcVaVxhQlQebOnUuhoaFUv359io6OJicn\nJxo0aJBGiRVtUSJ8veDkuHrl2vzcysqIrl0j2riRaNw4In9/ImtrokD/f2livwza3PcX+qddHyqz\nsSV65RWiBQuIjhyhhH37tBYDkWn0HyfHtd/ey5YcVzhV1a5dO5w+fRp+fn44ffo07t69i+HDh2P/\n/v2aj1oa4qmql1dhIXDixH9TThIJIBAAQQH/QlzvCsSFB+F3aRNqXzkDdOr039RTQABQq5ahw2fM\noHQ+VVW7dm2YmZnB3NwceXl5aNCgQZX7TDGma0TAjRuVznSSAOfPA56egNi/GINbpOO7+nvhdvJ3\nCBIuAh07lg8S7y8EAgN5oGBMy4SKKgQEBCA3Nxdvv/02OnToAF9fXwQFBekjNpNReS7RUG2psp0y\ndRXVkbdelXJ5dYuKgCNHgEWLgEGDgMaNy8eCLVuAxnWL8M0bEtwfMwvHBYFYsrEehp34AO6upRB8\n9y3w4AGwfz8wezbQpYvCQUObfadJe/rsP1XXqdJ3+mZq/Wcs3z1NKTziWL58OQBg7NixCAsLw+PH\nj+Ht7a31QNjL6+bN/44k/v4bOHcOaN0aEIuBQX0KsejVFLhf2AvBoUTgr/PlRxGhoeUjS2AgYGVl\n6LfA2EtFqdNxjRXnOExPcTFw8mTVaaeSkvJBQiwGxD5P0aHoCGyOHii/mO7cufK8REWOomNHHigY\n05BeruMwVnyTQ+Nfvn8fAMpPh42PT8S1a4CnZyjEYsDBIRGezQrxposZBIkJSNy5E7h+HaH/y1Ek\nOjgAnp4I7dXLaN4PL/OyKS9r6yaHxnE+q5qMJXw+HbdccTHRDz8k0HffEQ0eTOTqSlS3LtGrrxKN\nHp1ABw8SPcnOJ9q3j2jGDErw9CSysSEKCSH6+GOigweJnj5V+n1og6mdzqlsXT4dV7/tvWyn48rN\ncTx8+LDGAcfR0VH90YoZtbi4JMybtwo2NomwtJRiwoRe6Ns35Ll6t29XnXJKSwMaNgReeQXo2xf4\n7DOgeaOnEEj+RuLatQidPQs4fRrw8yufdho9Ghg7FrC21v+bZIypTe5Ulbu7OwQCQfUbCQS4du2a\nTgNTBuc4tC8uLgkTJ/6JjIwFsjIPj1lYtCgMjRuHVLldR35++SUSQUHl+YmAAMDO7Gn5yoSE8hxF\nWhrg6/tfjkIs5oGCMQN76XMcJhy+UQoLm419+z57rlwonIO2bef/l8QWAy1bAoKiwvKBIjGxfLA4\ndar8GRSVBwobG32/DcZYDTT97VR4HQcA7Ny5E1OnTsUHH3yA2NhYtXf2oqpIQhmyLVW2e7buv/8C\nqanA0qXAqVMVs5dV64jFZjhzBvhpcSGi3RJw5/MoCLqGAPXrl18zUVoKfPwxErduBQ4fLp+n6tlT\nNmhUF582Pzd1aTsGQ/SfqnVUXWesfQeYXv9p2nc1rVe1XBMKr+OYPn06jh8/juHDh4OIsGTJEvz9\n99/44osvtB4M04/cXGDnzv+mnE6eBNzd/3dwUDsX96vZ5t+Mk0DXruX3+fDyApo1Kx8wgoIAW9v/\nKhrJDwpjTHcUDhxxcXFIS0uD2f8efxkdHQ0fHx+jGTiM4e642l6uoMr28t5/aSkgEpWfDvvHH4k4\nfx4oLAxFx46As3Mi+vUDYmNDUacOkBgXh6vx8TDDEGRgCyqOOjywHE3L0pHYdwwwfTpCe/dGaMX+\nU1OVir+6+CrqmOLnre32tP3/rybtKRO/MX3flIlX1+2p8nloO15Vvk/aujuuwhxH+/btkZCQgLp1\n6wIAcnJy0K1bN5w5c0bjnWuKcxzPu3+/6plOJ04ATZpUusCuE6F1nTsQXr4IXLgAXKz039xczBMI\nEFAgwFK0RhFsYIUCjMdFHO/qj3l8NMHYC0HnOY4ZM2bAz88PUVFRiIqKgr+/P2bOnKn2Dl9Ez/4l\noa+2pNLyk5Z+/BHo1SsRLVoAzZsDy5YBtczLMH3ETdxYsQfnI7/Ez9JojF7ZEZ5BDkhq5wl88glw\n5gzg4QF88EF5XuLJE0g7d0Zf5GM6UpGIQ4hHKvoiH6XPXK0tL05VyrX5ualL2zGo254q2ylTt6Y6\nqq4z1r4DTK//NO27mtarWq4JhVNVw4YNQ9euXXH8+HEIBAIsXLgQzs7OWg+EKfbgAXD06H9HE6mp\nQOOGZRC3eoj25un4NvQ02uQchtnF80DStfK7A7ZpU37jp+Bg4O23y/999mz5GU/V6DVhAmZlZOCV\njAxZ2UwPD4SPH6+nd8kYM3ZKnY6blZWFzMxMSKVS2bUdISHPXxCmby/yVFVpafmtw8sT2ATJ4VJk\nZwMdm9yB2O48xP8moeO9WDjmZpSfF1sxQFT8t2VLte/plBQXh7+WLoVZURFKrazwyvjxCOnbV8vv\nkDFmKDq/juOjjz7Cli1b4OnpKUuQAzCK03JfpIHj4UPg6JFSSPY+guRIGY5fsoez5UOIa52EOP8v\niK1OoW1bwMyzVdUBws0NECp1VjVjjAHQwm+nonuStGjRgoqKijS6r4muKBG+Xqh6fxvpoyd0ZvM5\n+inmKEW3P0GtbG+RnfAJdRcepBE2E2i3/8f04N3ZRCtXEiUnE92/r9UYjOV+OcZwvyNTu9eRsnX5\nXlX6bY/vVfUMDw8PlJSUwNLSUv3R6WVEBNy9C1y8iNwT15CSVAzJOTtIspogpdgbDWrZQtwwB+K2\n9zFp+H206+kMs9YdkXhMUOX0OsYYMzYKp6oGDhyI06dPo0ePHrLBQyAQYMmSJXoJsCZGMVUllQLX\nr8tOay27cAkXThZCcqUeJKWBkJh1xk1pQ3Rocg9i/xKIe9qiU7/6qO9sprhtxhjTAZ0/c7x///7o\n37+/LClORHJvfmgIersAsKAAiRs3AjduIFQgAC5eRGJqKvKz8mDh2A8S21cQl++MC7k+cKoXjKC+\nAtRtfBST2/6DUaOawty8iay9+v87K81YLqDiZV7m5ZdjWVsXACo10VVQUEAXLlzQaE5MF5QMX3ll\nZUR37xIlJhKtWEE0cSJRWBhRkyZEVlZU2q49pYdNolX9fqe3ul0hz2ZPycamjNq3T6CPPiL644/y\nzTVhCnPkNa3nHId67XGOQz2m1n/G8t3T9LdT4RHHrl27MG3aNBQXFyMzMxOnTp3C3LlzsWvXLs1H\nLS1KiovDviVLYF5cDKmlJXpNmCD/FNLS0v+mly4+cwU1UH7GUps2eOzeHildhkHSugUkF0VIOSaA\nQ8H/rsDuBYwVA+3bA0eOyL0sgjHGXjgKcxx+fn44ePAgunXrhlOnTgEA2rVrh3PnzuklwJpUzNMl\nxcXhz4kTsaDSRWuzPDwQtnAhQpo1e35wuHoVcHKqclortW6DS+ZtIbnkCMlRASSS8rHFz++/23V0\n6gTwtY+MMVOn8xyHhYUFHBwcqpQJhcZ13cC+JUuqDBoAsCAjA3MiIhDStu1/A8TrrwMzZgAtW+JJ\nmQ2OHfvfVdi7gKMzATu7/waJt98GvL2BWrUM9KYYY8xIKRwB2rZti40bN0IqleLKlSsYP348goKC\n9BGb0syLixEHW4ShA0LRFWHogDjYwiw4GDh7FvTbVlwe8SnW/fsmxv7kC+8gGzg7A3PnAnl55U8w\nPXcOyMwENm0CJkwof5qdsoNGRRJKG9RtS5XtlKmrqI689aqUa/NzU5e2YzCF/lN1nbH2HWB6/Wcs\n3z1NKTziWLp0KRYsWABLS0sMGzYMYWFhmDNnjtYD0cSFx4QN6PO/W4GXO4doOF5xReqr5fd3srYu\nP5IICgJiYsofUsdHE4wxproX4tGxgX7v4Pipn55b79RgKpb98A3E4vL7/THGGNNDjuPSpUtYtGiR\n7CaHFTs9ePCg2jvVNmv7htWWt25jhzfe0HMwjDH2glOY44iIiICfnx8+++wzfP3117KXMbG0lFZb\nbmVVqpf9c45DvXJjmCc3tTlyZetyjkO/7XGO4xkWFhZ49913tb5jbZowoRcyMmYhI2OBrMzDYybG\njw83YFSMMfZikpvjePjwIYgIS5cuRf369TFw4MAqNzp0dHTUW5DyCAQCREVFITo6GgUFQnzyyf+h\npMQMzs6uGD/+FdjYlAEwrkv+eZmXeZmXDbVcccuRTz75RDfP43B3d5d7TyqBQIBr166pvVNtMYqb\nHDLGmInR2TPHMzMzcf369WpfxjBoGJOKkd2QbamynTJ1FdWRt16Vcm1+burSdgym0H+qrjPWvgNM\nr/+M5bunKYU5jsLCQixfvhyHDx+GQCBAcHAw3n33XVip+VhSxhhjpk3hdRwRERGwt7fHiBEjQET4\n9ddfkZeXh61bt+orRrl4qooxxlSn82eOe3p6Ij09XWGZIfDAwRhjqtNZjqOCn58fJBKJbPno0aPw\n9/dXe4cvIs5xqFduDPPkpjZHrmxdznHotz3OcTwjNTUVnTt3hqurKwQCAW7cuIFWrVrBy8sLAoEA\nZ86c0XpQjDHGjJfCqarMzMwaG3B3d9diOKrhqSrGGFOdznMcxowHDsYYU53OcxxMMc5xqFduDPPk\npjZHrmxdznHot72XLcfBAwdjjDGV8FQVY4y9ZHQ+VWVnZ/fcy8XFBQMGDOBbjzDG2EtI4em4EydO\nhKurK4YNGwYA2Lx5MzIyMuDr64uYmBiDz3VGR0cjOjoaoaGhslj0fffJijJttJeWloZJkyapvP2z\nsWgar6L25K2XF3919RcvXgwfHx+D3y1Unc9b2+3ps/9q2r66+Kurr0q83H+qtf9sm8qul/d9qly/\n4u64GiMFvLy8nivz9vYmIqL27dsr2lynlAhfLxISEgzelirbKVNXUR1561Up1+bnpi5tx2AK/afq\nOmPtOyLT6z9j+e5p+tupMMfRqVMnTJ48GREREQCAbdu24dtvv8XRo0fh4+ODtLQ0zUcvNXGOgzHG\nVKfz6zgyMjIwceJEHD16FED5QLJ48WI0btwYJ06cQJcuXdTeuaZ44GCMMdXpPDkuEomwe/duPHjw\nAA8ePMDu3bthZmaG2rVrG3TQMCaV5xIN1ZYq2ylTV1EdeetVKdfm56YubcdgCv2n6jpj7TvA9PrP\nWL57mlI4cLz66qvIy8uTLaenp+PVV1/VeiCMMcZMg8Kpqri4OCxcuBB79uzBpUuXMHLkSGzcuBE+\nPj76ilEunqpijDHVafrbqfB03L59+6KkpASvvPIK8vPzsWPHDrRq1UrtHTLGGDNtcqeqxo8fL3sd\nPHgQjx8/RtOmTbFs2TJMmDBBnzEaPc5xqFduDPPkpjZHrmxdznHot72XLcch94jD398fAoHguWUi\nqlLOGGPs5cL3qmKMsZcM31adMcaYXvHAoQWc41Cv3BjmyU1tjlzZupzj0G97L1uOgwcOxhhjKuEc\nB2OMvWQ4x8EYY0yveODQAs5xqFduDPPkpjZHrmxdznHotz3OcSjwww8/YMuWLZBKpVoPhjHGmPFT\nOcexbNkyXLx4Ef/88w9iY2N1FZdSOMfBGGOq0/m9qp41btw4tXemC8bw6Fhe5mVe5mVTWNbbo2MX\nLVpE33zzDS1atEj274rlb775RqPHD2pKifD1gh8dq165MTx+1NQePapsXX50rH7be9keHavwiOPE\niRM4fvw4+vfvDyLC7t27ERAQgJYtW2o+ajHGGDM5CnMcwcHB2LNnD+zs7AAAT548QZ8+fZCcnKyX\nAGvCOQ7GGFOdzq/juHfvHiwsLGTLFhYWuHfvnto7ZIwxZtoUDhwjR45EYGAg5s2bh7lz56Jjx46I\niorSR2wmoyIJZci2VNlOmbqK6shbr0q5Nj83dWk7BlPoP1XXGWvfAabXf8by3dOUwhzHrFmzEB4e\njuTkZAgEAqxduxa+vr5aD4Qxxphp4HtVMcbYS4bvVcUYY0yveODQAs5xqFduDPPkpjZHrmxdznHo\nt72XLcfBAwdjjDGVcI6DMcZeMpzjYIwxplc8cGgB5zjUKzeGeXJTmyNXti7nOPTbHuc4GGOMsRpw\njoMxxl4ynONgjDGmVzxwaAHnONQrN4Z5clObI1e2Luc49Nse5zgYY4yxGnCOgzHGXjKc42CMMaZX\nPHBoAec41Cs3hnlyU5sjV7Yu5zj02x7nOBhjjLEacI6DMcZeMpzjYIwxplc8cGgB5zjUKzeGeXJT\nmyNXti7nOPTbHuc4GGOMsRpwjoMxxl4ynONgjDGmV0Y7cOzcuRNjxozB0KFD8ddffxk6nBpxjkO9\ncmOYJze1OXJl63KOQ7/tcY7DSLz22mtYuXIlVqxYgS1bthg6HKYDaWlphg6BqYn77iVHOjZq1Chq\n0KABtWvXrkr53r17qVWrVtS8eXP68ssv5W4/depUOnXqVLXr9BA+06G5c+caOgSmJu4706bpb6fO\njzhGjRqF+Pj4KmWlpaUYN24c4uPjkZ6ejk2bNuHChQtYv349Jk+ejNu3b4OI8NFHH6F3797w8fHR\ndZga4akq9csNzdSmOpStq+upKmNhav33onz3dD5wBAcHQyQSVSk7duwYmjdvDnd3d1hYWGDo0KHY\nuXMnIiMj8d1336FRo0ZYunQpDhw4gG3btuGnn37SdZgaWbt2rcHbUmU7ZeoqqiNvvSrlmZmZCuPQ\nNW32nSbt6bP/VF1nrH0HmF7/Gct3T2PaOfCp2fXr16tMVW3dupXeeust2fL69etp3LhxKrfr4eFB\nAPjFL37xi18qvDw8PDT6TTeHAQgEAq20c/XqVa20wxhjTHkGOauqcePGuHnzpmz55s2bcHFxMUQo\njOYoUOYAAAw8SURBVDHGVGSQgaNDhw64cuUKMjMzUVJSgi1btqB///6GCIUxxpiKdD5wDBs2DEFB\nQbh8+TJcXV2xZs0amJubY9myZQgLC4OnpyeGDBmCNm3a6DoUxhhjWmDS96pijDGmf0Z75bgmLl68\niHfffReDBw/GqlWrDB0OU4Ep3WqGPe/69et46623EBERYehQmAoKCgoQFRWFMWPG4Ndff1VY/4U+\n4igrK8PQoUPx22+/GToUpqJHjx7hgw8+wM8//2zoUJgaIiIisHXrVkOHwZS0fv16ODo6om/fvhg6\ndCg2b95cY32jPuKIiYmBk5MTvLy8qpTHx8ejdevWaNGiBRYuXFjttrGxsbIPgemfJn0HAJ999hnG\njRun6zCZHJr2HzM8VfowKysLrq6uAAAzMzPFjWt0FYiOJSUl0cmTJ6tcPCiVSsnDw4OuX79OJSUl\n5O3tTenp6fTLL7/QpEmTKCsrq0ob/fv313fYjNTvu7KyMvrwww9p//79Boyeafrde+ONNwwRNqtE\nlT5cv3497d69m4iIhg4dqrBtg1wAqKzg4ODnbm1Q+XYlAGS3K5k+fToiIyMBAIcOHcKOHTtQVFSE\nbt266TlqBqjfd0uWLMGBAwfw+PFjXL16Fe+8846eI2eA+v338OFDzJw5E2lpaVi4cCE++ugjPUfO\nKqjShxMmTMC4ceMQFxen1KURRj1wVKfyIRUAuLi4ICUlpUqdrl27omvXrvoOjSmgTN9NmDABEyZM\n0HdoTAnK9J+joyNWrFih79CYkuT1obW1NVavXq10O0ad46iOtm5XwvSP+860cf+ZPm31ockNHHy7\nEtPFfWfauP9Mn7b60OQGDr5dienivjNt3H+mT2t9qLOUvhYMHTqUGjZsSLVq1SIXFxdavXo1ERHt\n2bOHWrZsSR4eHvT5558bOEpWHe4708b9Z/p02Ycv9AWAjDHGtM/kpqoYY4wZFg8cjDHGVMIDB2OM\nMZXwwMEYY0wlPHAwxhhTCQ8cjDHGVMIDB2OMMZXwwMH0Yu3atRg/frzW23V3d8fDhw+13m5N+xg7\ndiz+/vtvpbYtKipCx44d4ePjA09PT8yYMUNXYcrk5eXhxx9/1Pl+Kqxbtw537tzR2/6Y4fHAwfRC\nVzfIEwgE0PU1rM/GnpKSArFYrNS2VlZWSEhIQFpaGs6cOYOEhAQcPnxYF2HK5ObmYvny5TrdR2Vr\n167F7du3VdqmtLRUR9EwfeCBg6ntl19+gbe3N3x8fDBy5Eilt4uLi0NQUBAePnyIjIwMdOrUCe3b\nt8fs2bNhZ2f3XP3MzEy0bt0aI0aMgKenJyIiIlBYWChbv3TpUvj7+6N9+/a4dOkSgPJnKMfExKBj\nx47w8/PDrl27AJT/yA0cOBC9e/dGy5YtqzwvYtOmTWjfvj28vLwwffr0amO/cOECWrVqBYFAgNDQ\nUEyZMgUBAQFo06YNjh8/jgEDBqBly5aYM2eObBtra2sAQElJCUpLS+Ho6FilzdLSUjRr1gxA+SNz\nzczMZINLSEgIMjIycOzYMQQFBcHPzw+dO3fG5cuXAQDnz59Hx44d4evrCx8fH1y9ehXTp09HRkYG\nfH19Ze/v66+/RmBgILy9vTFv3rzn3tfWrVsxdepUAMD3338PDw8PAMC1a9fQpUsXAMCnn36KwMBA\neHl5yZ6Tsm3bNqSmpmL48OHw8/NDUVERTpw4gdDQUHTo0AHh4eHIzs4GAISGhmLy5MkICAjAkiVL\nqv18mYnQ2o1R2Evl3Llz1LJlS8rJySEioocPH9ZYf+3atTRu3DjasWMHBQcH06NHj4iIqG/fvrR5\n82YiIlqxYgXZ2to+t+3169dJIBDQ33//TUREMTExtGjRIiIicnd3p2XLlhER0fLly+mtt94iIqIZ\nM2bQhg0biIgoNzeXWrZsSQUFBbRmzRpq1qwZPX78mIqKisjNzY1u3bpFWVlZ1KRJE3rw4AFJpVLq\n3r07/fHHH7J9VLzPb775htasWUNERKGhoTR9+nQiIvr++++pYcOGlJ2dTcXFxeTi4iL7TKRSKXl7\ne5OtrS1Nmzat2s8nPDyczp8/T7GxsRQQEEALFiygoqIiatq0KRERPX78mKRSKRER/fXXXzRo0CAi\nIho3bhxt3LiRiIj+/fdfKiwspMzMzCpPffvzzz9pzJgxRERUWlpKr776KiUlJVXZf3Z2NgUEBBAR\n0aBBgygwMJCysrJo7dq1NHPmTCKq2seRkZEUGxsr+xxOnDhBREQlJSUkFovpwYMHRES0efNmiomJ\nkdV7//33q33/zLTwEQdTy8GDBzF48GDZX88ikajG+kSEgwcP4quvvsKePXtQp04dAMDRo0cREREB\nABg2bJjc7V1dXWXTQyNGjKgy3TNw4EAAgJ+fn+yJZ/v27cOXX34JX19fdOvWDcXFxbhx4wYEAgF6\n9OgBOzs7WFpawtPTE5mZmTh+/DhCQ0NRt25dmJmZYfjw4UhKSnoujn379iE8PFy2XHFn0Xbt2qFd\nu3ZwcnJCrVq10KxZM9y4cQNA+TOc09LScOvWLSQlJSExMfG5doODg5GUlITk5GTMmDEDhw8fRmpq\nKgICAgCUH4m88cYb8PLywpQpU5Ceng4ACAoKwueff46vvvoKmZmZsLKyem7qbt++fdi3bx98fX3h\n7++PS5cu4erVq1XqODk5IT8/H/n5+bh16xbefPNNJCUl4fDhwwgODgZQ3ucVR4cHDx6UxVDRvwBw\n6dIlnD9/Hj179oSvry8WLFiArKwsWb0hQ4ZU27/MtPDAwdSiam5BIBDAw8MD+fn5sukkVfdXgYiq\nLFtaWgIo/4GWSqWy8h07duDUqVM4deqUbLqrcv3K2zybx3h2HwDw9OlTPHr0CM7Ozs/tWygUVmlX\nKBQ+N49fp04d9O3bF6mpqc+9v5CQECQlJeHYsWPo06cPHj16hMTERISEhAAA5syZgx49euDs2bOI\njY2VTdUNGzYMsbGxqF27Nvr06YOEhIRqP78ZM2bIPovLly9j1KhRz9UJCgrCmjVr0KpVK3Tp0gVJ\nSUmQSCTo3LkzioqK8P7772P79u04c+YM3n77bRQVFcm2rfisiAht27aV7evMmTOIj4////buHyS5\nPQzg+Ne89BZhVC7RYDQJonaOhRr9kYyoRZpqCJKWoKDWpBpagyBcGlpsiMJScGxokJaKQBqksT8E\n0WBRmeEgdu4QHCrrcn15L9335fmM8jz+Ho/g8/ud35GfHldTU/NpfeL3Io1D/BS/308sFtOfNrq/\nvwcgkUgwPz9fEq9pGs3NzcTjcYLBoD5b9Xq9xONxAKLR6JfjXV1dcXR0BMDW1pY+C/7KwMDAu/vo\nJycneh0fGQwG3G43+/v73N3dUSwWiUajJccPJ5NJ/H7/P477lqZp3N7e8vDwAEA+n2dvbw9VVUti\n3W43BwcHGI1Gfvz4QWtrK2tra3rjyGazNDU1AbC+vq7nnZ+f09LSwszMDENDQ6TTaWpra3l6enp3\nLSKRCM/Pz8Dr8aGZTKakhu7ubpaXl/H5fKiqSjKZpKqqCpPJpDcJs9lMLpcjFovpeSaTiWw2C4DV\naiWTyejfVaFQeLcyEX8GaRzip9hsNhYWFvD5fCiKom+snp2d6beh3jIYDBgMBqxWK5ubmwwPD3Nx\ncUE4HGZlZQVFUb7MhdcfpNXVVWw2G4+Pj0xNTenv+3EMeJ2hFwoFnE4ndrudxcXFkpi3GhsbWVpa\nore3F0VRaG9vJxAI6DmaprG7u/vuNtVnn+/jazc3N/j9fhRFwePxEAgE6OvrK8mvrKzEYrHg9XqB\n1xVILpfD4XAAMDs7y9zcHC6Xi2KxqI+1s7OD3W5HVVVOT08JBoM0NDTQ2dmJw+EgFArR39/P6Ogo\nHR0dOJ1ORkZGyOVyJTV0dXVxfX1NT08PFRUVWCwWfWO8rq6OiYkJ7HY7g4ODeDwePW98fJzJyUlc\nLhcvLy/E43FCoRCKoqCqKoeHh59eM/H7kvM4xC81NjZGOBzGbDb/q/h8Pk91dTXwuuLY3t4mkUi8\ni7m8vCQQCJBOp395veVoa2vj+PgYo9H4rXUI8d3++u4CxJ9lY2OjrPhUKsX09DSaplFfX08kEvk0\n7r/6H0g5UqnUd5cgxP+CrDiEEEKURfY4hBBClEUahxBCiLJI4xBCCFEWaRxCCCHKIo1DCCFEWaRx\nCCGEKMvft9MTbHrIZDUAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x6230810>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.2.1 Page Number 700 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Adsorption  Isotherm for Phenol in Wastewater\n",
      "import numpy as np\n",
      "from scipy.optimize import root\n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable Declaration\n",
      "M = 1.4                  #Mass of activated carbon in kg\n",
      "S = 1.0                  #Surface area of carbon in m2\n",
      "cF = 0.21                #Concentratio of phenol in feed in kg/m3\n",
      "K = 0.194020642969       #Freundlich proportionality parameter \n",
      "n = 0.222977691192       #Freundlich exponential parameter \n",
      "\n",
      "#Calculations\n",
      "#Amount adsorbed + Amount left in equilibrium solution = Amount fed with solution\n",
      "#M*K*c**n + cF*S = c*S\n",
      "c = arange(0,0.2,0.00001)\n",
      "q = K*c**n\n",
      "q1 = (cF-c)*S/M\n",
      "plt.grid(True)\n",
      "plt.plot(c,q1,'r-',c,q)\n",
      "plt.ylabel('q, kg phenol adsorbed/kg carbon')\n",
      "plt.xlabel('c, kg phenol/m3 waste water')\n",
      "f = lambda x: M*K*x**n + x - cF*S\n",
      "sol = root(f, 0.1)\n",
      "ce = sol.x[0]\n",
      "qe = K*ce**n\n",
      "plt.text(ce+0.01,qe,'Solution')\n",
      "plt.text(ce+0.05,qe+0.02,'Isotherm')\n",
      "plt.text(ce+0.05,qe-0.03,'Mass Balance')\n",
      "plt.plot([0.0,ce,ce],[qe,qe,0.0])\n",
      "plt.plot(ce, qe,'bo')\n",
      "x =str(round(ce,4))\n",
      "plt.text(ce,0.02,'c =' + x)\n",
      "x =str(round(qe,4))\n",
      "plt.text(0.001,qe + 0.005,'q =' + x)\n",
      "ext = (cF-ce)*100/cF\n",
      "\n",
      "#Results\n",
      "print \"Phenol equilibrium amount adsorbrd = \", round(qe,4) , \"kg Phenol/kg carbon\"\n",
      "print \"Phenol equilibrium amount in solution = \", round(ce,4) , \"kg Phenol/m3 solution\"\n",
      "print 'Precent Phenol extracted = %3.1f'%(ext), \"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Phenol equilibrium amount adsorbrd =  0.1048 kg Phenol/kg carbon\n",
        "Phenol equilibrium amount in solution =  0.0632 kg Phenol/m3 solution\n",
        "Precent Phenol extracted = 69.9 %\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEPCAYAAAC6Kkg/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVFfzx7+LoCigWIhEQKnSO4jERLBiA0uwJwIqEhuJ\nJUZjosZYIME3FnzFaKIxxhbNK0aRX4K6lihiKGLEiiKINSoiisLC/P44soqUXeBuAc7nee6D53LL\n7LjcuWdmzoyIiAgcDofD4dQADVULwOFwOJz6BzceHA6Hw6kx3HhwOBwOp8Zw48HhcDicGsONB4fD\n4XBqDDceHA6Hw6kxCjUe8fHxsLGxgZWVFSIjIyv8/uLFi/D29oa2tjZWrFhR7nd5eXkIDAyEra0t\n7OzskJiYqEhRORwOh1MDNBV14ZKSEkybNg0JCQkwMjKCp6cnAgICYGtrKz2mbdu2WLNmDfbu3Vvh\n/I8//hgDBgzA7t27IZFI8PTpU0WJyuFwOJwaorCZR1JSEiwtLWFqagotLS2MGjUKsbGx5Y4xMDCA\nh4cHtLS0yu1//Pgxjh8/jvHjxwMANDU10apVK0WJyuFwOJwaojDjkZubCxMTE+nY2NgYubm5cp17\n/fp1GBgYICQkBG5ubggNDcWzZ88UJSqHw+FwaojCjIdIJKr1uRKJBCkpKZgyZQpSUlKgo6ODiIgI\nAaXjcDgcTl1QWMzDyMgIOTk50nFOTg6MjY3lOtfY2BjGxsbw9PQEAAQGBlZqPIyMjHDr1i1hBOZw\nOJxGgoWFBa5evVqnayhs5uHh4YErV64gKysLRUVF2LlzJwICAio99s3ajIaGhjAxMcHly5cBAAkJ\nCbC3t69w3q1bt0BEfBNoW7hwocplaEgb1yfXpbpumZmZdX7GK2zmoampiejoaPj5+aGkpAQTJkyA\nra0t1q9fDwAICwvDnTt34Onpifz8fGhoaGDVqlXIyMiArq4u1qxZg7Fjx6KoqAgWFhbYtGmTokTl\nvCQrK0vVIjQouD6Fg+tS/VCY8QCA/v37o3///uX2hYWFSf9taGhYzrX1Os7Ozjhz5owixeNwOBxO\nLeErzDlSgoODVS1Cg4LrUzi4LtUPERHV22ZQIpEI9Vh8DofDUQlCPDv5zIMjRSwWq1qEBgXXp3Bw\nXaof3HhwOBwOp8ZwtxWHw+E0MrjbisPhcDgqgRsPjhTuVxYWrk/h4LpUP7jx4HA4HE6N4TEPDofD\naWTwmAcA7NoFcAPC4XA4SqX+G48lS4DevYGMDFVLUu/hfmVh4foUDq5L9aP+G4+UFGDIEMDHB5g1\nC8jPV7VEHA6H0+BpODGPe/eAefOA+HggMhIYOxaoQ0MqDofDaagIEfNoOMajjMREYOpUoEULIDoa\ncHZWjXAcDoejpvCAeWV07QokJQEffAD07QtMnw48eqRqqeoF3K8sLFyfwsF1qX40POMBAE2aAGFh\nLIheXAzY2gI//giUlqpaMg6Hw2kQNDy3VWUkJzNXFhGwdi3g4aF44TgcDkdN4W4reXF3B06eBD76\nCBg0iM1K/v1X1VJxOBxOvaVxGA8A0NAAQkKAixeBZs0AOzsgJgYoKVG1ZGoD9ysLC9encHBdqh8K\nNR7x8fGwsbGBlZUVIiMjK/z+4sWL8Pb2hra2NlasWFHh9yUlJXB1dYW/v79wQunrA6tXAwkJwLZt\nQJcuwKlTwl2fw+FwGgEKi3mUlJTA2toaCQkJMDIygqenJ7Zv3w5bW1vpMffv38eNGzewd+9etG7d\nGrNmzSp3jf/85z9ITk7GkydPsG/fvorC19VvR8QMyJw5LDMrIgJo37721+NwOJx6gFrHPJKSkmBp\naQlTU1NoaWlh1KhRiI2NLXeMgYEBPDw8oKWlVeH8mzdvIi4uDhMnTlRc8UORiC0mvHABaNsWcHBg\nsxKJRDH343A4nAaCwoxHbm4uTExMpGNjY2Pk5ubKff6MGTPw7bffQkNDCWGZli2BqCjg6FEgNhZw\ncwOOHVP8fdUM7lcWFq5P4eC6VD8U9mQW1aE0yP79+/HWW2/B1dVVuSXX7exYLOTLL9kiw7FjgVu3\nlHd/DofDqSdoKurCRkZGyMnJkY5zcnJgbGws17knT57Evn37EBcXh+fPnyM/Px/jxo3Dli1bKhwb\nHBwMU1NTAIC+vj5cXFzg6+sL4NXbSo3Hw4cDAwZAHBYG2NrC98svgfBwiE+erN316sm4bJ+6yFPf\nx2X71EWe+jz29fVVK3nq21gsFmPz5s0AIH1e1hWFBcwlEgmsra1x6NAhdOjQAV26dKkQMC9j0aJF\n0NPTqxAwB4CjR48iKioKv//+e0XhldEM6soV4OOPgevXgTVrWPl3DofDqceodcBcU1MT0dHR8PPz\ng52dHUaOHAlbW1usX78e69evBwDcuXMHJiYm+O6777BkyRJ07NgRBQUFFa5VFxdYnbGyAg4cYJV6\nJ00CAgOB7GzVyaNAyt5UOMLA9SkcXJfqh8yZx6VLlxAVFYWsrCxIXmYhiUQiHD58WCkCVofS29AW\nFgLffMMysmbOBGbPZgsOGwivu1g4dYfrUzi4LoVFKSXZnZycMHnyZLi5uaFJkybSG7u7u9fpxkKg\nsh7m168DM2YA588Dq1YBAwYoXwYOh8OpJUoxHu7u7khOTq7TTRSFyoxHGQcPAuHhrGrvypWAubnq\nZOFwOJw3eP4cyMpi77uvb3v2KCHm4e/vj7Vr1+L27dt4+PChdOMA6N8f+OcfwNsb8PQEFi5krq16\nCvcrCwvXp3BwXVaORMKMw5EjrOtE2SqDbt2ADh1YNaaAAPZum54OtGsHjBghzL1lpupu3rwZIpEI\nUVFR0n0ikQjXrl0TRoL6TrNmrP3t2LEsBmJnB3z3HTB4MG+Dy+Fw6gQR67B97VrF2cP160BuLquo\nZGb2auvb99W/O3RgNWHfZOTIusvWOPp5KJNDh1j3wk6dWDykc2dVS8ThcNQYiQS4cYMZiMzM8tu1\na+z91Nycba8bCTMzoGNHoGnTmt9TKTGPoqIirFu3DseOHYNIJIKPjw8++uijSutRKRu1NB4AUFTE\n1oQsXw6EhgJffAHo6KhaKg6HoyIKCio3DpmZwM2bwNtvAxYW5Tdzc/azVSvh5VGK8ZgwYQIkEgmC\ngoJARPj555+hqamJjRs31unGQqC2xqOMW7dYxd5jx1jtrOHD1dqVxdMhhYXrUzjUXZdl7qXKjENm\nJvDkyStjUPazbDM1rd3soS4I8eyUGfM4c+YM0tPTpeNevXrBycmpTjdtNHToAGzdyozHtGnA+vVs\nRmJnp2rJOBxODSEC7t5lRScuX2Y/r1wBrl595V563Sj06sXWFVtYsJmFGr831gqZMw83Nzfs2rUL\nlpaWAIDMzEwMHz4cKSkpShGwOtR+5vE6Egmwbh2weDEwbhzLzGrZUtVScTic1yACHjx4ZRheNxRX\nrzIDYWXFQplWVmyztFSce0lRKMVtdejQIYSEhMDMzAwAkJWVhU2bNqFnz551urEQ1CvjUca9e8Dc\nucD//R8reTJ2bMN7JeEoFF1d3UrL+Mhi2bJl+PzzzwGwv2N/f3+cO3dOaPHqBY8fV5xBlG2lpeWN\nw+vGQl9f1ZILg1KMBwA8f/4cly9fBgBYW1ujmZqU5KiXxqOMxERg6lSgRQsgOhpwdla1RGrvV65v\nKEqfenp6ePLkSZ3Oq6vxKCkpkVacUAa10eXz52y2cPHiKyNR9vPZs4qGoWxr167hv88pJeZRWFiI\n//73vzhx4gREIhHee+89TJ48Gdra2nW6caOna1cgKQnYuJElZo8YwVxarVurWjJOPeH27dsYOXIk\nnjx5AolEgpiYGHTr1g3bt2/H8uXLQUQYOHAgIiIiMHfuXBQWFsLV1RUODg5YsmQJSkpKMGnSJJw8\neRJGRkaIjY2FtrY2MjMzMW3aNNy/fx8tWrTAhg0bYG1tjeDgYGhrayMtLQ3dunXDw4cPpeN79+7h\nhx9+wKZNm3DmzBl4eXlh06ZNCtcBEXD/PnDpEjMSZdulSyyLycwMsLZmW7duQHAwMxaGhg3fQCgc\nkkFgYCCNHz+eDh8+TIcOHaIJEyZQYGCgrNOUghzi1w/+/ZcoLIyofXuiH34gKilRtUQcNUZXV5eI\niKKiomjp0qVERFRaWkpPnjyh3Nxc6tixI/37778kkUioZ8+etHfv3nLnERFdv36dNDU16ezZs0RE\nNGLECNq6dSsREfXs2ZOuXLlCRESJiYnUs2dPIiIKCgoif39/Ki0tJSKi4OBgGj16NBERxcbGkp6e\nHv3zzz9UWlpK7u7ulJaWJthnLioiuniRaO9eoogIopAQIm9votat2ebtzfZFRrJjLl5k53AqR4hn\np8yZx/nz55GRkSEd9+zZE3Y8W0hY2rYFYmLYmpCpU1lW1tq1gIeHqiXjqDFdunTB+PHjUVxcjCFD\nhsDZ2RmHDh1Cjx490LZtWwDA2LFjcezYMQwePLjC+WZmZtLMSXd3d2RlZeHp06c4efIkhg8fLj2u\nqKgIAHN1DB8+vFyLBH9/fwCAg4MDDA0NYW9vDwCwt7dHVlYWnGvojn306NXM4fWZRFYWYGwM2Niw\nWYS3NxASwsaNwc2kjsg0Hm5ubjh16hS8vb0BAImJiWpRUbdB4u4OnDwJ/PQTMGgQK3GydCn761AC\nPOYhLIrW53vvvYfjx49j//79CA4OxsyZM9GqVatyvmwiqrIfzuuxyyZNmuD58+coLS1F69atkZqa\nWuk5LVq0KDdu+nKBgoaGRrnraWhoSFs4VMaDB0BGBitM/frPggJmEMq2Dz5gP2/dEqNvX19ZKuEo\nkSqNh6OjIwDWEbBbt24wMTGBSCRCdnY2rK2tlSZgo0NDg71SDR0KLFjA1oQsXsxmJUoMUHLUn+zs\nbBgZGWHixIl48eIFUlNTMWfOHISHh+PBgwfQ19fHjh07EB4eDgDQ0tKCRCKBpmblf/ZEBD09PZiZ\nmWH37t0IDAwEEeHcuXO1Xtv177+vDMPrRqKwkH217e3Zz4ED2U9j48pnEf/+W6vbcxRIlcajrO1r\nZVF5lXb2ayzo67OmUxMnsgWGGzawrKyXM0BFwGcdwqIofZb9/R05cgRRUVHQ0tKCnp4etmzZAkND\nQ0RERKBHjx4gIgwaNEjqWpo0aRKcnJzg7u6OJUuWVPg7Lhv/8ssvmDx5MpYsWYLi4mKMHj1aajyq\nOufBA+DZMxH++19mIOLjgd9+E0EkemUg7O0Bf3/2byOjmrma+HdT/ag2VVcikcDBwQEXL15Upkxy\nU69TdWsCEbBtGyt10rcvEBHBSmlyOErmyRPWhSA9HTh3jm0ZGWwNrL19eUNhZ9cwV1Y3BBSeqqup\nqQlra2vcuHEDnTp1qtONOHVAJGKLCf39mQvLwYEV7p8yBajCBVEbeMxDWOqzPiUSth7idSORns7W\nuNrZAY6OgJMTMGQIMxSKTn2tz7psqMhsBvXw4UPY29ujZ8+e8Pf3h7+/PwICAuS+QXx8PGxsbGBl\nZYXIyMgKv7948SK8vb2hra2NFStWSPfn5OSgR48esLe3h4ODA1avXi33PRssLVuyAotHjwKxsYCb\nG6ubxeHUEiLg9m1W8CAqCggKAlxd2VctIADYuZOF2saNY8fk5wNnzrDGQ598AvTuzWcXjRWZK8yr\n6uAlz1tASUkJrK2tkZCQACMjI3h6emL79u2wtbWVHnP//n3cuHEDe/fuRevWrTFr1iwAwJ07d3Dn\nzh24uLigoKAA7u7u2Lt3b7lzG43bqjKIgN27gVmzgPfeA779lhVi5HCq4MULFo9ITX01oyireerk\n9Go24ejIZhO8i0DDRSkrzOsyVUxKSoKlpSVMTU0BAKNGjUJsbGw5A2BgYAADAwMcOHCg3LmGhoYw\nNDQEwGr52Nra4tatW+XObdSIRKzE+4ABLJ3XyYnVzAoPV359Z47akZcHpKWxLTWV/bx8mRXxc3Fh\n1XAGDmSGgq+25tQGmW6rU6dOwdPTE7q6utDS0oKGhgZaylkNNjc3FyYmJtKxsbExcnNzayxkVlYW\nUlNT4eXlVeNzGzw6OsCyZWx9yKFD7KmQkFCrS/E+0cKiDH0SsTIcv/8OfP01MGwYK8lhYgLMn8/i\nFu+9B/zwA1uAd+4c8PPPrGNy3771x+XEv5vqh8yZx7Rp07Bjxw6MGDECf//9N7Zs2YJLly7JdXEh\nUnoLCgoQGBiIVatWQVdXt8Lvg4ODpTMbfX19uLi4SGdLZV+4RjHu3BniOXOAkyfhO2kS4O4OcWAg\n0L693NdLS0tTn8/TAMZC6/PQITFu3gS0tHyRmgocPizG1auAtrYvXF2BNm3EcHAAIiJ8YWEBHD+u\nXvrgY9WNxWIxNm/eDADS52VdkRnzcHd3R3JyMpycnKRNoVxcXKR/GNWRmJiIRYsWIT4+HgCwfPly\naGho4LPPPqtw7FdffQVdXV1pzAMAiouLMWjQIPTv3x+ffPJJReEbc8yjOgoLgW++YetEZs5kr5lq\nUgmZIx+lpawi7N9/v9rS0gADA5Yn4erK3E+urtztxKk5Sol56Ojo4MWLF3B2dsacOXNgaGgo9009\nPDxw5coVZGVloUOHDti5cye2b99e6bFvXpOIMGHCBNjZ2VVqODjV0Lw5azY1bhwwYwZL7V21isVH\nOGoHEXD9enlDkZLCCiy7u7MSZwsWMKPRpo2qpeVwGDJnHllZWWjfvj2Kiorw3XffIT8/H1OmTJF2\nFpTFwYMH8cknn6CkpAQTJkzAvHnzsH79egBAWFgY7ty5A09PT+Tn50NDQwN6enrIyMhAWloaunfv\nDicnJ6n7a/ny5ejXr98r4fnMQz4OHmSBdFtbYOVK1kS5EsQ8l15QKtMnEZCdXd5QJCez0JWHx6vN\n3V1pJc3qBfy7KSxKaQZVUFCA5s2bSxu/lJSU4MWLFxUKpKkCbjxqwIsXwH/+w5L5p01jmVnNm5c7\nhP+BCotYLIarqy/OnGG9v06fZpuGBuDpWd5QvEws5FQB/24Ki1KMh5eXFw4dOiQNVj958gR+fn44\nefJknW4sBNx41ILsbBYDOXMG+O47VrmXO8wFoaSEraMoMxSJicCNGywu0bUr27y8al7XicMRGqUY\nj8qC4/IGzBUNNx514NAhYPp0oFMnFg/p3FnVEtU77tx5ZSQSE5n76e23XxmJrl3ZOgotLVVLyuGU\nR4hnp8x1Hjo6OkhOTpaO//77bzR/w93RkPjpp5/QuXNndO7cGVu2bKn0mGPHjsHNzQ1aWlrYs2dP\njc4PDw+Hnp6edPzvv/+iX79+cHFxgYODgzSdTuH06sXSd3r3Bt55B5g3D+KDB5Vz73pISQlTV3Q0\nMHo0YGrKajzFxLBEts8+Yw2LLl1i7VimTAHy88XccAhEWdopR42Q1WowKSmJzM3NqVu3btStWzcy\nNzenM2fO1LGBoTDIIX6NePDgAZmbm9OjR4/o0aNH0n+/SVZWFqWnp9O4ceNo9+7dcp9/5swZ+vDD\nD0lPT0+6b+HChTR37lwiIrp//z61adOGiouLBf1cMsnNJRo7lo4YGBDt3En0ss1oY6aggOjwYaLF\ni4n69iVq2ZLIxoZowgSiH39kbU5ldQs+cuSIUmRtDHBdCosQz06Zqbqenp64cOGCdGGgtbW1tHuY\nOrF06VJs2bIFb731FkxMTODu7l5uzYg8/N///R/69u0LfX19AECfPn0QHx+PUaNGlTuurMKwhoaG\n3OeXlJRgzpw52LZtG/73v/9Jz3n77bel62fy8/PRtm3bKpv1KIwOHYCtW+F77BgLpq9fD6xZw16t\nGwl37gB//QWcOMF+nj/PFuu/+y6bRWzdytZY1AQe4BUOrkv1Q66nVNOmTaWdBdWR5ORk7Ny5E2fP\nnkVxcTHc3NzgUUn/723btuHbb7+tsN/Kygq7du1Cbm4ujI2NpftrWk7l1q1bVZ4fHR2NwYMHS+t1\nlREaGoqePXuiQ4cOePLkCXbt2iX3/QSne3e2wGDdOsDHh60TWbiQlVhtQBAxF5NYzAoUnzjBmhl1\n68a2FStYFlQD9s5yOHVGya+4iuH48eMYNmwYtLW1oa2tjYCAgEqDQWPGjMGYMWOqvI6iOiTeunUL\nu3fvhlgsriDXsmXL4OLiArFYjMzMTPTp0wdnz54tFxdRFtJ0yOnTgREjgHnz2NqQyEjWT6Sepgi9\nbizKtqIioEcPZi9nz2aTLA2ZEcCawdNLhYPrUv0Q+M9FNbyZOVCZ4QBYe01XV9cK24gRIwAARkZG\nyMnJkR6fk5NTbiZR1b3LqOr8tLQ0XL16FZaWljA3N8ezZ8/Q+WV208mTJzF8+HAAgIWFBczMzOSu\nHaZQ2rdnTRv27GEpvd27A2fPqloquShbsb1pE+tPYWrKcgL+/JPNLP78E7h1izVn/OgjtgBfaMPB\n4TR4ZAVF/v77b0pOTi63Xb16VflB3UooEz8lJYWcnJyosLCQ8vPzycrKilasWFHj6z18+JDMzMzo\n0aNH5f5dFUFBQeUC5vKer6urK/33jBkzaNGiRUREdOfOHTIyMqIHDx7UWHaFIpEQxcQQvfUW0bRp\nRNXoRFVkZ7NA9rhxRB07EhkaEo0eTbR+PdGlSzwHgMN5HTke/bKvIesALy8v0tTUJDc3N3JzcyMt\nLS1ycXEhMzMzio+Pr7MAdeF1BSxdupQ6d+5M7777Lo0ZM4aioqJqdc0ff/yRLC0tydLSkjZv3izd\nv2DBAtq3bx8RsQw0Y2Nj0tHRobZt25KDg4PM81/n9Wyr+/fv06BBg8jJyYkcHBzol19+qZXcSuHf\nf4nCwojatyf64QfZ6UYCs2TJErK3tycnJydydHShb745TdOmEVlbE7VrRzRy5Ctj4ePjQ3///Xe1\n19u7dy9lZGRIxwsWLKCEhARFfwwOR+UoxXgMHTqU/vnnH+n4/PnzNGzYMLp69So5OTnVWYC6UJUC\nFi1aVGvj0ZiROx3y77+JvLyIunQhUlLa9rFjJ8nBwZvmzy+id94h0tF5QO+9d4siI4lSUiraMV9f\nX0pOTq72mm/OHIWGp5cKB9elsAhhPGR6ei9dugR7e3vp2M7ODhcvXoSFhYXCAsxCoM6y1Xvc3Vnz\nqY8+AgYNAsLCgH//FfQWRMDFi6yqvL8/4Od3B9nZ7VBcrIWvvgLu32+DY8fehrv7IUyY4AYXFydM\nmDABRUVFFa71eh+Y3bt3IyQkBKdOncLvv/+OTz/9FG5ubrh27RqCg4Oliz4PHToENzc3ODmVv66p\nqSkWLVoEd3d3ODk5qUd8isNRATKNh729PSZPnoyjR49CLBZjypQpsLOzw4sXL6ClpstnFy5ciJkz\nZ6pajHpHjbJZNDSAkBD2hG/W7NVy65KSWt//2TMgLo4tNbGwYIvfz55liV4ZGX1hbp6DvXut8b//\nTcWZM8fw/PlzhISEYNeuXUhPT4dEIsG6desqXPf1F4myf3t7eyMgIABRUVFISUmBubk5RCIRRCJR\ntdcViUQwMDBAcnIyJk+ejKioqCo/D88OEg6uS/VDpvHYvHkzLCwssHLlSqxatQrm5ub46aefoKWl\nhcOHDytDRo46o6/PpgcJCSx9qUsX4NQpuU+/do2V/BgwgCV4RUayFqqxsUBODmufOmoUYGrKyuR8\n//33MDAwwMiRI/H999/DzMxM2h4gKCgIx44dq5H4VEkfmUuXLlV73WHDhgEA3NzckJWVVaP7cTgN\nBZnrPC5cuIDZs2dj9uzZ0n379+/HoEGDVLIWgaM46pRL7+TEVtxt2wYEBgJ9++JAryFY/fMZvHih\niWbNJAgP74s+fbrj2DE2w4iLA/LygP792SRm2zZmi6pCQ0MDPj4+8PHxgaOjI9auXVvu928agjJe\nn3kUFhZW+buq9hFRuX3NXnZlbNKkCSQSSZXy8rUJwsF1qX7InHmEhobi3Llz0vH27duxePFihQrF\nqaeIRMzHdOECDjwuwcdBO/HHH0tw9Ogi/PHHEowc+X9o3foYvvySdcTbto2tt9i0CRg+vHrDcfny\nZVy5ckU6Tk1NhYWFBW7cuIHMzEwAwM8//1zpA6Z9+/a4ePEiSktL8b///U9qCPT09JCfn//GRxDB\n2toaWVlZ5a7r4+NTR+VwOA0LmTOP3bt3IzAwENu2bcPx48exZcsW/Pnnn8qQjaNkBHuza9kS3zzo\niMzSJeV2P326FL6+X+LIke41vmRBQQGmT5+OvLw8aGpqwsrKCt9//z1Gjx6N4cOHQyKRoEuXLvjo\no48qnBsREYFBgwbBwMAAHh4eePr0KQBg1KhRCA0NxZo1a/Drr79Kj2/WrBk2bdpU6XXfjJ9Ul5jB\n35SFg+tS/ZDZzwNgGVdDhgxBp06d8Ntvv6lFF0Hg5R/yIlVLwamUTT7ADXGF3T5d50F8arny5eFw\nOFKE6OdR5czjzUKIDx8+RGlpKby8vCASiaSVYFUNLeTNoISipn5lIiA9Hfj1V2DXLlYvasgQ1pxw\n+V9f4M8bFc/R/vsoa4UbHg6oYXVmIeF+euHgulQ/qjQe+/fvB1B1EFIe4uPj8cknn6CkpAQTJ07E\nZ599Vu73Fy9eREhICFJTU7F06dJyJdRlnctRDUTAuXPMWPz6K2uNPmIE8MsvrBJtmRfn2bO+uHZt\nPjIzl0rPtbD4HNM/nQbs/ZmlUa1Zw/JxORxO/aOq1YNubm4UHh5OBw8epMLCwhqvPpRIJGRhYUHX\nr1+noqIicnZ2LlcKgojo3r17dObMGZo/f365FeHynPvS3VZjuTg1p7SUKD2d6IsvWCmQjh2JZs8m\nSkqqvmbU/v1Hyc/vC0InH/Lz+4L27z/66oJ79xKZmhIFBhLduKGcD8LhcIhIwSvMExMTMWTIEBw5\ncgQ+Pj7o378/Vq1ahcuXL8tllJKSkmBpaQlTU1NoaWlh1KhRiI2NLXdMWQDzzcWG8pzLUTzZ2UBE\nBOvDPWgQUFgIbNnCypt/+y3g6Vl9lfaBA7sjPv5rIOQo4uO/xsCBLwPlIhHzbWVksJK2bm7AsmVs\nGsPhcOoFVRoPLS0t9OjRA5GRkTh9+jQ2btwIXV1dfPHFF3Bzc8OUKVOqvXBubi5MTEyk45o0VqrL\nuZzaIxbxk8t0AAAgAElEQVSLkZcHbNwI+PoCrq7MUMTEsBLnUVFsDaBglV+aN2fNps6cAZKSmCGJ\nixPo4qqH990WDq5L9UPuZlBGRkaYMGECJkyYgNLSUpySsYq4LrWlanJucHAwTE1NAQD6+vpwcXGR\nBtbKvnB8XP34nXd8cfAgsGBBGq5eBfr188XHHwM6OmI0bQq8+27drl9Gtcfv3QtxZCQQGgpfd3dg\n5UqIs7PVQj+1HaelpamVPHzceMdisRibN28GAOnzsq5Umarr7+9f+QkvH+z79u2r9sKJiYlYtGgR\n4uPjAQDLly+HhoZGpYHvr776Crq6utKAubznCpFu1pj55x8Wt966lTUM/PBDtji8dWth7yP6SiR/\nVtyLF8B//sOmOdOmAXPn8n6wHI7ACPHsrNJtNWvWLMyaNQvm5uZo0aIFJk2ahNDQUOjo6MDc3Fzm\nhT08PHDlyhVkZWWhqKgIO3fuREBAQKXHvvkhanIup2Y8eQJs2AB07Qr4+QE6OsDp08CxY0BoqPCG\no8Y0a8ba36amAhcusIKLe/eyNC8Oh6M+yIqou7m5ybWvMuLi4qhz585kYWFBy5YtIyKimJgYiomJ\nISKi27dvk7GxMbVs2ZL09fXJxMSEnjx5UuW5byKH+BxiyU1//UU0fjxRq1ZEQ4YQ7d9P9GYzSEX1\nTMCiOvw/JSQQ2doS9evHujzVI3gPCuHguhQWIZ6dMmMez549Q2ZmJiwsLAAA165dw7Nnz+QyTP37\n90f//v3L7QsLC5P+29DQsFzPb1nncmpGQQHw88/A2rVsAd/EiayCuqGhqiWrAb16AWlpbE3IO++w\n6dEXX7ApE4fDURkyy5PEx8dj0qRJMDMzAwBkZWXh+++/h5+fn1IErA4e86icS5eYwdi6lWVNTZsG\n9OghYJZUDalRzKM6bt0C5sxhPraoKFZNkTf94nBqjBDPTrlqWz1//lzaMc3GxkZaklrVcOPxipIS\nYP9+ZjTOnmWzjLAwoGNHVUsmoPEo49gxZhENDNiMxM5OuGtzOI0AhQbMy3j69Cm+/fZbREdHw9nZ\nGdnZ2dLSJRzVU1DAejFZWgLLlwPjxrHFfUuX1txwvJlaq7Z07w6kpLBCWj4+wKxZwBul1dWBeqPP\negDXpfoh03iEhISgadOmOHnyJACgQ4cOmD9/vsIF41TPnTvA/PmAmRl7Ed++HUhMBD74gCUsNXg0\nNYHp01m+8aNHLNd461aelcXhKAmZxiMzMxOfffYZmjZlFVB1eKBSpVy4wFxSdnbA48fMYOzezVJv\n60rZ4qJ6Rfv2wI8/Anv2AN99x2YlZ8+qWioA9VSfagrXpfoh03g0a9asXOvOzMxMtYl5NCZSU4Fh\nw1jgu1Mn4PJl1vv7ZRIcp2tXVuLkgw+Avn3ZrCQvT9VScTgNFpnGY9GiRejXrx9u3ryJMWPGoGfP\nnoiMjFSGbBywsk8BAawwoa8vqzH15ZdAu3bC36ve+5WbNGFZAhkZQHExYGPDZiWlpSoRp97rU43g\nulQ/ZK7z6Nu3L9zc3HD69GkQEVavXo12inhyccqRmAgsXsx6Z8ydy/pnaGurWqp6Qtu2rJpjaCgw\ndSrw/fdsmubhoWrJOJwGg8xUXSLCb7/9hhMnTkAkEuG9997D0KFDlSVftTTEVN30dFad459/gM8/\nB4KD638AXPBU3ZpQWgr89BNT6uDBLA2Nv/xwGjlKSdWdMmUK1q9fDycnJzg4OGD9+vUyy7Fzas71\n66wwYd++QL9+wJUrzANT3w2HytHQAEJC2NL6Zs1YpkFMDFsYw+Fwao1M43HkyBHEx8cjJCQE48eP\nR1xcHA4fPqwM2RoF9+8DH3/MPCqWlsxoTJ+umvbeDdqvrK/PFsQkJADbtrHGJDLaCtSVBq1PJcN1\nqX7INB6WlpbIftlXAQCys7NhaWmpUKEaA0VFrBufrS1bmnDhAuuLpKenaskaOE5OwNGjwMyZrP58\nSAhw966qpeJw6h0y+3k8fvwYZ86cQZcuXSASiZCUlARPT08cPXpUqYJWRn2NeRw4AMyYAVhbs9YV\nVlaqlkixqDTmUR35+Swr4aefWArblCls8SGH08BRaG2rsmliZTcRiUTw8fGp042FoL4Zj0uXmNHI\nzARWrgQaS9FgtTUeZWRkMF/h/fssK6t7d1VLxOEoFEGendXVay8uLiYfH586131XFDLEVxsKC4m+\n/JKoXTuiqCiiFy9ULVHlqGU/D2VRWkq0axeRiQnRmDFEubl1viTvQSEcXJfCIsSzs9qYh6amJpo0\naYI8vlK31hw7Bri4AOfPs6oZs2apJhjOkYFIxEq8X7jAlvA7ObGy70VFqpaMw1FLZK7zCAgIQGpq\nKvr06SOtayUSibB69WqlCFgd6uy2evSItZ6Ij2dVw4cMUbVEqkPt3VaVcfkyS4PLymL/gb17q1oi\nDkcwhHh2yowODhs2DMOGDYPoZdMdIpL+m1M58fGseOHgwWzG0bKlqiXi1JjOnYG4OGDfPrZS3cMD\nWLFCPRqkcDhqgFzNoF68eIHLly8DYM2gtLS0FC6YPKjbzOPpU+DTT1k21aZNQM+eqpaoZojFYoVU\nL62XM4/XKSwEvvmGzUBmzmS+RzlWbypKn40RrkthUcoKc7FYjM6dO2Pq1KmYOnUqrKys5E7TjY+P\nh42NDaysrKosphgeHg4rKys4OzsjNTVVun/58uWwt7eHo6MjxowZgxcvXsj5kVTD6dOAqytrznT2\nbP0zHJxqaN6cLcI5c4ZV7nVwAA4eVLVUHI5qkRVRd3V1pYsXL0rHly5dIldXV5mReIlEQhYWFnT9\n+nUqKioiZ2dnysjIKHfMgQMHqH///kRElJiYSF5eXkREdP36dTIzM6Pnz58TEdGIESNo8+bNFe4h\nh/gKp6SE6JtviN56i+jXX1UtjXpSL7KtakJcHJGVFVFAAFFmpqql4XBqjBDPTpkzD4lEAmtra+m4\nc+fOkEgkMo1SUlISLC0tYWpqCi0tLYwaNQqxsbHljtm3bx+CgoIAAF5eXsjLy8Pdu3fRsmVLaGlp\n4dmzZ5BIJHj27BmMjIxqZhWVwMOHLBD+22/spTQwUNUScZRC//6s3HHXrqzMyaJFzLXF4TQiZBoP\nd3d3TJw4EWKxGEeOHMHEiRPhIUdp69zcXJiYmEjHxsbGyM3NleuYNm3aYNasWejYsSM6dOgAfX19\n9FazbJczZwB3d9aM6ejRhhFH5fWDakCzZqxSb0oKW2RoZwfs3VuuDS7Xp3BwXaofMrOt1q1bh7Vr\n10pTc9977z25qurKm5FFlQRtMjMzsXLlSmRlZaFVq1YYPnw4fvnlF4wdO7bCscHBwTA1NQUA6Ovr\nw8XFRRpYK/vCCT3OzvbF7NnAtGlidO8ONG2q2Pspa5yWlqaQ65eh6s+nsPGuXcChQxCPHw8sWwbf\nrVuBzp0Vpk9fX19oaGigd+/e+Pzzz+Hr6wuJRIJ27drBzs4OJ0+eFPx+wcHB+OOPP6CjowNNTU2M\nHj0a3V+uxK/q/H79+sHb2xsLFy4UXB4+rtlYLBZj8+bNACB9XtaZmvi4Hjx4QGlpaXIde+rUKfLz\n85OOly1bRhEREeWOCQsLo+3bt0vH1tbWdOfOHdqxYwdNmDBBun/Lli00ZcqUCveoofh1RiIhmjOH\nyNyc6Px5pd66XtPgYh5V8eIFKyHQti3R3LlEBQUKu5Wuri65urpSYWEhERHFxcWRi4sL+fv7K+R+\nwcHBtGfPHiIiev78OZmbm1NWVpbc53DUCyGenTLdVj4+PsjPz8fDhw/h7u6O0NBQzJgxQ6ZR8vDw\nwJUrV5CVlYWioiLs3LkTAQEB5Y4JCAjAli1bAACJiYnQ19dH+/btYW1tjcTERBQWFoKIkJCQADs7\nu1oZR6F48gQYOpRlVZ0+zbwUHE45mjZlabzp6UBODiuZvGtXOVeWkAwYMAAHDhwAAGzfvh2jR4+W\nzuSTkpLwzjvvwM3NDd26dZOm2p8/fx5eXl5wdXWFs7MzMjMz8fTpUwwcOBAuLi5wdHTErl27Kr1f\n2bWfPXsGANJFw19//TW6dOkCR0dHhIWFVXru4sWLKz3G19cXc+fOhZeXF6ytrXHixAkAQElJCWbP\nng1HR0c4OzsjOjoaAJCcnAxfX194eHigX79+uHPnTp10yKkDsqyLs7MzERFt2LCBFixYQEREDg4O\nclmmuLg46ty5M1lYWNCyZcuIiCgmJoZiYmKkx0ydOpUsLCzIycmJkpOTpfsjIyPJzs6OHBwcaNy4\ncVRUVFTh+nKILwh37xK5uRFNmKC+damEoFHXtlIAR1auJHJ0JOrZU/Cpqq6uLqWnp1NgYCA9f/6c\nXFxcSCwW06BBg4iIKD8/nyQSCRER/fnnn/T+++8TEdG0adPol19+ISJWu66wsJB2795NoaGh0ms/\nfvy4wv2CgoLIzMyMXFxcSFdXl+bPny/93cOHD6X//vDDD+n3338nIjbz2L17d7XH+Pr60uzZs4mI\nPS969+5NRET//e9/afjw4VRSUkJERPv27aOioiLy9vamf//9l4iIduzYQePHj6+dAhs5Qjw7ZcY8\nSkpKcPv2bezatQtLliwBIH88o3///uj/RunYN99Myt4o3mTOnDmYM2eOXPdRJFlZrLvf6NEsqYYv\nrufIjbMzC6ivWwf4+ADjxrH1IgKVHHB0dERWVha2b9+OgQMHlvtdXl4exo0bh6tXr0IkEkkzJN95\n5x0sXboUN2/exLBhw2BpaQknJyfMnj0bc+fOxaBBg/Duu+9WuJdIJEJUVBSGDRuGp0+folevXhg4\ncCC8vb1x+PBhfPvtt3j27BkePnwIBwcHDBo0SHoegGqPGTZsGADAzc0NWVlZAIBDhw5h8uTJ0NBg\nzhE9PT1cunQJ58+flybPlJSUoEOHDoLoklNzZLqtFixYAD8/P1hYWKBLly7IzMyEVUNvQPGSf/4B\n3nuPVev+6quGbzjKAm0cYfD19WX9QaZPZ1+mR4+YK2vrVsFcWQEBAZg9e3Y5lxUAfPnll+jVqxfO\nnTuH33//HYUvU4lHjx6N33//Hc2bN8eAAQNw5MgRWFlZITU1FY6Ojvjiiy/w9ddfV3tPHR0d+Pr6\n4sSJE3jx4gWmTp2KPXv2ID09HaGhoXj+/Hm5458/f17tMc1ertZv0qRJuWUAr38eX19fEBHs7e2R\nmpqK1NRUpKenIz4+vvbK49QJmcZj+PDhSE9Px7p16wAAFhYW2LNnj8IFUzVnz7JaeJGR7G+fw6kT\n7dsDP/4I7NkDfPcd6xly9mydLzt+/HgsWrQI9vb25fbn5+dL38o3bdok3X/t2jWYmZlh+vTpGDx4\nMNLT03H79m1oa2tj7NixmD17NlJSUiq9V9nDXCKR4PTp07C0tJQapbZt26KgoAC//vprhfPKDEV1\nx7xJnz59sH79epS87DX/6NEj2NjY4P79+0hMTAQAFBcXIyMjQ+a1OIqhSrfV9NeemK/XQSmbhqpD\nVV1Fce4c0K8f6wvUmBb+iXn9IEGpVJ9du7ISJxs3An36ACNHAl9/zXqs14Cyv0MjIyNMmzZNuq9s\n/5w5cxAUFIQlS5Zg4MCB0v27du3C1q1boaWlhbfffhvz589HUlISPv30U2hoaKBp06bSF8U3+fTT\nT7FkyRIUFRWhd+/eGDp0KAAgNDQUDg4OMDQ0hJeXV4Xz9PX1ZR7z5ueaOHEiLl++DCcnJ2hpacHX\n1xcrV67E7t27ER4ejsePH0MikWDGjBkqT6ZprFRZGLEsJ/jkyZPIyMjAyJEjQUT49ddfYW9vj5iY\nGGXKWSmKKIx4/jybcaxcyf6uGxOKMh71vjBiLZGpzwcPgPnz2eLCZcuA4GBAQ6YzoFHCX2yERaFt\naMvw8vLCiRMnpJV0i4uL8e677+L06dN1urEQCG08srKAbt1YAdVK1iNyakljNR5yk5wMTJ3K/h0d\nzcq/czgKRClVdfPy8pCfny8dP3nypEF2FnzwgLmq5s3jhoOjZNzdgZMngbAwwN+f/XzwQNVScTjV\nItN4zJ07F25ubggKCkJQUBDc3Nwwb948ZcimNAoLgYAA1rzppfu4UfJmORFO3aiRPjU0gJAQ1ga3\nWTOWlRUTA7wMGDd2+HdT/ZBpPEJCQpCYmIihQ4di2LBhSExMRHBwsBJEUw5EzNVsagosX65qaTiN\nHn19YPVqICEB2LaNVe09dUrVUnE4FZCrk+CjR49w+fJlPH/+XJoNUVYUTZUI4bf75htg927g2DFA\nW1sgwTjl4DGPWkLEDMicOWylakQES/nlcOqIUmIeGzZsQPfu3dGvXz8sWrQIfn5+WLRoUZ1uqi78\n8QfLqtqzhxsOjhoiErEA3IULQNu2rIPh6tWAHP10OBxFI9N4rFq1CklJSejUqROOHDmC1NRUtGrV\nShmyKZScHFYtYvt24LWWIo0a7lcWFsH02bIlEBXFGsfExgJubmyq3Ijg3031Q6bx0NbWRvPmzQGw\nlaI2Nja4dOmSwgVTJCUlwIcfAuHhrOQQh1MvsLNjsZAvvwQ++IDNSm7dUrVUnEaKTONhYmKCR48e\nYciQIejTpw8CAgKEayaiIqKimDv5s89ULYl6wRdhCYtC9CkSAcOHM1dWp06AkxP7QhcVCX8vNYJ/\nN9UPuQLmZYjFYuTn56Nfv35o2rSpIuWSi9oEfVJTAT8/1ka2UycFCcYpBw+YK5DLl4GPP2YrXNes\nYeUROBwZKCVg/jq+vr4ICAhQC8NRGyQSYOJElmHFDUdFuF9ZWJSiz86dgbg4lokVGspmJdnZir+v\nkuHfTfWjURXSiY4GWrUCgoJULQmHIyAiEVvhmpEB2NsDrq6sVtaLF6qWjNOAqZHbSt2oydQrJ4f9\nTZ08yV7WOMqDu62UzLVrwMyZrMrn6tXAGw3ZOBylu63qM3PmsNpz3HBwGjzm5qxS7+rVLB4yeDAz\nKByOgFRpPHR1daGnp1fp1lKgNprK4swZliL/6aeqlkS94X5lYVG5Pvv3Z81punZlZU4WLWKF3Ooh\nKtclpwJVGo+CggI8efKk0u31KrvVER8fDxsbG1hZWSEyMrLSY8LDw2FlZQVnZ2ekpqZK9+fl5SEw\nMBC2traws7OTdg+rKUTA7Nmsjayubq0uweHUX5o1Y6WiU1JYTMTOjs1K6q+3mqMukBykpaXR6tWr\nac2aNZSWlibPKSSRSMjCwoKuX79ORUVF5OzsTBkZGeWOOXDgAPXv35+IiBITE8nLy0v6u3HjxtEP\nP/xARETFxcWUl5dX4R7yiL9/P5GdHVFxsVxicxQAFsn1NeMog4QEIltbon79iC5dUrU0HBUh56O/\nWuQqTzJ27Fjcv38fd+/exQcffCBXC9qkpCRYWlrC1NQUWlpaGDVqFGJjY8sds2/fPgS9TH3y8vJC\nXl4e7t69i8ePH+P48eMYP348AEBTU7NWJVGIgCVLgIULAc0qG+5yOI2IXr2AtDS2HuSdd9is5OlT\nVUvFqYfINB4bN27E6dOnsXjxYnz99ddITEzEhg0bZF44NzcXJq8VjTI2NkZubq7MY27evInr16/D\nwMAAISEhcHNzQ2hoKJ49e1aTzwUAEItZT53336/xqY0S7lcWFrXVZ9OmwKxZQHo6S0O0tQV27VJr\nV5ba6rIRI9f7uMZrfZU15OyxXFa6XRb0xhdWJBJBIpEgJSUF0dHR8PT0xCeffIKIiAgsXry4wvnB\nwcHScin6+vpwcXGRljKYPVuMIUOAJk3YuOwLWPZ7Pi4/TktLU8j1y1D152so+hRsfPkyMHEifCdN\nAqZNgzgiAggPh+/Lfj0ql4+PBRuLxWJs3rwZAIQrLyXLr7VixQpydHSkhQsX0oIFC8jJyYn+85//\nyPSHnTp1ivz8/KTjZcuWUURERLljwsLCaPv27dKxtbU13blzh27fvk2mpqbS/cePH6eBAwdWuEd1\n4qenE739NtGLFzJF5SgYHvOoBxQXE61eTdSuHdHMmUSPH6taIo4CkePRLxOZ04iZM2di06ZNaN26\nNdq2bYvNmzdjxowZMo2Sh4cHrly5gqysLBQVFWHnzp0ICAgod0xAQAC2bNkCAEhMTIS+vj7at28P\nQ0NDmJiY4PLlywCAhIQE2Nvb18gorlsHTJrEZugcDkcGmprA9OnAP/8Ajx4xV9bWrWrtyuKoGHks\njEQioZs3b1JWVhbduHGDbty4IZdliouLo86dO5OFhQUtW7aMiIhiYmIoJiZGeszUqVPJwsKCnJyc\nKDk5Wbo/LS2NPDw8yMnJiYYOHVqjbKv8fKLWrYlu3pRLTM5Ljhw5opDrNtaZh6L0qRROnSJycyN6\n910iOTMsFUm91qUaIuejv1pkxjzWrFmDr776Cm+99RaaNGki3X/u3DmZhql///7o/0ZphLCwsHLj\n6OjoSs91dnbGmTNnZN6jMrZvB3x9ASOjWp3O4XC6dgWSkoCNG4E+fYCRI4Gvv2Y91jkcyFHbysLC\nAklJSWjbtq2yZJKbquqzvPsuMHcuMGiQCoTiVIDXtqrnPHgAzJ/PFhcuWwYEBwMajaayUYNEKbWt\nOnbsWK/KkWRnAxcvAn37qloSDqeB0LYtEBMDHDgAfP89Wx/y99+qloqjYmS6rczMzNCjRw8MHDhQ\n2sdDJBJh5syZCheuNuzcCQwbxgPltUEsFkvT/Dh1p8Hp092dlaX+6SfA3x8ICGAzESV4JRqcLhsA\ncs08evfujaKiIhQUFEhrXqkrO3YAo0erWgoOp4GioQGEhLA2uM2asaysmBigpETVknGUjNz9PJ4+\nfQodHR1Fy1Mj3vTb5eayls737gGvxfY5KobHPBow6enAtGmsxEl0NODtrWqJOHKglJjHyZMnYWdn\nBxsbGwDA2bNnMWXKlDrdVFEcPMhiHdxwcDhKwsmJ9TuYORMIDGSzkrt3VS0VRwnINB6ffPIJ4uPj\n0a5dOwAshfbo0aMKF6w2HDzIm6bVhTfLiXDqRqPRp0gEjB3LXFlt2wIODqwRlUQi2C0ajS7rEXLl\n23Xs2LHcWFMNS9QWFwOHDgH9+qlaEg6nkdKyJRAVxWYisbGAmxtw7JiqpeIoCLkC5n/99RcAoKio\nCFFRUbC1tVW4YDUlJQXo1Al46y1VS1J/4dkswtJo9WlnByQkAF9+CXzwAZuV3LpVp0s2Wl2qMTKN\nx7p167B27Vrk5ubCyMgIqampWLt2rTJkqxEnTrDFgRwORw0QiYDhw5krq1MnFhuJigKKilQtGUcg\nZBoPAwMDbNu2Dffu3cP9+/fxyy+/qOVq87/+4sajrnC/srBwfQLQ0WFrQU6eZH5lZ2c2K6khXJfq\nh8zgxb1797BhwwZkZWVB8jIAJhKJ8OOPPypcOHkhYjOPlStVLQmHw6mUzp2BuDhg3z4gNBTw8ABW\nrADeiKdy6g8y13l4e3uje/fucHd3lzaCEolEeF8N2vOV5SpfuwZ07w7cvKlqiTiVwdd5cMpRWAhE\nRgJr1rCOhrNmsQWHHKUhxDoPmTOPwsJCREZG1ukmiiYtDXB1VbUUHA5HLpo3BxYtAsaNA2bMeJXa\ny/Ps6xUyYx6DBg3CgQMHlCFLrUlPZ/E4Tt3gfmVh4fqUgbk5S+ldtQoIDwcGDwauXav0UK5L9aNK\n46Grqws9PT2sWrUK/v7+0NbWhp6eHvT09NSuyu7ZsywOx+Fw6iEDBrAOhl27Al26sFlJYaGqpeLI\nQO7aVupImd/OwoJVi35ZQYWjZvCYB0dusrOB2bOBM2dYBkxAAEv75QiKEDEPmcaDiPDbb7/hxIkT\n0NDQwLvvvouhQ4fW6aZCIRKJ8PQpoW1boKCA17RSV7jx4NSYQ4dYT/VOnVg8xMpK1RI1KJRSGHHK\nlClYv349nJycYG9vj5iYGLUqjHj9Ovt+ccNRd7hfWVi4PutAr14sE6Z3b8DbG+KxY1nlXo7aINN4\nHDlyBPHx8QgJCcH48eNx8OBBHD58WK6Lx8fHw8bGBlZWVlVmbIWHh8PKygrOzs5ITU0t97uSkhK4\nurrC39+/yntkZgIWFnKJw+Fw6hNNm7I03vR01mfB1hbYtYst7OKoHJnGw9LSEtnZ2dJxdnY2LC0t\nZV64pKQE06ZNQ3x8PDIyMrB9+3ZcuHCh3DFxcXG4evUqrly5gu+//x6TJ08u9/tVq1bBzs4Oomp8\nntx4CAevHyQsXJ8C0aEDfP/8E9i6FViyhM1GMjJULVWjR6bxyM/Ph62tLXx8fODr6ws7Ozs8efIE\n/v7+CAgIqPK8pKQkWFpawtTUFFpaWhg1ahRiY2PLHbNv3z4EBQUBALy8vJCXl4e7L3sB3Lx5E3Fx\ncZg4cWK1vjluPDicRkL37qwC6pAhgI8Pm5Xk56taqkaLzEWCixcvrrCvLNhS3YwgNzcXJiYm0rGx\nsTFOnz4t85jc3Fy0b98eM2bMwLfffot8GV+Oa9cAPz9Zn4IjD7xPtLBwfQqHVJeamiyQPmIEMG8e\nc2VFRrLKvTwrS6nINB61/fJXZ1he581ZBRFh//79eOutt+Dq6ioz6JiYGAwTE1MkJwP6+vpwcXGR\nylx2Lh/LN05LS1PI9ctQ9edrKPrkY1+gfXuIx40DPDzg+913wPr1EAcFAZaW6iGfmo3FYjE2b94M\nADA1NYUgkII4deoU+fn5ScfLli2jiIiIcseEhYXR9u3bpWNra2u6ffs2zZs3j4yNjcnU1JQMDQ2p\nRYsW9OGHH1a4BwB66y2i27cV9Sk4QoBFCvuacThEEglRTAyRgQHRtGlEjx6pWiK1R4hHv1ydBGuD\nh4cHrly5gqysLBQVFWHnzp0VYiQBAQHYsmULACAxMRH6+vowNDTEsmXLkJOTg+vXr2PHjh3o2bOn\n9Lg3efgQMDBQ1KfgcDhqT5MmQFgY6x1SXMxWC//4I1BaqmrJGjQKMx6ampqIjo6Gn58f7OzsMHLk\nSNja2mL9+vVYv349AGDAgAEwNzeHpaUlwsLC8N///rfSa1XnAmvblq/xEIo33UycusH1KRxy6bJt\nW0c5WvAAABocSURBVCAmBti/H/j+e+Cdd4C//1a4bI0VmSvMHR0dK6xGbNWqFTw9PfHFF1+otDGU\nSCSCiwvhjeUhnFoiVlCAt7GuMFeUPhsjNdZlaSnw00/A55+zEifLljHjwgGgpPIkn376KTQ1NTFm\nzBgQEXbs2IFnz57B0NAQf/31F37//fc6CVAXRCIR/PwI8fEqE4EjB43VeHDUgLw8YMECYMcOYPFi\n1oiKuyqUYzxcXV0rrPwu2+fo6Ihz587VSYC6IBKJMHYsYetWlYnAkQNuPDgqJz0dmDaNlTiJjga8\nvVUtkUpRSm2rkpKScuszkpKSUPoyEKWpKTPTV+G0aqVqCRoO3EcvLFyfwlFnXTo5AUePAjNnAoGB\nwPjxrOQJp9bINB4//PADJkyYAFNTU5iammLChAnYsGEDnj59innz5ilDxmrhxoPD4ciFSMQWE164\nALRpA9jbs4q9EomqJauXyHRbPX/+HNra2sjLywPAFuI9fPgQbdq0UYqA1SESiRARQfjsM1VLwqkO\n7rbiqCUZGWy1+v37zJXVvbuqJVIaSnFbDRs2DMXFxdDX14e+vj5u376N3r171+mmQqKvr2oJOBxO\nvcTODkhIAL78EvjgAzYruXVL1VLVG2Qaj6FDh2LEiBEoKSlBVlYW/Pz8EBERoQzZ5IK7rYSD++iF\nhetTOBSmS5EIGD6cubI6dWKxkagooKhIMfdrQMg0HqGhoejVqxcGDx4Mf39/rFu3Dn379lWGbHLB\njQeHw6kzOjpsLcjJk6yLobMzm5VwqqTKmMeKFSvYAS99Y1u2bIGjoyNcXV0hEokwc+ZMpQpaGSKR\nCMeOEd57T9WScKqDxzw49QoiYN8+4JNPAA8PYMUKoGNHVUslKAqNeTx58gQFBQXSn0OHDoWVlZV0\nn7rQvLmqJeBwOA0KkQgYPJgF1O3tAVdXNit58ULVkqkVMrOt1BmRSIRz5wgODqqWpGHAy5MICy9P\nIhwq1eW1a8CMGcyYrF4N9O+vGjkERCnZVupOs2aqloDD4TRozM2B2Fhg1SogPJzNSq5dU7VUKqfe\nGw9tbVVL0HDgb8nCwvUpHGqhywEDgH/+Abp2Bbp0ARYtAgoLVS2VyuDGg8PhcOSlWTPW/jYlhbmx\n7OzYrKT+ev9rTY2Nx9q1a7Fz505I1GRJP3dbCQdflyAsXJ/CoXa67NgR2LUL2LiRGZMBA4ArV1Qt\nlVKpsfEgIhw/fhxDhw5VhDw1hs88OByOyujVC0hLA3r3ZpV6P/+cVe5tDNS5ka0KAUClpaqWgiML\noXqYHzx4kKytrcnS0pIiIiKqPG769OlkaWlJTk5OlJKSIt3/6NEjev/998nGxoZsbW0pMTGRiIi+\n+OILcnJyImdnZ+rZsydlZ2cTEdEff/xB7u7u5OjoSO7u7nT48GFBPgengZKbSzR2LJGJCdGuXaTO\nDychHv0yU3VXrFhRLq2rrCUsEal8saAQ6WYcxSNEqm5JSQmsra2RkJAAIyMjeHp6Yvv27bC1tS13\nXFxcHKKjoxEXF4fTp0/j448/RmJiIgAgKCgIPj4+GD9+PCQSCZ4+fYpWrVrhyZMn0NPTAwCsWbMG\nZ8+excaNG5GWlgZDQ0MYGhri/Pnz8PPzw82bN+v0OTiNgGPHWO8QAwNgzRoWF1EzlJKqm5ycjHXr\n1uHWrVvIzc1FTEwMkpOT5V4sGB8fDxsbG1hZWSEyMrLSY8LDw2FlZQVnZ2dp46mcnBz06NED9vb2\ncHBwwOrVq2v40Tg1RZF+5S1btsDZ2RkuLi4YN25cjc9PSkqCpaUlTE1NoaWlhVGjRiE2NrbCcfv2\n7UNQUBAAwMvLC3l5ebh79y4eP36M48ePY/z48QBYL5pWL2vblBkOACgoKEC7du0AAC4uLjA0NAQA\n2NnZobCwEMXFxXLLrHZ++npMvdJl9+4soD5kCODjA8yaBeTnq1oqwZHZzSknJwcpKSnSP7CvvvoK\nAwYMwC+//CLz4iUlJZg2bVq5t8WAgIByb4txcXG4evUqrly5gtOnT2Py5MlITEyElpYWvvvuO7i4\nuKCgoADu7u7o06dPhTdNTj3gHrB021KcOnUKbdq0waNHjyocIhaLMWPGjAr7dXR0cOLECeTm5sLE\nxES639jYuFyTsjIqO+7mzZto0qQJDAwMEBISgrNnz8Ld3R2rVq1CixYtAADz58/Hzz//jBYtWkhn\nKq+zZ88euLu7Q0tLq1Yq4DQyNDVZufcRI1hA3dYWiIxklXtfem/qOzJnHvfu3Sv3B6OlpYV7cnbg\nkudtsao3RUNDQ7i4uAAAdHV1YWtri1u8XLJCUVgu/XVgxIgR0h4wrVu3rvTeqampFbYTJ04AeOUu\nlYc3p+MikQgSiQQpKSmYMmUKUlJSoKOjU6469NKlS5GdnY3g4OAKRuz8+fOYO3cu1q9fL7cMZZ+J\nIwz1Vpft2wM//gjs2QN89x2blZw9q2qpBEHmzGPcuHHo0qULhg0bBiLC3r17pQ97WcjztljVm2L7\n9u2l+7KyspCamgovLy+57stRP2T5V48cOVJp/KxFixb466+/YGRkhJycHOn+nJwcGBsbVzj+zeNu\n3rwJIyMjEBGMjY3h6ekJAAgMDKy0tcCYMWMwYMCAcucPGzYMP//8M8zMzGR/UA6nMrp2BZKSWGpv\nnz7AyJHA11/X64ZEMmce8+fPx6ZNm6Cvr482bdpg8+bN+Pzzz+W6uLxvi5W9KZZRUFCAwMBArFq1\nCrq6unJdj1M7FOZXNgN+/fVXPHz4EACkP1+nR48elc48/vrrLwCAh4cHrly5gqysLBQVFWHnzp0I\nCAiocJ2AgABs2bIFAJCYmAh9fX20b98ehoaGMDExweXLlwEACQkJsLe3BwBceS0/PzY2Fq6urgCA\nvLw8DBw4EJGRkfD29q7xx65Xfno1p0HoskkTICyM9Q4pLgZsbNispLRU1ZLVCpkzDwBwd3eHu7t7\njS8uz9tiVW+KAFBcXIz3338fH3zwAYYMGVLpPYKDg2FqagqAtch1cXGRTnHLvnB8LN84LS1NIdfH\nW+wlxMPDAxoaGujevTt+/PHHGl1PU1MTkyZNQvfu3dG0aVNMmDABd+/exd27d3Hp0iUAgLW1NVq0\naAFzc3NYWlqCiPDZaz2Kx40bh4CAADRr1gwWFhYYP348xGIxoqOjcenSJRT+f3v3H1bj/f8B/HmE\nMvKjLlckSYfiqPMj1VEpCZdkuLD8ZltmuGSfjWsj5sLnuvgY2cXWjO1aZWMyjU2XJJ+rWku10pUr\nK5PSWYo2ITmtn8fr+8f5uL9SOKfOqZNej+vyx+H9ut/v8zq38zr3/b7f911bC1tbW8TGxgIANm7c\niMLCQuzcuRM7d+6EWq1GeHg45syZ06n55NevwOvDh5GiUADh4fD/6isgIgIparXR+ktJSUF0dDQA\nCN+X7dbui31foLGxkRwdHamkpITq6+tJJpNRQUFBszbnzp2jGTNmEBFRRkYGKZVKIiJ6/PgxLV++\nnN5///3nbt/Iw2cGYqh1Hoy9cjQaoshIIhsbonffJaqs7JBuDfHdadR7W/Xs2RMRERGYPn06JBIJ\nFi5ciLFjx+LIkSPC5GNQUJDwS3H16tU4dOgQAODSpUs4duwYkpOToVAooFAokJCQYMzhMsZYx+rR\nA3j7be2pLHNz7VVZhw8DGk1nj+yluvzzPLrw8E1OCj/Pw6CMlc/uqNvkMi9Pu8CwpgaIiNDe8sQI\n+HkejDH2KpFKgV9+ATZsAN54AwgJAXRcGtHRuHgwQbf4ZdeBOJ+G061yKRJpFxNeuwZYWWkfhfvZ\nZ4CJ3Mn8CS4ejDFmivr3B8LDtUciP/8MuLlp75tlIrh4MIFwaS0zCM6n4XTrXEokwH//C2zbBixb\npv1jAnfb4OLBGGOmTiQCgoO1p7Ls7bVzI+HhQEND5w2Jr7ZixtZdr7ZizGgKC4F//QtQqbS3fZ86\nVa9wvtqKMca6IycnID4e2LMHWLVKe1RSWtqhQ+DiwQTd+ryyEXA+DYdz2QqRCJgzBygo0F6RpVAA\nu3cD9fUd0j0XD8YY68r69AF27ACys4HffgNcXIDz543eLc95MKPjOQ/GOlB8vHY+RCLRPkPE0bFF\nE57zYIwx1lxQEPD774BSCXh4aI9KamsN3g0XDybg88qGxfk0HM6lnszNgS1bgNxc7ZyIRKJdaGjA\nMzVcPBhj7FVlbw/88IP2CYZhYdqjkqceftYePOfBjI7nPBgzAQ0N2jUh//kPRPfu8ZwHY4wxHfTu\nDWzcqL3tuwFw8WACPq9sWJxPw+FcGpCtrUE2w8WDMcaY3njOgxkdz3kwZlp4nQdjjLFOYdTikZCQ\ngDFjxmD06NH45JNPWm3z3nvvYfTo0ZDJZMjNzdUrlhkWn1c2LM6n4XAuTY/RiodGo0FoaCgSEhJQ\nUFCAEydO4Nq1a83axMfHo6ioCDdu3MBXX32FtWvX6hzLDO/KlSudPYRXCufTcDiXpsdoxSMrKwuj\nRo2Cg4MDevXqhUWLFuHnn39u1ubs2bN48803AQBKpRJVVVWoqKjQKZYZXlVVVWcP4ZXC+TQczqXp\nMVrxKC8vx/Dhw4XXdnZ2KC8v16nN7du3XxrLGGOs8xiteIhEIp3a8dVSpkOlUnX2EF4pnE/D4Vya\nnp7G2vCwYcNw69Yt4fWtW7dgZ2f3wjZlZWWws7NDY2PjS2MBQCwW61ykmG6OHj1qlO2KdnTPz8lY\n+eyOOJeGIxaL270NoxUPd3d33LhxAyqVCra2tjh58iROnDjRrM3s2bMRERGBRYsWITMzEwMHDoSN\njQ2sra1fGgsARUVFxho+Y4yxFzBa8ejZsyciIiIwffp0aDQarFy5EmPHjsWRI0cAAKtXr0ZQUBDi\n4+MxatQo9O3bF1FRUS+MZYwxZhq69ApzxhhjncNkV5jzAkPDak8+HRwcIJVKoVAo4Onp2VFDNlkv\ny+Uff/wBLy8vWFhYYP/+/XrFdkftySfvmy29LJ/Hjx+HTCaDVCqFj48P8p66y65e+yeZoKamJhKL\nxVRSUkINDQ0kk8mooKCgWZtz587RjBkziIgoMzOTlEqlzrHdTXvySUTk4OBA9+7d69Axmypdcvn3\n339TdnY2bd26lcLDw/WK7W7ak08i3jefpUs+09PTqaqqioiIzp8/3+bvTpM88uAFhobV1nz+9ddf\nwr8Tn90EoFsuBw8eDHd3d/Tq1Uvv2O6mPfl8gvfN/6dLPr28vDBgwAAA2v/rZWVlOsc+zSSLBy8w\nNKz25BPQrtmZOnUq3N3d8fXXX3fMoE2ULrk0Ruyrqr054X2zOX3z+c033yAoKKhNsUa72qo9eIGh\nYbU3n2lpabC1tcXdu3cxbdo0jBkzBr6+voYcYpfRnnVFvCappfbm5NKlSxg6dCjvm/+jTz6Tk5MR\nGRmJS5cu6R0LmOiRR3sWGOoS2920NZ/Dhg0DANj+78ljgwcPxty5c5GVldUBozZN7dm/eN9sqb05\nGTp0KADeN5/QNZ95eXlYtWoVzp49i0GDBukVKzDOtE37NDY2kqOjI5WUlFB9ff1LJ3gzMjKESR9d\nYrub9uSzpqaGqquriYhIrVaTt7c3XbhwoWPfgAnRZ//avn17swle3jdbak8+ed9sSZd8/vnnnyQW\niykjI0Pv2KeZZPEgIoqPjycnJycSi8W0e/duIiI6fPgwHT58WGizbt06EovFJJVKKScn54Wx3V1b\n81lcXEwymYxkMhmNGzeO80kvz+WdO3fIzs6O+vfvTwMHDqThw4fTo0ePnhvb3bU1n7xvtu5l+Vy5\nciVZWVmRXC4nuVxOHh4eL4x9Hl4kyBhjTG8mOefBGGPMtHHxYIwxpjcuHowxxvTGxYMxxpjeuHgw\nxhjTGxcPxhhjeuPiwTpEdHQ01q9fb/DtOjg44P79+wbf7ov6WLNmDdLT03WKraurg1KphFwuh0Qi\nQVhYmLGGKXj48CG+/PJLo/fzxNGjR3Hnzp0O64+ZBi4erEMY675OIpHI6Pc4e3bsv/32G7y8vHSK\ntbCwQHJyMq5cuYK8vDwkJycjLS3NGMMUPHjwAIcOHTJqH0+Ljo7G7du39YrRaDRGGg3rKFw8WJt9\n++23kMlkkMvlWLFihc5x586dg7e3N+7fv4/i4mJMmDABUqkUH3/8MSwtLVu0V6lUGDNmDJYtWwaJ\nRILg4GDU1tYK//75559j/PjxkEqluH79OgCgpqYGISEhUCqVcHNzw9mzZwFov+jmzZuHGTNmwMnJ\nCZs2bRK2c+LECUilUri6umLz5s2tjv3atWtwdnaGSCSCv78/NmzYAA8PD4wdOxbZ2dmYO3cunJyc\nsG3bNiHmtddeAwA0NDRAo9HAysqq2TY1Gg0cHR0BAFVVVTAzMxMKjJ+fH4qLi5GVlQVvb2+4ubnB\nx8cHhYWFAID8/HwolUooFArI5XIUFRVh8+bNKC4uhkKhEN7fvn374OnpCZlMhh07drR4X6dOncLG\njRsBAAcPHoRYLAYA3Lx5ExMnTgQA/Pvf/4anpydcXV2xevVqAEBsbCwuX76MpUuXws3NDXV1dcjJ\nyYG/vz/c3d0RGBiIiooKAIC/vz8++OADeHh44LPPPms1v6wLMdIKefaK+/3338nJyUl4EM/9+/df\n2D46OppCQ0Pp9OnT5OvrKzyMZubMmRQTE0NE2lso9OvXr0VsSUkJiUQiSk9PJyKikJAQ4R5HDg4O\nFBERQUREhw4donfeeYeIiMLCwujYsWNERPTgwQNycnKimpoaioqKIkdHR6qurqa6ujoaMWIElZWV\nUXl5Odnb21NlZSU1NTVRQEAA/fTTT0IfT97n/v37KSoqioiI/P39afPmzUREdPDgQRo6dChVVFRQ\nfX092dnZCTlpamoimUxG/fr1ow8//LDV/AQGBlJ+fj7FxcWRh4cH7dq1i+rq6mjkyJFERFRdXU1N\nTU1ERHTx4kWaP38+ERGFhobS8ePHiUh7b6La2lpSqVTk4uIibPvChQv07rvvEhGRRqOh119/nVJT\nU5v1X1FRIdymYv78+eTp6Unl5eUUHR1NW7ZsIaLmn/Hy5cspLi5OyMOT29k0NDSQl5cXVVZWEhFR\nTEwMhYSECO3WrVvX6vtnXQ8febA2SUpKwoIFC4Rf0U/uzPk8RISkpCTs3bsX8fHxwsNoMjMzERwc\nDABYvHjxc+OHDx8unCpatmxZs1M/8+bNAwC4ublBpVIBABITE7Fnzx4oFApMnjwZ9fX1KC0thUgk\nwpQpU2BpaQlzc3NIJBKoVCpkZ2fD398f1tbWMDMzw9KlS5GamtpiHImJiQgMDBRez549GwDg4uIC\nFxcX2NjYoHfv3nB0dERpaSkAwMzMDFeuXEFZWRlSU1ORkpLSYru+vr5ITU3Fr7/+irCwMKSlpeHy\n5cvw8PAAoD0ieeONN+Dq6ooNGzagoKAAAODt7Y3du3dj7969UKlUsLCwaHEaLzExEYmJiVAoFBg/\nfjyuX7+OoqKiZm1sbGygVquhVqtRVlaGJUuWIDU1FWlpacItzpOSkoSjxKSkJGEMTz5fALh+/Try\n8/MxdepUKBQK7Nq1q9kzIRYuXNjq58u6Hi4erE30nWsQiUQQi8VQq9XCqSV9+3uCiJq9Njc3B6D9\nkm5qahL+/vTp08jNzUVubq5w6uvp9k/HPDuv8WwfAPDPP/+gqqoKQ4YMadF3jx49mm23R48eLc7r\nDxgwADNnzsTly5dbvD8/Pz+kpqYiKysLQUFBqKqqQkpKCvz8/AAA27Ztw5QpU3D16lXExcUJp+0W\nL16MuLg49OnTB0FBQUhOTm41f2FhYUIuCgsL8fbbb7do4+3tjaioKDg7O2PixIlITU1FRkYGfHx8\nUFdXh3Xr1uHHH38UbuddV1cnxD7JFRFh3LhxQl95eXlISEgQ2vXt27fV8bGuh4sHa5OAgACcOnVK\nuArpwYMHAIAzZ85gy5YtLdoTEUaMGIHY2FisWLFC+NU6YcIExMbGAgBiYmKe219paSkyMzMBAN9/\n//1LH/gzffr0ZufVc3NzhXE8SyQSwdPTE7/88gvu3bsHjUaDmJgYTJo0qVm75ORkBAQEvLDfpxER\nKisrUVVVBQCora3FxYsXoVAoWrT19PREeno6zMzMYG5uDplMhiNHjgjFo7q6WniuSlRUlBB38+ZN\njBw5EuvXr8ecOXNw9epV9O/fH48ePWqWi8jISNTU1ADQPjHu7t27Lcbg6+uLffv2YdKkSVAoFEhO\nToaFhQUsLS2FQmFtbQ21Wo1Tp04JcZaWlqiurgYAODs74+7du8Jn1djY2OwIhb06uHiwNpFIJNi6\ndSsmTZoEuVwuTLYWFxcLp6SeJhKJIBKJ4OzsjOPHjyM4OBglJSU4cOAAPv30U8jl8ufGAtovpS++\n+AISiQQPHz7E2rVrhe0+2weg/aXe2NgIqVQKFxcXbN++vUWbpw0ZMgR79uzB5MmTIZfL4e7ujlmz\nZgkxRITz5883O2XV2vt79u/u3LmDgIAAyOVyKJVKzJo1C1OmTGkR37t3b9jb22PChAkAtEciarUa\nrq6uAICPPvoIYWFhcHNzg0ajEfr64Ycf4OLiAoVCgfz8fKxYsQJWVlbw8fGBq6srNm3ahGnTpmHJ\nkiXw8vKCVCrFggULoFarW4xh4sSJKC8vh5+fH3r06AF7e3thsnzgwIFYtWoVXFxcEBgYCKVSKcS9\n9dZbWLNmDdzc3PD48WPExsZi06ZNkMvlUCgUyMjIaDVnrGvjW7Izg1q+fDkOHDgAa2trndrX1tai\nT58+ALRHHidPnsSZM2eatVGpVJg1axauXr1q8PHqY/z48cjKyoKZmVmnjoMxU2CSzzBnXdd3332n\nV/ucnByEhoaCiDBo0CBERka22s4Unv+dk5PT2UNgzGTwkQdjjDG98ZwHY4wxvXHxYIwxpjcuHowx\nxvTGxYMxxpjeuHgwxhjTGxcPxhhjevs/x/Zzexqy2UIAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x64e97f0>"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.3.1 Page Number 704 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Scaleup of Laboratory Adsorption Column\n",
      "import numpy as np\n",
      "from scipy.optimize import curve_fit, root\n",
      "import matplotlib.pyplot as plt\n",
      "from scipy.interpolate import interp1d\n",
      "from scipy.integrate import quad\n",
      "\n",
      "#Variable Declaration\n",
      "d = 4.                #Diameter of particle in cm\n",
      "h = 14.               #Length of the bed in cm\n",
      "m = 79.2              #Mass of carbon in gm\n",
      "c0 = 600              #Inlet concentration of alcohol in ppm\n",
      "rho = 0.00115         #Density of air in g/cc\n",
      "Q = 754.              #Flowrate of air (cc/s)\n",
      "cbyc0brk = 0.01       #Ratio of concentration at break point \n",
      "tbb = 6.0             #Break point for new coloumn in hr\n",
      "\n",
      "#Calculations \n",
      "t = np.array([0.0,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.2,6.5,6.8])\n",
      "cbyc0 = np.array([0.0,0.0,0.002,0.030,0.155,0.396,0.658,0.903,0.933,0.975,0.993])\n",
      "\n",
      "def bisection(a,b,tol):\n",
      "    c = (a+b)/2.0\n",
      "    while (b-a)/2.0 > tol:\n",
      "        if f2(c) == 0:\n",
      "            return c\n",
      "        elif f2(a)*f2(c) < 0:\n",
      "            b = c\n",
      "        else :\n",
      "            a = c\n",
      "        c = (a+b)/2.0\n",
      "    return c\n",
      "\n",
      "f = interp1d(t, cbyc0, kind='cubic',bounds_error=False)\n",
      "plt.grid(True)\n",
      "plt.plot(t,cbyc0,'ro')\n",
      "tt = np.arange(0.0,7.,0.01)\n",
      "qi =f(tt)\n",
      "plt.plot(tt,qi,'b-')\n",
      "plt.fill_between(t,cbyc0,1.,color='0.9')\n",
      "plt.xlabel('$time, h$')\n",
      "plt.ylabel('$c/c_0$')\n",
      "plt.ylim(0.,1.)\n",
      "plt.xlim(0.,7.)\n",
      "#PART A\n",
      "f2 = lambda t: f(t)-cbyc0brk\n",
      "tb = bisection(0,4.,0.0001)\n",
      "\n",
      "f3 = lambda t: 1-f(t)\n",
      "\n",
      "tu, err = quad(f3,0.0,tb)\n",
      "tt, err = quad(f3,0.0,t[10])\n",
      "LUB = h*tu/tt\n",
      "LUNB =h*(1-tu/tt)\n",
      "plt.plot([tb,tb],[0.0,1.],'--')\n",
      "plt.plot([0.,tb],[0.01,.01],'--')\n",
      "\n",
      "#Results PART A\n",
      "print \"Results for PART A\"\n",
      "print \"Break point time for c/c0=0.01:\",round(tb,2),\"hr\"\n",
      "print \"Time for usable capacity of bed:\", round(tu,2), \"hr\"\n",
      "print \"Time for complete bed length utilization\", round(tt,2),\"hr\"\n",
      "print \"Length of used bed:\",round(LUB,2),\"cm\"\n",
      "print \"Length of unused bed:\",round(LUNB,2),\"cm\"\n",
      "\n",
      "#PART B\n",
      "print \n",
      "print \"Results for PART B\"\n",
      "LUBB = tbb*LUB/tb\n",
      "print \"Length of used bed:\",round(LUBB,2),\"cm\"\n",
      "LBB = LUBB+LUNB\n",
      "print \"Length of unused bed:\",round(LUNB,2),\"cm\"\n",
      "\n",
      "mdot = Q*rho*3600.\n",
      "OHads = mdot*c0*tt/1e6\n",
      "Csat = OHads/m\n",
      "fracBU = LUBB/LBB\n",
      "\n",
      "print \"Air flow rate:\", round(mdot,2),\"g air/hr\"\n",
      "print \"Alcohol adsorbed:\", round(OHads,2), \"g alcohol\"\n",
      "print \"Saturation Capacity:\", round(Csat,3), \"g alcohol/g carbon\"\n",
      "print \"Fraction of new bed used:\", round(fracBU,3) \n",
      "print 'Length of bed %4.1f cm'%LBB"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Results for PART A\n",
        "Break point time for c/c0=0.01: 3.78 hr\n",
        "Time for usable capacity of bed: 3.84 hr\n",
        "Time for complete bed length utilization 5.26 hr\n",
        "Length of used bed: 10.23 cm\n",
        "Length of unused bed: 3.77 cm\n",
        "\n",
        "Results for PART B\n",
        "Length of used bed: 16.25 cm\n",
        "Length of unused bed: 3.77 cm\n",
        "Air flow rate: 3121.56 g air/hr\n",
        "Alcohol adsorbed: 9.84 g alcohol\n",
        "Saturation Capacity: 0.124 g alcohol/g carbon\n",
        "Fraction of new bed used: 0.812\n",
        "Length of bed 20.0 cm\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAETCAYAAADd6corAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVXW+//HX3twviqaiITSMQIp5yQ5q0eQtC9O0Mhul\n0lJyzNS0cn52avRYTaaTOSelM0eLQtNIu0xqCiVOqEfES5oe00odGRXLjuYNTZDN/v1B4gXCzW2v\ntfZ+Px8PHrVguXlnuj+sz2et79fmdDqdiIiIXMJudAARETEfFQcREalAxUFERCpQcRARkQpUHERE\npAIVBxERqcCQ4jBixAiaN29O+/btf/WcJ598kri4ODp27Mi2bdvcmE5ERAwpDsOHDycrK+tXv75y\n5Ur27t3Lnj17mDdvHqNHj3ZjOhERMaQ43HbbbTRu3PhXv75s2TIeeeQRALp27cqJEyc4cuSIu+KJ\niHg9U84cCgoKiIqKKj+OjIzk0KFDBiYSEfEupiwOAFeu6mGz2QxKIiLifXyNDlCZli1bcvDgwfLj\nQ4cO0bJlywrntWjRQu0mEZFqiomJYe/evVWeY8riMGDAAFJTUxkyZAh5eXk0atSI5s2bVzjvyJEj\nHD582ICEdWPmzJlMnDjR6Bg1ZuX8Zs0+c2YoEycWunCeOfO7Svld53DAkiVBzJzZgFatSnj44bP0\n7FlEw4Zl3ZXZAwfy//K+YQm/5ziNeZYZAEzt3p2pOTmVvqYrnRhDikNycjJr1qzh6NGjREVF8cIL\nL3D+/HkARo0aRd++fVm5ciWxsbGEhITwzjvvGBGz3l16dWRFVs5v1uyzZjVwqTiYNb+rlL9yednZ\n5Kal4VtURElAAE26TeLdj3oTEuLkrbeO06lT2fukzWbD6QQ/Pz+cISE05gSjmHfZazkCA2uVxZDi\nkJGRcdVzUlNT3ZBERMQc8rKzyZsyhVfz8ynCnxf4D/68LoFRj29g4p+uB5zY7XYCAwMJDAzE398f\nm81G36ee4vn8fF7et6/8tZ6LiaHPuHG1ymPKtpK3GDx4sNERasXK+a2cHZTfaPWRPzctjVfz89lB\ne4byLr9lP/tK2zHrm3aEhS0nICAAHx+fCr+uW79+AEyeMwefc+dwBAbSZ9y48s/XlM3Km/3YbDZL\nzxxErhQRcS2HD39vdAwxwH/eN4jGG2/jNZ7hVf7II8zHRtWzg5oqa0tV/dZv2ltZvUFubq7REWrF\nyvmtnB2U32h1nX//fh8W7v5vPudOtpDAo78UBqj97KCmVBxETOTpp08bHUHcyOmE9PRg7r67KfcM\ncnJzq1H8hgPlX38uJoY7ajk7qCm1lUREDHD4sJ1nnmnE6dM+vPuunbZt7axdsYJVl8wO7qiD2UFl\nXGkrqTiIiLiR0wl//3sg//EfYYwZU8rkyb74uvnWIM0cTE59V+NYOTsov9Fqmv/IETsjRzYiNbUh\nmZnwwgvuLwyuUnEQEalnpaUwf34wt9/ejPbt/dm2zYfOnc399qu2kohIHbryKeeIO55h0d+T8PW1\n8+abPrRvb/wiomoriVjMzJmhRkeQWih/ynnNGp7IO8TRNY/wpym3cFvn3eTm+pqiMLhKxcFA3tp3\nNQOzZp81q4FL55k1v6s8NX9uWhrP5p9gEtO5ka+4lu85XBpD6P5J2C32bmvSUYiIiLUUF8PW/Pto\nzRIGsIwddKAlZW1vn3PnDE5XfZo5iJiIls+wplWrAnjhhYY4T2xh+U8p3MCuy74+OSmJl7KyDEpX\nkSszB105iIjUUGGhjcmTG5KX58+0aacID/qe9/5YxMsXF0itkxVSjaDiYKDc3FwSExONjlFjVs5v\n5eyg/Ea5cCdSwY8/EtLgRjIP/o1uPWDt2lNERjbCbr8Pf3//Ol8h1QgqDiImorWVzOvS/RbS+C1/\n4jXaX/Mqj97fieuuu7/8vG79+lmyGFxJMwcRERfMSk7m1TVr+Jbr6ckX/JWnGMwS080TXKHnHERE\n6ohvUREnCONuPuVFpjCYJYA170RyhYqDgTz1Xm8rsHJ2UH4jnPcPYBgL6EMWsaSVf96o/Rbqm4qD\niIgLzsRMZ7P/b3iNZ8o/Z+R+C/VNMwcRkas4dMhOnz5NmTJxBf+X8wa+RUX1ut9CfdN+DiIWM3Nm\nKBMnFhodQy7hdMLDDzemS5fzTJpUQuPGjY2OVGsaSJucFfuul7JyfrNm19pK5vPZZwEUFPjwxBOF\nhIaWLYyYk5NjbCg30HMOIiK/orgYXnqpIS+/fJLgYD/8/PyMjuQ2aiuJmIjWVjKXefNCWLvWn0WL\nTtCoUSMCPeTOJK2tJCJSQ6dP25g9O4SPP/4Jm81GQECA0ZHcSjMHA1mp71oZK+e3cnZQfnd4++0Q\nevQo5vrrSwgJCcFmu7hRj2YOIuJWWlvJHE6ftvHWW8F8/PExbDYbwcHBRkdyO80cRESuMHt2CN9+\n68cbb5wgODiYsLAwoyPVKc0cRESqqbDQxptvls0aAEJCQgxOZAzNHAxkhb5rVayc38rZQfnr03vv\nBZOYWExcXAn+/v74+lb8GdobZg4qDiIivygpgbfeCubxx89gs9lo0MC1hxI9kWYOIiK/WL48kLS0\nED755Bg+Pj40a9bssruUPIWWzxCxmJkzQ42O4NXmzQth1KhCbDYboaGhHlkYXKXiYCAz911dYeX8\nZs2utZWMs3mzH8eO2bnzziIAgoKCfvVczRxERLzEW2+FkJJyBh8fKjz05o0MmTlkZWUxYcIEHA4H\njz32GJMmTbrs60ePHuXhhx/mhx9+oKSkhIkTJ/Loo49WeB3NHMTTaG0lY/z4o53u3ZuxadOPNGjg\nJDw8HB8fH6Nj1RtTzhwcDgdjx44lKyuLXbt2kZGRwe7duy87JzU1lU6dOvHVV1+Rk5PDM888Q0lJ\nibujioiXyMgI5u67z9GggZPAwECPLgyucntx2LRpE7GxsURHR+Pn58eQIUNYunTpZedce+21nDp1\nCoBTp07RpEmTSu81tjoz9l2rw8r5rZwdlL8uORywcGEQQ4eeASjfs6Eq3jBzcPs7bkFBAVFRUeXH\nkZGRbNy48bJzRo4cSa9evYiIiOD06dMsWbLE3TFFDKG1ldzviy8CCA8vpUOHEvz8vGvPhqq4vTi4\nMuSZNm0aN954Izk5Oezbt4877riD7du3V/pAyvjx48uLTcOGDWnXrh2JiYnAxZ9OzHp84XNmyeNN\n+RMTE02V5+LvJYB187t6bKb8Cxb0Y+jQs2zYsIHQ0FDuvPNO4OLVQY8ePSoc9+jRo8qvm+04JyeH\n9PR0AKKjo3GF2wfSeXl5TJ06laysLABeeeUV7Hb7ZUPpvn378vzzz3PrrbcCcPvttzNjxgwSEhIu\ney0NpEWkNg4d8iEpqSmbNx8hNNROeHi4V9ylZMqBdEJCAnv27CE/P5/i4mIWL17MgAEDLjunTZs2\nZGdnA3DkyBG+/fZbWrVq5e6o9c5MfdeasHJ+K2cH5a8rixYFMXDgzwQHV+/2Vc0c6uMb+vqSmppK\nUlISDoeDlJQU4uPjmTt3LgCjRo3iueeeY/jw4XTs2JHS0lL+8pe/cM0117g7qoh4sPPny+5SWrKk\nbPVVb9yzoSpaW0lEvNKqVQHMnh3K8uXHPHLPhqqYsq0kIr9Oayu5z5IlQQwefBbw3j0bqqLiYCCz\n9F1rysr5zZpdayu5x08/2Vi7NoD+/c/96p4NVfGGmYOKg4h4naVLg+jVq4hGjfDqPRuqopmDiIlo\nbSX36Nu3CX/8YyG9e5d47J4NVdHMQUTkCt9958sPP/jQvXux1+/ZUBUVBwMZ3XetLSvnt3J2UP7a\nWLKk7NkGH5+q92yoimYOIuJWWlupfpWUwEcfBfH73/+sPRuuQjMHEfEaX3wRwKuvhrJy5TGP37Oh\nKpo5iIhcYvHisqsG7dlwdSoOBlLf2DhWzg7KXxMnT9rIyQngnnt+dmnPhqpo5iAi4iGWLw+kW7ci\nwsN9tWeDCzRzEBGv0L9/E8aPP8MDDwQRGBhodBxDaeYgYjFaW6l+7Nvnw4EDPvTsWUxAQIDRcSxB\nxcFA6hsbx6zZtbZS/fjgg2AGDjxHo0Z1c/uqZg4iIhbncMCHHwbxwANntWdDNWjmIGIiWlup7q1d\n68/LLzdk3bqzXrVnQ1U0cxARr/fBB2VXDdqzoXpUHAykvrFxrJwdlN9Vp0/bWLUqkMGDHdXes6Eq\nmjmIiFtpbaW69emngSQmFvOb3+iqobo0cxARj3XffdcwevTPDBsWpkX2LqGZg4h4rfx8H/bu9eWe\ne/xVGGpAxcFA6hsbx8rZQfld8cEHQdx77znCwmq2Z0NVvGHmUHcTGhERkygtLSsO779fpKuGGtLM\nQUQ8zrp1/rz4YkO2b7drae5KaOYgYjFaW6l28rKzmZWczItjNtO8aC7rs7KMjmRZKg4GUt/YOGbN\nrrWVai4vO5u8KVP405ptHDp6M4v3TuWz8eNZu2JFnX8vb5g5qDiIiEfITUtjRn4+S/g9t7Oaphzj\n5X37WDVnjtHRLEnFwUCJiYlGR6gVK+e3cnZQ/sr4FhUB8A7DGc475Z/3OXeuzr9Xjx496vw1zUbF\nQUQ8QklAAN/Qmv38lj5cnDU4vHxjn5pScTCQ+sbGsXJ2UP7KJKak8GjD8QzlXXxxAPBcTAx3jBtX\n59/LG2YOes5BxES0tlLNJfTozXf2MDomjmeqX3ccgYH0GTeObv36GR3NkvScg4h4hNWrA/jrXxvw\n5Zd+RkcxPT3nICJeY/HiYIYPNzqF51BxMJD6xsaxcnZQ/iv99JONtWv9eegh93TKvWHmoOIgIpb3\n8cdBJCU5aNxY6yjVFUNmDllZWUyYMAGHw8Fjjz3GpEmTKpyTk5PDU089xfnz52natGmllVozBxFx\nOuH225vyxhs+9Oqln3ddYcqZg8PhYOzYsWRlZbFr1y4yMjLYvXv3ZeecOHGCMWPGsHz5cnbu3MmH\nH37o7pgihtDaStX35Zd+nD9vp2dPFYa65PbfzU2bNhEbG0t0dDR+fn4MGTKEpUuXXnbOe++9x/33\n309kZCQATZs2dXdMt1Df2Dhmza61lapv0aJgUlKcuHNlbs0c6kFBQQFRUVHlx5GRkRQUFFx2zp49\ne/jpp5/o2bMnCQkJvPvuu+6OKSIWcPKkjczMQEaM0LLcdc3tD8G5svHG+fPn2bp1K6tXr+bs2bPc\ncsst3HzzzcTFxbkhoftofRzjWDk7KP8FH38cRO/epTRv7t63Mm9YW8ntxaFly5YcPHiw/PjgwYPl\n7aMLoqKiaNq0KUFBQQQFBdGtWze2b99eaXEYP358+ZVIw4YNadeuXfkfvAuXrjrWsXWOmwCtTZTH\nvMfr1+cyd24Yb73VC7jY6rnwxq3ji8c5OTmkp6cDEB0djSvcfrdSSUkJrVu3ZvXq1URERNClSxcy\nMjKIj48vP+ebb75h7NixfPbZZxQVFdG1a1cWL15M27ZtLw9v8buVcnNzLf0ToJXzmzV7RMS1HD78\n/VXPM2t+V9VF/q1b/Rg3rjF79/pgd3ODPCcnx9JXD67creT2KwdfX19SU1NJSkrC4XCQkpJCfHw8\nc+fOBWDUqFG0adOGPn360KFDB+x2OyNHjqxQGEQ8kdZWct3ChcE89hhuLwzeQmsriYjlnDplo0uX\ncL77zk7z5kansR5TPucgIlJbn3wSxO23l6ow1CMVBwPpXnXjWDk7eHd+pxPefTeYxx837vZVPecg\nImIy27f7UVjoQ+/eWkepPmnmICKW8swzYbRtG8Cf/qQH32pKMwcRi9HaSlU7ccLGypWBjBypwlDf\nVBwM5M19Y6OZNbvWVqrakiXB9Olj/CDaG2YO2kNaRCyhtBTmzw9mwQJdNbiDZg4iJuLqE9LeKCfH\nn1deacT27T5uXYHVE2nmICIeIz09hDFjbCoMbqLiYCBv7RubgZWzg/flP3TIh82b/Xn4YXO8ZXnD\nzMEcv9MiAmhtpV/z7rvBPPRQKSEhRifxHrWaORw4cIAjR47QvHlzrrvuurrM5RLNHEQ8X1ERdO4c\nzrp1dtq0UU+pLtTrqqxz586lqKiI0NBQ1q1bh91uZ8KECTV9ORGRSn36aRDt2ztVGNysxm2lmJgY\nnnzySUaMGMHTTz9Nx44d6zKXV/C2vrGZWDk7eFf+9PRgxo41VwfcG2YO1b5yOHDgANdddx0NGjRg\nxIgRBAYGEhYWRt++fesjn4h4sf/9X19++MGHAQPMVRy8QbVnDsnJyaSnpxMQEMCBAwf4+uuvueuu\nu+orX5U0cxDxbBMnhtG6tT9Tpuh53bpUL8853HnnnQQEBABw3XXXUVJSUrN0IlKB1la66MQJGytW\nBPKHP+iJaCNUuziEh4czePBgli9fzvbt29m5c2d95PIK3tQ3NhuzZtfaShctWRJMUlIpLVqYbxCt\nmUMl+vXrR1xcHOnp6axbt47HH3+8PnKJiBe7sI7S/PmaNRjlqjOHb7/9FrvdTlxcnLsyuUwzB/E0\nWlupTE6OP9OmNWLHDq2jVB/q5DmHmJgYcnJy+Pzzz7Hb7XTu3JmEhIQ6CykicqWydZScKgwGuuo1\nm6+vL71792bMmDGMHj2a0tJS/va3v/HGG2+QnZ2tgXQteEPf2KysnB08O/+FdZSGDjXvHUqaOVSi\nS5cudOnSBShrOaWlpVFcXEzLli1JSkoiRIufiNSY1laCBQuCSU52EBKieYORqv2cw4WH4AAOHz5M\nRERE+b+vW7eOwYMH133KX6GZg4hn0TpK7lEvzzlMmjSJoqIiABwOB5mZmQBERES4tTCIiOf59NMg\n2rUrVWEwgVo9BBcVFaWZQy14ct/Y7KycHTw3vxnXUaqMN8wc9BCciJjCjh1l6yjdc4+eiDaDGu3n\n8N1335Genk5JSQmPP/44rVq1qo9sV6WZg4jneOaZMK6/3o+pU/2MjuLxXJk51GqzH6OpOIinmTkz\nlIkTC42O4XbHj9u45ZZwvv3WZsrlMjxNvQykpe54at/YCsya3VvXVlq8OJikJIdlCoM3zBzM+5SJ\niHiF0tKyZxsWLLBGYfAWaiuJmIg3rq30j38EMGNGQ7Zv99VyGW6itpKImN78+cGMHq11lMxGxcFA\nntY3thIrZwfPyX/ggA9ffunPsGHW6nB7w8xBxUHERLxtbaWydZRKCAnRZYPZaOYgIoY4dw4SEsJZ\nvx7atNGDb+5k2plDVlYWbdq0IS4ujhkzZvzqeZs3b8bX15ePP/7YjelExB2WLQuiUyeHCoNJub04\nOBwOxo4dS1ZWFrt27SIjI4Pdu3dXet6kSZPo06fPVSucVXlK39iKrJwdPCN/enowY8ZYs52kmUM9\n2LRpE7GxsURHR+Pn58eQIUNYunRphfPmzJnDoEGDaNasmbsjikg9ycvOZlZyMm9OfIt/fnOMMPtn\nRkeSX+H24lBQUEBUVFT5cWRkJAUFBRXOWbp0KaNHjwbK+mOeKDEx0egItWLl/FbODtbMn5edTd6U\nKby6Zg0t8gfz/Lm/svqZCaxdscLoaNXWo0cPoyPUO7cXB1fe6CdMmMD06dPLhyae2lYSudLMmaFG\nR6g3uWlpzMjP5yhNWMo9jOBtXt63j1Vz5hgdTSrh9puLW7ZsycGDB8uPDx48SGRk5GXnfPnllwwZ\nMgSAo0ePkpmZiZ+fHwMGDKjweuPHjy+/EmnYsCHt2rUr/6nqQl/WrMfz5s2zVF5Pyn9pz94MeS4c\nz5rVhIkTW1s2f1XHBT/+SA6wiRF0ZQY7OQaAz7lzwMU+/oWfys18fOnMwQx5XMmbnp4OQHR0NK5w\n+62sJSUltG7dmtWrVxMREUGXLl3IyMggPj6+0vOHDx9O//79GThwYIWvWf1W1tzcXEu2By6wcn6z\nZnd1+Qyz5q/KrORkpq9ZRyx7mUQfHuc7ACYnJfFSVpbB6aonJyfH0q0lV25ldfuVg6+vL6mpqSQl\nJeFwOEhJSSE+Pp65c+cCMGrUKHdHMozV/nJfycr5rZwdrJk/MSWF3++OodmP/1deGJ6LiaHPuHEG\nJ6s+KxcGV+khOBET8fSF9/r1KSXC8R4JTVfgCAzkjnHj6Navn9GxvI5pH4KTMp5wr7pVWTk7WDP/\n/v0+HCi4lg82T6TH1Km8lJVl2cKg5xxExK08eW2lBQtCGDbMQVCQZ96a7mnUVhKRenf2LHTu3Jwt\nW2y0aqXiYDS1lUTEFD75JIiuXUtVGCxExcFAVuwbX8rK+a2cHayV3+mE9PQQxo69WBis3rO3en5X\nqDiISL3ats2PwkI7d92l1VetRDMHEalXTz4ZRkJCAJMmqTiYhWYOIhbjaWsrHTtmY9WqQB57TIXB\nalQcDGSlvnFlrJzfrNlnzWrg0nlmzX+l998PYcAAJ02aXP55q/fsrZ7fFdba1VtELMPhKNsj+qOP\n9DOoFWnmIGIinrR8xurVgfznfzZkyxa1lMxGMwcRMcw77wQzZozeYqxK/+cMZJW+8a+xcn4rZwfz\n58/P92H7dj+GDKn8oTer9+ytnt8VKg4iJuIpaystWBDMI49AUJDRSaSmNHMQkTr188/QpUtzNm60\nExNjdBqpjGYOIuJ2y5cH0bkzKgwWp+JgILP3ja/GyvmtnB3MnX/+/BDGjq36rcXqPXur53eFioOI\n1Jnt2/346Sdf+vQxOonUlmYOIlJnnn66ER07BvLss1qa28w0cxCxGCuvrXT8uJ2srEAee0yFwROo\nOBjIzH1jV1g5v1mzW3ltpcWLg+jfH5o2vfq5Vu/ZWz2/K7S2kojUWkkJpKeH8uGHumrwFJo5iJiI\nVddWyswM4M03G7Nhg4qDFWjmICJu8fbbDZgwQYXBk6g4GMiMfePqsHJ+K2cHc+XfudOX/HxfBg50\n/ddYvWdv9fyuUHEQMRErrq2Unt6AJ56w4edndBKpS5o5iEiNHTtm57bbwtmzx+bSXUpiDpo5iEi9\nWrQohIEDXbt9VaxFxcFAZuob14SV81s5O5gjf0mJjQULghk/vvqDaKv37K2e3xUqDiJSIytWBHL9\n9TY6dDA6idQHzRxEpNqcTrjnnnCef96He+81Oo1Ul2YOIhZjlbWVNm3y4+RJO/37G51E6ouKg4HM\n0DeuDSvnN2t2q6ytNHduGM88Y8PHp2a/3uo9e6vnd4XWVhKRavnuO1+2bfPl44+NTiL1STMHEROx\nwtpKEyc2pk2bQCZPNjqJ1JRmDiJSp44c8SEzM4AnnjA6idQ3w4pDVlYWbdq0IS4ujhkzZlT4+qJF\ni+jYsSMdOnTg1ltvZceOHQakrF9G941ry8r5rZwdjMuflhbCgw9Ckya1ex2r9+ytnt8VhswcHA4H\nY8eOJTs7m5YtW9K5c2cGDBhAfHx8+TmtWrVi7dq1hIWFkZWVxR/+8Afy8vKMiCviNmZeW+nMGTvv\nvRfMli1afdUbGDJz2LBhAy+88AJZWVkATJ8+HYBnn3220vOPHz9O+/btOXTo0GWf18xBxH3mzg1h\n9+4GLF6s4mB1rswcDLlyKCgoICoqqvw4MjKSjRs3/ur5aWlp9O3b1x3RRKQSP/8Mc+eGsnKlCoO3\nMKQ42Gyu/wH74osvePvtt1m/fn2lXx8/fnx5oWnYsCHt2rUjMTERuNiXNevxvHnzLJXXk/Jf2rM3\nQx6z53/vvWCio9dw8qQN6AFc7Lv36FH940t79jX59UYfWy1/Tk4O6enpAERHR+MKQ9pKeXl5TJ06\ntbyt9Morr2C325k0adJl5+3YsYOBAweSlZVFbGxshdexelspNze3/C+iFVk5v5Wzg3vznzsHv/td\nc5YutZOQUDevmZOTU/4mZkVWz+9KW8mQ4lBSUkLr1q1ZvXo1ERERdOnShYyMjMsG0gcOHKBXr14s\nXLiQm2++udLXsXpxELGC+fODWbu2AStX6s53T2HamYOvry+pqakkJSXhcDhISUkhPj6euXPnAjBq\n1ChefPFFjh8/zujRowHw8/Nj06ZNRsQVcZuZM0OZOLHQ6BjlioshNTWUDz9UYfA2ekLaQGptGMes\n2V19Qtpd+RctCuazzxqwalXdFgert2Wsnt+0Vw4iYn7FxTB7diiLFukOJW+kKwcREzHT2kpvvx3C\nmjUhfP55DZdeFdPSlYOIVEtedja5aWk4zvow96sPmP3a/wDdjY4lBtCUyUBa38c4Vs4O9ZM/Lzub\nvClTeHXNGsI2/477zq/kn6+nsHbFijr/XlZfm8jq+V2h4iBiIkaurZSblsaM/Hx+pBmzeZKXmMzL\n+/axas4cwzKJcTRzEBEAZg8cyCt5eTzJ62XHjAdgavfuTPWCn5S9iWYOIuKykoAAdtOGDJL5mhvK\nP+8IDDQwlRhFbSUDqe9tHCtnh/rJf8uIFO4KfJM/8WfC+T8AnouJ4Y5x4+r8e1m9Z2/1/K7QlYOI\nAHD8/N3Ywn040voVphZ3xxEYSJ9x4+jWr5/R0cQAmjmICGfPwu23t+Cdd2z07Gl0Gqlv2kNaxGJm\nzgw15Pu+/XYzunZVYZCLVBwMpL63ccyafdasBi6dV1f5bTYbBw+GMW+eL6+9Vicv6RKr9+ytnt8V\nKg4iXszXN5CxY4N4+WWIjDQ6jZiJZg4iJuLOtZX8/Px4550mZGbaWL0aqrFBo1icnnMQkUr5+Phw\n7Ng1zJhhY+NGFQapSG0lA5m17+0qK+e3cnaoXX6bzUbDhk149FE7kydDTEwdBnOR1Xv2Vs/vChUH\nERNxx9pKTZo04c9/9iEsDOrh+TbxEJo5iHiRxo0bk5cXyIMPwrZt0Ly50YnECJo5iAhQ9mYQGhrK\nqVOBDB0Kb7+twiBVU1vJQN7c9zaalbND9fMHBgbi7x/C738Pjz4KffrUTy5XWb1nb/X8rtCVg4iH\n8/f3JywsjKeeshEcDFOnGp1IrEAzBxEP5uPjQ9OmTUlPtzNtGmzeDI0bG51KjKa1lUQspi7XVrLZ\nbDRp0oRVq+w89xysWKHCIK5TcTCQt/W9zcSs2etybaUmTZqwY4cPQ4fCRx9B69a1TVd3rN6zt3p+\nV6g4iHigxo0bs3evH/36wX/9F9x6q9GJxGo0cxAxkdqurXThltWCglB69YLp02Ho0DoMKB5BMwcR\nLxMYGMhDa7m5AAALyklEQVS//hVC797w5z+rMEjNqTgYyKx9b1dZOb+Vs0Pl+f39/fn66zB69bIx\nbRoMH25AMBdZvWdv9fyuUHEQMZGarq3k4+PDmjWNufdeG/Pn64pBak8zBxGLczpt/O1v4cyfb+ej\nj6BzZ6MTidlpbSURD5OXnU1uWhq+RUWUBATQ9oExfLjyfk6ftrN5s9ZLkrqjtpKBPLHvbRVWzJ6X\nnU3elCm8umYNSXl53LamIePGd6dR8D9ZvdpahcHqPXur53eFrhxELCI3LY1X8/M5zLW8xAj2M4JM\nx/18fjoEP78so+OJh9GVg4ESExONjlArVs5vxezOn+1MZxId2MEtBPK/tOc2/gefc+eMjlZtPXr0\nMDpCrVg9vytUHERM5NK1lWy/bOxcWOjDm2+G8d9ffcg2OrGBW/gzkwnhLACOwEBDsopnM6Q4ZGVl\n0aZNG+Li4pgxY0al5zz55JPExcXRsWNHtm3b5uaE7mHFvvelrJzfrNlnzWqAzWbD3z+Af/4zjClT\nmtOlSzi7dwczZ9ZOYmOeJ4695Pxy/nMxMdxhwb0+rd6zt3p+V7i9ODgcDsaOHUtWVha7du0iIyOD\n3bt3X3bOypUr2bt3L3v27GHevHmMHj3a3THdYufOnUZHqBUr56+v7HnZ2cxKTmb2wIHMSk4mLzu7\nyvMvXB34+/sTHFy26N7s2c1JTLyGBx8M4je/sbN7N2RkwPAx3Uh6/XUmJyUxPSaGyUlJ9Hn9dbr1\n61cv/y316auvvjI6Qq1YPb8r3D6Q3rRpE7GxsURHRwMwZMgQli5dSnx8fPk5y5Yt45FHHgGga9eu\nnDhxgiNHjtC8ktsxZiUnk5iSws29e7slf106deqU0RFqxYr5L9wKumHvXgq/+KJO/+yU302Un1/+\nuUn/+hdA+fe4cH+5j48vJ08GsWdPADt2+LJ2rY3168t+jcNhY+FCSEiAX2pHuW79+tGtXz+mTp3K\nVAvv2nPixAmjI9SK1fO7wu3FoaCggKioqPLjyMhINm7ceNVzDh06VGlxmNlzDfxzDcy7+Lmnb3qa\niQkTK567ZSazts6q8Hmjzs89nEvEvAjT5PH0/Je+eU8FiCtg4BV/dmr6+hNunMiaee8yOf8U+4nm\nJGG83uM46T3y4Z/DLvseLfdM4efMF7DboX176NABUlLghjFTmTkTZsyYWuF7iLib25+Q/uijj8jK\nyuLNN98EYOHChWzcuJE5c+aUn9O/f3+effZZbv1lneHevXvzl7/8hZtuuumy17LZbGzhJm5iK5N6\n9ODpjAz3/YfUgfHjx/P6668bHaPGzJK/tBROn7Zx8qSd48fL/nnypI3jx+0UFtr4+eeyj9y/f85N\nh3/iLMH8D28RzySK8Wdv2DVce308paXgcJT95H7x36G01IbDAefPQ0mJrZJ/2rDbndicxTR0nqEh\npwjjJA05RUNOcaBZAHcO7U1kJOUfrVpBeHjFKwObDVz5G/noo4+Snp5eL7+f7qD8xnLlCWmcbrZh\nwwZnUlJS+fG0adOc06dPv+ycUaNGOTMyMsqPW7du7fzhhx8qvFYMONGHPvShD31U6yMmJuaq79Vu\nbyslJCSwZ88e8vPziYiIYPHixWRc8RP/gAEDSE1NZciQIeTl5dGoUaNKW0p7rbsslIiIqbm9OPj6\n+pKamkpSUhIOh4OUlBTi4+OZO3cuAKNGjaJv376sXLmS2NhYQkJCeOedd9wdU0TEq1l6VVYREakf\nlnxC2pWH6MxsxIgRNG/enPbt2xsdpdoOHjxIz549ueGGG2jXrh2zZ882OlK1nDt3jq5du3LjjTfS\ntm1b/v3f/93oSDXicDjo1KkT/fv3NzpKtUVHR9OhQwc6depEly5djI5TLSdOnGDQoEHEx8fTtm1b\n8vLyjI7ksm+//ZZOnTqVf4SFhVX997fGk2WDlJSUOGNiYpz79+93FhcXOzt27OjctWuX0bGqZe3a\ntc6tW7c627VrZ3SUavv++++d27ZtczqdTufp06ed119/veV+/8+cOeN0Op3O8+fPO7t27epct26d\nwYmq77XXXnM++OCDzv79+xsdpdqio6Odx44dMzpGjQwbNsyZlpbmdDrL/vycOHHC4EQ143A4nC1a\ntHAeOHDgV8+x3JXDpQ/R+fn5lT9EZyW33XYbjRs3NjpGjbRo0YIbb7wRgNDQUOLj4y234VJwcDAA\nxcXFOBwOrrnmGoMTVc+hQ4dYuXIljz322NVvRzQpK+Y+efIk69atY8SIEUDZ/DQsLMzgVDWTnZ1N\nTEzMZc+TXclyxaGyB+QKCgoMTOS98vPz2bZtG127djU6SrWUlpZy44030rx5c3r27Enbtm2NjlQt\nTz31FK+++ip2u+X++gJl99j37t2bhISE8uedrGD//v00a9aM4cOHc9NNNzFy5EjOnj1rdKwaef/9\n93nwwQerPMdyf7psVz41JIYoLCxk0KBBvP7664SGhl79F5iI3W7nq6++4tChQ6xdu9ZSi6h9+umn\nhIeH06lTJ0v+9A2wfv16tm3bRmZmJm+88Qbr1q0zOpJLSkpK2Lp1K0888QRbt24lJCSE6dOnGx2r\n2oqLi1m+fDkPPPBAledZrji0bNmSgwcPlh8fPHiQyMhIAxN5n/Pnz3P//ffz8MMPc++99xodp8bC\nwsLo168fW7ZsMTqKy3Jzc1m2bBm//e1vSU5O5h//+AfDhg0zOla1XHvttQA0a9aM++67j02bNhmc\nyDWRkZFERkbS+ZdNugcNGsTWrVsNTlV9mZmZ/Nu//RvNmjWr8jzLFYdLH6IrLi5m8eLFDBgwwOhY\nXsPpdJKSkkLbtm2ZMGGC0XGq7ejRo+WLpv3888+sWrWKTp06GZzKddOmTePgwYPs37+f999/n169\nerFgwQKjY7ns7NmznD59GoAzZ87w+eefW+auvRYtWhAVFcV3330HlPXtb7jhBoNTVV9GRgbJyclX\nPc9y24T+2kN0VpKcnMyaNWs4duwYUVFRvPjiiwwfPtzoWC5Zv349CxcuLL8VEeCVV16hT58+Bidz\nzffff88jjzxCaWkppaWlDB06lNtvv93oWDVmtTbrkSNHuO+++4CyNs1DDz3EnXfeaXAq182ZM4eH\nHnqI4uJiYmJiLPeA7pkzZ8jOznZp1qOH4EREpALLtZVERKT+qTiIiEgFKg4iIlKBioOIiFSg4iAi\nIhWoOIiISAUqDiIiUoGKg4iIVKDiIFIN58+fd2npAVctW7aMW2+9tc5eT6SuqDiIXMXu3buZNm0a\nAH5+fmRkZNTZa8fFxVluNzTxDioOIlfxxRdf1NvifBs2bCAhIaFeXlukNiy38J6IO2VmZpKWlsbj\njz9Obm4uW7ZsISIigkGDBrFu3To++ugjunfvjtPpJCcnhz59+nD06FEAhg0bRmZmJt988w3+/v7c\nf//9tGjR4rLXz8vLIzY2lsWLF+NwOK66AYuIu+jKQaQKd911FxEREYwcORKAJk2aUFxcDFxcETUy\nMpKBAweyY8cOunXrxt13383WrVs5cOAA06ZN46mnniI+Pp7CwsIKr//NN98wYsQI7rjjDsvsayDe\nQcVBpAo//PBD+U/7iYmJLF26tHz/kN/97nfs27ePzp07c/bsWZo0aUJoaCh5eXl07NiRTz75hNjY\nWD799FNsNhuxsbGXvXZhYSHXXHMNTZs2JS8vr3xvbhEzUHEQqcLmzZvp0qULmzdv5tSpU9hsNnbs\n2AGUbRYUGBgIwJYtW8oHy8uWLaNbt24A3HPPPdx9993cdttt/Pjjj0DZXsQXXvuWW24p/zWJiYmW\n3FlMPJOKg0gVIiIiKCgooLCwEIfDQXh4OEVFRQB8/fXXdO/eHYCdO3fSs2dPoGwbzI0bNzJ06FB2\n7NjBihUrWLx4MWFhYRQUFNC7d2+grKV04dc0a9aMzZs306FDBwP+K0Uq0mY/Im6Wk5NDjx49jI4h\nUiVdOYi42YUrDxEz05WDiIhUoCsHERGpQMVBREQqUHEQEZEKVBxERKQCFQcREalAxUFERCpQcRAR\nkQpUHEREpIL/D2Ft2YMOjRWEAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x6538ed0>"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.5-1, Page Number 711"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Material Balance for Equilibrium Layers\n",
      "\n",
      "#Variable Declaration\n",
      "mc = 30.              #Mass of isopropy ether in orignal mixture ,kg\n",
      "ma = 10.              #Mass of acetic acid in orignal mixture ,kg\n",
      "mb = 60.              #Mass of water in orignal mixture ,kg\n",
      "\n",
      "#Calculations\n",
      "m = ma+mb+mc\n",
      "xma = ma/m\n",
      "xmb = mb/m\n",
      "xmc = mc/m\n",
      "\n",
      "#Extract layer composition from Figure 12.5-3\n",
      "ya = 0.04\n",
      "yc = 0.94\n",
      "yb = 1.- ya - yc\n",
      "#Raffinate layer composition from Figure 12.5-3\n",
      "xa = 0.12\n",
      "xc = 0.02\n",
      "xb = 1.0 - xa - xc\n",
      "\n",
      "#Results\n",
      "print \"Composition of the orignal mixture for A,B,C reaspectively is \",xma,xmb,xmc\n",
      "print \"Raffinate layer compositions of A, B, C reaspectively are\", xa,xb,xc\n",
      "print \"Extract layer compositions of A, B, C reaspectively are\", ya,yb,yc"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Composition of the orignal mixture for A,B,C reaspectively is  0.1 0.6 0.3\n",
        "Raffinate layer compositions of A, B, C reaspectively are 0.12 0.86 0.02\n",
        "Extract layer compositions of A, B, C reaspectively are 0.04 0.02 0.94\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.5-2, Page Number 714"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Amounts of phases in Solvent Extraction\n",
      "\n",
      "from numpy import linalg\n",
      "#Variable Declaration\n",
      "#From Example 12.5-\n",
      "M = 100                  #Mass of activated carbon in kg\n",
      "yA = 0.04\n",
      "xA = 0.12\n",
      "xAM = 0.1\n",
      "#Calculation \n",
      "#Balance on A in Feed \n",
      "    #    yA*V + xAL = 0.01M\n",
      "    #       V +   L =     M\n",
      "a = np.array([[yA,xA], [1,1]])\n",
      "b = np.array([xAM*M,M])\n",
      "[V, L] = np.linalg.solve(a, b)\n",
      "\n",
      "#Results\n",
      "print 'Kg of extract phase: %3.1f \\nKg of Raffinate phase: %3.1f'%(V,L)\n",
      "\n",
      "#from figure 12.5-3 \n",
      "hg = 4.2\n",
      "gi = 5.8\n",
      "L = hg*M/gi\n",
      "V = M-L\n",
      "\n",
      "#Results from Graph \n",
      "\n",
      "print 'from Graph'\n",
      "print 'Kg of extract phase: %3.1f \\nKg of Raffinate phase: %3.1f'%(V,L)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Kg of extract phase: 25.0 \n",
        "Kg of Raffinate phase: 75.0\n",
        "from Graph\n",
        "Kg of extract phase: 27.6 \n",
        "Kg of Raffinate phase: 72.4\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.7-1 Page Number 718"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Material Balance for Counterurrent Stage Process\n",
      "from numpy import linalg\n",
      "\n",
      "#Variable Declaration\n",
      "Vn1 = 600        #Ispropyl ether (C pure) rate, kg/hr\n",
      "Lo = 200         #Feed rate, kg/hr\n",
      "xAL = 0.30       #Wt fraction of Acetic acid A in Feed\n",
      "yCn1 = 1.0       #Wt fraction of Ether C in solvent feed\n",
      "xCo = 0.0        #Wt fraction of Ether C in Feed\n",
      "yAn1 = 0.0       #Wt fraction of Acetic acid solvent feed\n",
      "#Calculation\n",
      "M = Vn1 + Lo\n",
      "xCM = (Vn1*yCn1 + Lo*xCo)/M\n",
      "xAM = (Vn1*yAn1 + Lo*xAL)/M\n",
      "\n",
      "yA1 = 0.08\n",
      "yC1 = 0.9 \n",
      "xCn = 0.017\n",
      "a = np.array([[1,1], [0.017,0.9]])\n",
      "b = np.array([M,M*xCM])\n",
      "[Ln,V1] = np.linalg.solve(a, b)\n",
      "#Results\n",
      "print \"Co-ordinates for the mixed feed are\", xCM, xAM\n",
      "print \"Line passing through this intersect phase boundary at yA1 = 0.08 and yC1 = 0.9\" \n",
      "print \"and xCn = 0.017 this is obtained from fig 12.7-3\"\n",
      "print \"The amount of Raffinate\", round(Ln,0), \"kg/hr\"\n",
      "print \"The amount of Extract\", round(V1,0), \"kg/hr\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Co-ordinates for the mixed feed are 0.75 0.075\n",
        "Line passing through this intersect phase boundary at yA1 = 0.08 and yC1 = 0.9\n",
        "and xCn = 0.017 this is obtained from fig 12.7-3\n",
        "The amount of Raffinate 136.0 kg/hr\n",
        "The amount of Extract 664.0 kg/hr\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.7-3 Page Number 722 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Extraction of Nicotine with Immiscible Liquids\n",
      "import numpy as np\n",
      "from scipy.interpolate import interp1d\n",
      "from scipy.optimize import root\n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable Declaration\n",
      "x = np.array([0,0.001010, 0.00246,0.005,0.00746,0.00988,0.0202])        #Equilibrium Data\n",
      "y = np.array([0,0.000806, 0.001959,0.00454,0.00682,0.00904,0.0185])     \n",
      "Lo = 100     #Feed rate, kg/hr\n",
      "xo = 0.01    #Nicotine concentration in liquid feed, wt fraction\n",
      "yn1 = 0.0005 #Nicotine concentration in solvent, wt fraction\n",
      "xn = 0.001   #Nicotine concentration in raffinate\n",
      "Vn1 = 200    #Kerosene feed rate, kg/hr\n",
      "\n",
      "#Calculation\n",
      "Ld = Lo*(1.-xo)\n",
      "Vd = Vn1*(1.-yn1)\n",
      "\n",
      "m = Ld/Vd\n",
      "c = yn1 - m*xn\n",
      "y1 = m*xo + c\n",
      "f = interp1d(x,y, kind ='linear')\n",
      "\n",
      "xx = np.arange(0.0,0.00746,0.0005)\n",
      "yo = m*xx+c\n",
      "yy = f(xx)\n",
      "plt.grid(True)\n",
      "plt.plot(xx/(1.-xx),yy/(1.-yy))                 #Plot equilibrium line \n",
      "plt.plot([xo,xn],[y1,yn1])\n",
      "plt.xlabel('x')\n",
      "plt.ylabel('y')\n",
      "plt.text(.004, .006, r'$Equilibrium Curve$')\n",
      "plt.text(.0065, .003, r'$Operating Line$')\n",
      "\n",
      "x1 = xo\n",
      "y1 = y1\n",
      "plt.plot(x1,y1,'ko')\n",
      "plt.plot(xn,yn1,'ko')\n",
      "plt.annotate('$(x_1,y_1)$', xy=(x1,y1), xytext=(0.009,0.005)#,\n",
      "            #arrowprops=dict(facecolor='black', shrink=0.05),\n",
      "            )\n",
      "plt.annotate('$(x_n,y_n1)$', xy=(xn,yn1), xytext=(0.0012,0.0005)#,\n",
      "            #arrowprops=dict(facecolor='black', shrink=0.05),\n",
      "            )\n",
      "n = 0\n",
      "while x1 >= xn:\n",
      "    ff = lambda z: y1 - f(z)\n",
      "    sol = root(ff,0.0001)\n",
      "    x2 = sol.x[0]\n",
      "    y2 = y1\n",
      "    plt.text(x2, y2+0.0002, str(n+1))\n",
      "    plot([x1,x2],[y1,y2])                  #Draw Horizontal line to equilibrium curve\n",
      "    x1 = x2\n",
      "    y2 = m*x2+c\n",
      "    plot([x1,x2],[y1,y2])                  #Draw Vertical line to equilibrium curve  \n",
      "    x1 = x2\n",
      "    y1 = y2\n",
      "    n = n+1\n",
      "\n",
      "#Results\n",
      "print 'Liquid flow rate %4.1f kg water/h' %Ld\n",
      "print 'Kerosene flow rate %4.1f kg kerosene/h' %Vd\n",
      "print \"Number of theoretical stages required for given separation are\", n "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Liquid flow rate 99.0 kg water/h\n",
        "Kerosene flow rate 199.9 kg kerosene/h\n",
        "Number of theoretical stages required for given separation are 5\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEPCAYAAACQmrmQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4Tdf6wPFvEjFVS2uIITQyIKagSMWUFo2UoqipJara\nXJeruBTt1eqvbSSGtoYqSo1tDKWiEiktMSWRICkaQxBFItQQMWVevz9OnSNEEpydc5Lzfp7H0+6T\ntfZ+9+vYb/Zae7BSSimEEEIIDVibOgAhhBAllxQZIYQQmpEiI4QQQjNSZIQQQmhGiowQQgjNSJER\nQgihGU2LTGhoKA0aNMDFxYWAgIA824wePRoXFxfc3NyIiYkpsO+AAQNo3rw5zZs3p27dujRv3lzL\nXRBCCPEESmm14uzsbEaNGsVvv/1GrVq1aNWqFT169MDV1VXfJiQkhJMnTxIfH8++ffsYMWIEkZGR\n+fZdvXq1vv/48eOpVKmSVrsghBDiCWl2JhMVFYWzszMODg7Y2toyYMAAgoKCcrXZtGkTPj4+ALi7\nu5OSkkJycnKh+iqlWLt2LQMHDtRqF4QQQjwhzYpMYmIitWvX1i/b29uTmJhYqDZJSUkF9t29ezd2\ndnY4OTlptAdCCCGelGZFxsrKqlDtHvepNoGBgQwaNOix+gohhCgams3J1KpVi3PnzumXz507h729\nfb5tzp8/j729PZmZmfn2zcrK4ueff+bgwYP5bj8pKckYuyKEEBbDycmJkydPGm+FSiOZmZnK0dFR\nJSQkqPT0dOXm5qbi4uJytQkODlbe3t5KKaUiIiKUu7t7ofpu2bJFeXp65rt9DXet2Pnkk09MHYLZ\nkFwYSC4MJBcGxj52anYmU6pUKebNm4eXlxfZ2dm88847uLq6snDhQgB8fX159dVXCQkJwdnZmaee\neoqlS5fm2/euNWvWyIT/Izhz5oypQzAbkgsDyYWB5EI7mhUZAG9vb7y9vXN95uvrm2t53rx5he57\n191iJIQQwrzJHf8WYOjQoaYOwWxILgwkFwaSC+1Y/TMGV+JYWVk99pVrQghhqYx97JQzGQsQFhZm\n6hDMhuTCQHJhILnQjhQZIYQQmpHhMiGEEHoyXCaEEKLYkCJjAWS82UByYSC5MJBcaEeKjBBCCM3I\nnIwQQgg9mZMRQghRbEiRsQAy3mwguTCQXBhILrQjRUYIIYRmZE5GCGFSOTlgLb/umg2ZkxFClBhJ\nSeDuDocPmzoSoRUpMhZAxpsNJBcGps5FXBx4eEDv3tC4sUlDMXkuSjJN3ycjhBB52bkT+vWDmTNh\n8GBTRyO0JHMyQogitWYN/Oc/EBgInTqZOhpxP2MfO+VMRghRJJSCL7+E2bPht9+gaVNTRySKgszJ\nWAAZbzaQXBgUZS6ys+H992HZMggPN78CI98L7ciZjBBCU3fuwJtvQkoK7N4NlSqZOiJRlGRORlis\nhQsX8r///Q8/Pz+srKxISEggOTmZJUuWFKp/ZmYmQ4YMITAwkPHjx1OuXDk+++yzXJ/fuXOHwYMH\n07NnTwbnM8N9b58ndeHCBebPn0/VqlWpWLEizzzzDKmpqfj4+Dzxuh/V5cvQowc4OsKSJVCmTJGH\nIB6RzMkIYSTu7u688sorvPvuu/rPNm7cWOj+tra2+qLg5OREnTp1Hvi8XLly2Nvb06pVq0Kv60mc\nPn0aX19f1qxZw3PPPQfAyJEj6d279xOv+9Fjga5doU8f+OILueHSUslfuwWQ8WaDe3MRGRlJ27Zt\nAQgODgZ0hedxREVFPbTv0aNHqV+//mOt91G99dZbTJo0SV9gAJo3b07Lli0faKvl9yI6Gtq1g7Fj\nYdo08y8w8m9EO5qeyYSGhjJmzBiys7MZPnw4EydOfKDN6NGj2bJlC+XLl2fZsmU0b968wL5z585l\n/vz52NjY0K1bNwICArTcDVFCRUdH4+DgwPjx47Gzs6Nbt27UqFGDH3/8kczMTNLT00lLSyM1NZXO\nnTvz4osvMnjwYFauXMmpU6cIDg6mZs2a9O3bl0uXLlGlSpUHPs/MzOTs2bMEBwezZ88eXn31VUJC\nQkhJSSElJYWRI0dSq1YtNm/eTM2aNalfvz5BQUEPbG/37t2sX7+ejh07opQiLCyMrl27cvnyZQCG\nDBlCeHg4N27coNN91wUPGDCAhISEB9b7zjvvsHv3boKDg3PFc+DAAezt7WnZsiWffPIJy5cvZ8uW\nLRw7dozSpUvTp08fqlev/tC8bt4Mw4bB4sW6oTJh2TT7/SI7O5tRo0YRGhpKXFwcgYGBHD16NFeb\nkJAQTp48SXx8PIsWLWLEiBEF9t2xYwebNm3i0KFDHDlyhPHjx2u1CyWGp6enqUMwG/fm4tChQ3z0\n0UeMHz+e1q1bk56ezh9//MHWrVvx8fHh8uXL3Lx5E1tbW5RSJCQkUKFCBQAuXrxI5cqVycjIIDU1\nlWefffaBz+9uo1evXnTv3p3s7GzKlCnD008/Te/evVm+fDnt27cnOTmZypUrk56ezo0bN/LcnpWV\nFQD29vb07t2bQ4cO0aFDB7p3787BgwcBiIiIyPPvukKFCnmu19PTk2rVquWKp1SpUlSrVo20tDQc\nHBxwcnLir7/+ws/Pj7Fjx+Lq6srNmzcfmt+FC+Hdd+GXX4pXgZF/I9rRrMhERUXh7OyMg4MDtra2\nDBgwgKCgoFxtNm3apJ+MdHd3JyUlheTk5Hz7fvvtt0yePBlbW1sAqlatqtUuiBLsxo0b2NjYYG1t\nTeXKlWnbti3bt29nzZo19Pjn6Hjw4EHGjh3LwYMHadOmDeHh4Xh4eADg4eFBUFAQr732GlFRUbRu\n3TrX53fXERMTQ8eOHQGIi4ujRo0a7N+/n5deeoky/8yC3+3Ts2dPPDw88txeu3btOHXqFK1ateL2\n7dtUrlyZChUqEBkZSbNmzQAoVaoU5cqVy7WfGRkZbNu27aHrrV+/fq542rRpw8aNG/H29gagUaNG\nBAUF4ezszObNm7GyssLZ2fmBfCoFH32ku4N/927d88iEAA2LTGJiIrVr19Yv29vbk5iYWKg2SUlJ\nD+0bHx/Prl27ePHFF/H09GT//v1a7UKJIePNBndzER0djZubG6CbdLe2tubkyZPcuHGD+vXrk5GR\nwe3btylXrpz+wB0REUGLFi3Yt28fN27cwMrKisOHD3PgwAFatmzJjh079J8fOnQIgJSUFBwdHbl2\n7RqlSpWiTp06pKen639JAkhNTc3VJ6/t3blzh7JlywKwf/9+fVHbtGkT7du359ChQ3Tr1o3IyMhc\nVwatWbOGl19+Oc/1zp8/H6XUA/HcPRvbv38/L774ImXLlqVnz550796d9u3bc+nSpVw5zcgAHx/4\n/XfdPTB51CCzJ/9GtKPZnMzd0/uCPOqlcllZWVy7do3IyEiio6Pp168fp0+fzrPt0KFDcXBwAKBS\npUo0a9ZMf1p890sly5a1DLoCM2XKFGxtbVmyZAl37txh8eLFDBw4kMGDB/Prr78yb948ypcvD0Dt\n2rX59NNPSU5O5vfff2fYsGHs2LGDzMxM0tLScHJyYvny5XTr1o2srCyqVavGvn37yMjI4PXXX2fz\n5s3Exsbi4+PDX3/9xQsvvJArvuzsbDIzM9m3bx8eHh55bm/FihXUrFkTgCNHjvDMM88QFhZGjRo1\n2LdvHzVq1ODq1auMGzeO8ePHY21tja2tLePGjcPGxoawsDBycnJYv349pUqVYsGCBdjb23P27NkH\n4unQoQOffvopTz31FOPHj6d///6MGTOGo0ePUqdOHfr27atv37y5J336QFpaGFOnQtWq5vX3Xdjl\n2NhYs4qnKJfDwsJYtmwZgP54aVRKIxEREcrLy0u/7Ofnp/z9/XO18fX1VYGBgfrl+vXrq+Tk5Hz7\ndu3aVYWFhel/5uTkpC5fvvzA9jXcNWEBli5dqlavXm3qMMza+fNKNW2q1L//rVRWlqmjEcZi7GOn\nZsNlLVu2JD4+njNnzpCRkZFrrPuuHj16sGLFCkB3OWmlSpWws7PLt2+vXr3Yvn07ACdOnCAjI4PK\nlStrtRvCAsXGxrJw4ULOnz9v6lDM1pEj0KaN7k7+efPAxsbUEQmzZdSSdZ+QkBBVr1495eTkpPz8\n/JRSSi1YsEAtWLBA32bkyJHKyclJNW3aVB04cCDfvkoplZGRod566y3VuHFj1aJFC7Vjx448t63x\nrhUrD8uRJZJcGDxuLrZvV6pqVaV++MG48ZiSfC8MjH3slMfKWICwsDD9WKylk1wYPE4ufvwRxozR\nPa7/pZe0icsU5HthYOxjpxQZIUSBlILp0+GbbyAkxPRvshTakWeXCSGKVHa27iVje/dCRATUqmXq\niERxYuZPFBLGcO/lu5ZOcmFQmFzcvg29e0N8vO4my5JaYOR7oR0pMkKIPP39N7z8MlSsCMHB8Mwz\npo5IFEcyJyOEeMDJk7rH9A8YAJ99BoW8t1qUAMY+dsqZjBAil337oH17+OAD+PxzKTDiyUiRsQAy\n3mwguTDIKxdBQdC9O3z3Hbz3XtHHZCryvdCOXF0mhABg/nzdmUtICBTwIk8hCk3mZISwcDk58OGH\n8PPPsGULODqaOiJhSnKfjBDCaNLTdW+xTEjQ3QdTpYqpIxIljczJWAAZbzaQXBhs3hyGtzfcuaN7\nF4wlFxj5XmhHiowQFujcOd1d/I0bw7p1cN8LNYUwGpmTEcLCHDoE3brpHnQ5bpxcoixykzkZIcRj\n+/13GDgQ5s6F/v1NHY2wBDJcZgFkvNnAknOxciUMGgQ//aQrMJaci/tJLrQjRUaIYmTYsGHY2dnR\npEmTQvdRCvz8YMoU2LEDOnTQMEAh7iNzMkIUI7t376ZChQoMGTKEw4cPF9g+KwtGjdI9KiY4GGrW\nLIIgRbEmczJCWLD27dtz5syZQrW9dUv3gMuMDNi1C55+WtvYhMiLDJdZABlvNrCUXFy8qHs9cpUq\nsHlz3gXGUnJRGJIL7UiREaKEOXECPDzA2xu+/x5sbU0dkXgc6enpmq4/LS1N0/XfJUXGAnh6epo6\nBLNR0nMREaGb2P/wQ/j00/zvgSnpuXgU5paLzZs3c+PGDU23cf78eX777TdNtwFSZIQoMTZuhB49\nYOlSeOcdU0cjHteFCxdITU2lisbP+XF2diYuLo47d+5ouh0pMhZAxpsNinsuBg4ciIeHBydOnKB2\n7dosXboUgHnzYORICA3VDZMVRnHPhTGZUy6WLl3K66+/XiTb6tatG4GBgZpuQ9MiExoaSoMGDXBx\ncSEgICDPNqNHj8bFxQU3NzdiYmIK7Dt16lTs7e1p3rw5zZs3JzQ0VMtdEMKsBAYGkpSURHp6OufO\nncPH520++EBXZPbsgRdeMHWE4kldunSJcuXKkZ2dzY8//sjnn3/O8uXLGTlyJKdPny6w/5EjR/j8\n88+JjIwEYOjQoQ9t6+TkVKhL4Z+EZkUmOzubUaNGERoaSlxcHIGBgRw9ejRXm5CQEE6ePEl8fDyL\nFi1ixIgRBfa1srJi3LhxxMTEEBMTQ9euXbXahRLD3MabTakk5SI9Hd58E8LDdY/pr1v30fqXpFw8\nKXPKxd0J+T/++IM+ffrg6OhITk4Ob7zxBjVq1Ciw/+3bt7G1tUUpxdGjR6latWq+7bOysowS98No\nVmSioqJwdnbGwcEBW1tbBgwYQFBQUK42mzZtwsfHBwB3d3dSUlJITk4usK/cZCks3bVr4OUFmZmw\nbRtUrmzqiISxZGZmAtCiRQvKlClDREQEnp6eeHp6Uu6fx2UHBQWRlJSUZ//WrVtz8OBB2rRpQ2Rk\nJG3bts23z+3btzXaEx3NikxiYiK1a9fWL9vb25OYmFioNklJSfn2nTt3Lm5ubrzzzjukpKRotQsl\nhjmNN5taScjF2bPQrh00awZr1z7+Y/pLQi6MxZxyYWNjA0B0dDSXL1/myJEj1K1bl927dwOQnJzM\n8uXLH/hlOyEhQf//5cuXByAyMpI2bdo8tA+AtbWuDAQHB+Pl5WX0/dGsyFgV8vnhj3pWMmLECBIS\nEoiNjaVGjRr897//fWjboUOHMnXqVKZOncrXX3+d64sUFhYmy7Jc7JZjY3X3wHh6htGrVxj/HB8e\na32xsbEm3x9zWY6NjTWbeMqXL09YWBjffvstGzZsoG3btnz22Wf6Oevq1atTsWJFwsPD9f3XrVtH\nu3bt9Ms5OTlMnTqVAwcOYGdnx7Fjx6hYseID21NKkZKSQqdOnRgwYABbt27F6JRGIiIilJeXl37Z\nz89P+fv752rj6+urAgMD9cv169dXycnJheqrlFIJCQmqcePGeW5fw10TwiS2blWqalWl1q41dSRC\nSzNmzFBXr17Nt83UqVPV+fPnc322Y8cOpZRS3333ndq+fbs6fvy4CggIyLdPbGysWr16teryShcF\n6P8Yk2ZH4szMTOXo6KgSEhJUenq6cnNzU3FxcbnaBAcHK29vb6WUrii5u7sX2DcpKUnf/8svv1QD\nBw7Mc/tSZERJsmyZUtWqKcWOHUrpHqwsf0ronxRQC/P5+UVQA0GtvO/z0Hv+uwnUd6CyC+gz6542\nd/8UmyKjlFIhISGqXr16ysnJSfn5+SmllFqwYIFasGCBvs3IkSOVk5OTatq0qTpw4EC+fZVSavDg\nwapJkyaqadOmqmfPnio5OTnPbUuRMbj7G44ofrnIyVHqs8+UcnBQKi5O6YqMkRS3XGjJ3HKxa9cu\n9ddff2m2/utp19XYFWNV5XGVVfcfu6vW7VurYncmY2pSZAzM7R+QKRWnXGRmKvXuu0o1b67U3RN4\nKTLasJRcXLx5UX3424eqckBlNWj9IPVH8h9KKaU2b96snJycNCky8j4ZIczQzZu6t1fm5OiuILv7\nFGWrsDCUGd3TIYqHMylnmBU+ix8O/8CAxgMY7zEex2cdc7UJDg5m7ty5/Prrr0Y9dkqREcLMXLwI\n3bqBmxssWJD7KcpSZMSj+PPSnwTsDSA4Pph3W7zLmBfHUL1C9Xz7GPvYKc8uswD3Xipp6cw9F8eP\nQ5s28NprsHixto/pN/dcFKWSlovI85H0XN2TTis64VrFlVOjT+Hf2b/AAqMFeTOmEGZi717o0wf8\n/GDYMFNHI4obpRTbTm9j2p5pJFxLYILHBFb3WU0528e8W9dIZLhMCDOwfj3861+wapXucTEPI8Nl\n4n7ZOdlsOLoB/73+pGelM6ndJPo36o+tzeOdBhv72ClnMkKY2Jw5EBAAv/4KLVqYOhpRXKRnpbPq\n0Cqmh0/nuXLP8UnHT+herzvWVuY1C2Je0QhNlLTx5idhTrnIyYHx4+Hbb3VDZUVdYMwpF6ZWnHJx\nM+MmX0Z8idMcJ9bFrWNR90WEDwunR/0eZldgQM5khDCJtDTw8YELF3QF5rnnTB2RMHdXbl9hbtRc\nvon+hpccXmLTwE20qGH+p74yJyNEEbt6FXr1gurVYcUKKFu28H1lTsbynE89z6zwWSz/Yzl9XPvw\nQdsPcKnsotn25BJmIYqxixfB01P3BsvVqx+twAjLcvzycd4Jege3BW7YWNtweMRhvuvxnaYFRgtS\nZCxAcRpv1popc5GYqCswffrAl1+if0y/qcj3wsCccnEg6QB91/al/dL2PF/peeL/E8/MV2ZS65la\npg7tscicjBBF4K+/oFMnGD4cJk0ydTTC3Cil2HFmB9P2TOPY5WP8t81/Wd5rOU+VfsrUoT0xmZMR\nQmOnTukKzJgxuj9PQuZkSpYclcOm45uYtmca19OuM7HtRN5s+ialbUqbLCa5T0aIYuT4cejcGT76\nSHezpRAAmdmZ/Hj4RwL2BvBU6aeY3G4yPev3xMbaxtShGZ3MyVgAcxpvNrWizMWRI/Dyy/DZZ+ZZ\nYOR7YVBUubideZu5++biPNeZFYdWMMd7DlHDo+jt2rtEFhiQMxkhNHHwILz6Knz9NQwYYOpohKld\nu3ONb6K/YW7UXNrWbsu6N9bRulZrU4dVJGRORggj27cPevTQPab/9deNu26ZkyleLty4wFeRX7Ek\nZgmv1XuNiW0n4lrV1dRh5UvmZIQwY3v2QO/esHSp7p0wwjKdunqK6Xunsy5uHYObDibGN4Y6FeuY\nOiyTkDkZCyBj7wZa5uL333UF5scfi0eBke+FgbFyEZscy8D1A3Ff7E61p6pxfNRxZnvPttgCA3Im\nI4RRbNmiexbZTz9Bhw6mjkYUtd1/7Wbanmn8cfEPxr44loXdF/JMmWdMHZZZkDkZIZ5QUBC8957u\nvy++qO22ZE7GfCilCI4Pxn+PP8k3k/mg7QcMcRtC2VLF+1lBMicjhBlZuxZGj9adyci7YCxDVk4W\na/9ci/8ef6ytrJncbjJ9G/YtsZcgPymZk7EAMvZuYMxcrFihu4N/27biWWDke2FQmFykZaXxbfS3\n1JtbjwX7FxDQOYAY3xj6N+4vBSYfmhaZ0NBQGjRogIuLCwEBAXm2GT16NC4uLri5uRETE1PovrNm\nzcLa2pqrV69qFr8QD7NoEXz4oW6yv0kTU0cjtJSankrAngDqzq5LyMkQVr6+kl1v78LbxRsrKytT\nh2f+lEaysrKUk5OTSkhIUBkZGcrNzU3FxcXlahMcHKy8vb2VUkpFRkYqd3f3QvU9e/as8vLyUg4O\nDurKlSt5bl/DXRMWbs4cpZ5/Xqn4+KLfNjt2FP1GLdTFmxfV5N8mq8oBldWb699Uh5IPmTqkImHs\nY6dmZzJRUVE4Ozvj4OCAra0tAwYMICgoKFebTZs24ePjA4C7uzspKSkkJycX2HfcuHFMnz5dq9CF\neKiZM2H2bNi5E5ydTR2N0MKZlDOMChlFg3kNSElLIerdKFb1XkUTOzllfRyaFZnExERq166tX7a3\ntycxMbFQbZKSkh7aNygoCHt7e5o2bapV6CWOjL0bPG4ulNI9g2zxYl2Bef5548ZlCvK9MAgLC+PP\nS38y+OfBvLDoBSqUrkDcyDjmd5uP47OOpg6vWNPs6rLCjlWqR7hU7s6dO/j5+bFt27ZC9R86dCgO\nDg4AVKpUiWbNmuH5z+Wfd/+BybJlLd/1KP2VgrfeCiM8HCIjPbGzK17xP2w5NjbW5H8f5rAceT6S\nUd+PIumpJCYMmsBc77nERsZybP8xqntWN3l8Wi+HhYWxbNkyAP3x0pg0u08mMjKSqVOnEhoaCsC0\nadOwtrZm4sSJ+jb/+te/8PT0ZMA/TxBs0KABO3fuJCEhIc++3bp1o1OnTpQvXx6A8+fPU6tWLaKi\noqhWrVruHZP7ZIQRKAXjxunOXrZuhSpVTBuP3CdjHEoptp7ayrQ90/jr+l9M8JjA283eppxtOVOH\nZnJGP3YadYbnHpmZmcrR0VElJCSo9PT0Aif+IyIi9BP/hemrlJKJf6Gp7GylRoxQyt1dqatXTR2N\njkz8P5ms7Cy19sha1WJhC9Xom0Zq5R8rVUZWhqnDMivGPnZqNidTqlQp5s2bh5eXFw0bNqR///64\nurqycOFCFi5cCMCrr76Ko6Mjzs7O+Pr6Mn/+/Hz73k8uHyyc+4daLFlhc5GdrXtV8uHDujOYZ5/V\nNi5TsKTvRXpWOosPLsb1G1e+ivyKqR2ncmjEId5q+ha2NrYWlYuipukd/97e3nh7e+f6zNfXN9fy\nvHnzCt33fqdPn36yAIXIQ1aW7jlkyckQGgpPFf/XrFusmxk3WXRgEV9GfEnjao357rXv6PB8B/kF\ntQjJs8uEuEdGBgwcCHfuwPr1UM7MhuhlTqZwLt++zNx9c5m/fz4v132ZSW0n0bxGc1OHVSzIs8uE\n0EhaGvTtC6VKwc8/Q5kypo5IPKpz188xK2IWK/5YQd+GfQkfFo5LZRdTh2XR5NllFkDGmw0elovb\nt3Vvs6xQAdats4wCU5K+F8cvH2dY0DDcFrhRyroUh0ccZtFriwpdYEpSLsyNnMkIi3fjBnTvDg4O\n8P33YCPPOiw29iftx3+PP7v+2sWo1qM4Ofokz5V7ztRhiXvInIywaNevg7c3NG4MCxaAtZmf28uc\njO4elx1ndjBtzzSOXz7Of9v8l+EthvNUablCwxhkTkYII7lyBby8wMND9zwyueDIvOWoHIKOBeG/\n15/U9FQmtp3IoCaDKG1T2tShiXyY+e9twhhkvNngbi4uXYKXXoJOnSy3wBSX70VmdibLY5fTeH5j\n/Pb4MbHtRP78958MbTbUaAWmuOSiOJIzGWFxkpJ0xaVfP5g61TILTHFwO/M2iw8uZlbELFyec2GO\n9xw61e0k97gUMzInIyzK2bO6AjNsGEyebOpoHp0lzMlcu3ONb6K/YW7UXNrWbsukdpNoXau1qcOy\nGMY+dhY4XDZnzhyuXbtmtA0KYSqnT0PHjjByZPEsMCXdhRsXmLB1As5znTl17RRhPmFs6L9BCkwx\nV2CRuXjxIq1ataJfv36EhobK2UExJOPNcPw4eHpCr15hjBlj6mjMg7l8L05ePYnvL740mt+IjOwM\nYnxjWNpzKa5VH3xeoVbMJRclUYFF5osvvuDEiRMMGzaMZcuW4eLiwocffsipU6eKIj4hntiRI/Dy\ny/Dpp9Czp6mjEXfFJscy4KcBtFnSBrsKdhwfdZzZ3rOpU7GOqUMTRlSoiX9ra2uqV6+OnZ0dNjY2\nXLt2jb59+9K5c2dmzJihdYziCXmW8DH8/MTE6O6D+fJLGDQIwNPEEZkPU3wvlFLsPrsb/z3+/HHx\nD8a+OJbvXvuOp8s8XeSx3MuS/41orcCJ/9mzZ7NixQoqV67M8OHDef3117G1tSUnJwcXFxezPaOR\niX8RFQWvvQbz50OfPqaOxjiK68S/Uorg+GCm7ZnGpVuX+MDjA4a4DaFMKQt4fk8xU+Q3Y169epUN\nGzbw/H0vNbe2tuaXX34xWiBCO2FhYRb3m9qePdC7t+4xMd27Gz63xFw8TFHkIisni7V/rsV/jz/W\nVtZMbjeZvg37YmNtXs/uke+FdgosMp9++ulDf9awYUOjBiOEMWzfDgMGwA8/QJcupo7GMqVlpbE0\nZikzwmdQu2JtpneZjpeTl9zjYoHkPhlRooSGwuDB8NNPusuVSxpzHy67nnadb/d/y+x9s2lZsyWT\n203Go7ZJ5kBWAAAgAElEQVSHqcMSj0CeXSbEQwQFwbvv6v7rIce1InXp1iW+jvyaRQcW0dW5K1vf\n2koTuyamDkuYAXl2mQWwhHsA1q0DX18ICcm/wFhCLgrLGLk4k3KGUSGjaDCvASlpKUS/G82q3quK\nXYGR74V25ExGFHsrV8LEibB1KzRtaupoLMORS0cI2BtASHwI77V4j6Mjj2JXwc7UYQkzJGcyFqAk\nXzXz3Xe6R8T8/nvhCkxJzsWjepxcRJyLoEdgDzqv6EzDKg05Pfo00zpPI/1qOgEBAfz888/Mnz+f\n4OBg4wd8n8zMTAYOHPhYfRcsWEDlypWZP38+ly9f1ufiSdYpHkKVUCV418Q/5s5Vqk4dpU6cMHUk\nRYcdO4p8mzk5OWpL/BbVcWlH5fC1g/om6ht1O+O2/uenTp1Sr7/+urpz547+sz59+qgrV64YPZa4\nuDj1xRdfPPF6oqOjVZ8+fYwQUclj7GOnnMlYgJI43jxzJnz1FezcCS6Fe407UDJz8bgKykV2TjZr\n/1zLC4teYPzW8QxvMZz4/8Tz71b/ppxtOX27YcOG8fHHH1O2bFn9Z05OTkRERBg95h07dtC8efMn\nXs++ffto3drw4E35XmhH0zmZ0NBQxowZQ3Z2NsOHD2fixIkPtBk9ejRbtmyhfPnyLFu2TP8Feljf\nKVOmsGnTJqysrKhcuTLLli2jdu3aWu6G0Ni5c+cYMmQIly5dwsrKivfee4/Ro0c/tP3nn+vmYXbu\nBHv7IgzUQqRnpbPy0Eqm751OlfJV+NTzU7rV64a11YO/kx44cICUlBSaNWuW6/OkpCSOHz9OVFQU\ntWvXpnr16hw/fpz//ve/bNmyhWPHjlG6dGn69OnDyZMn2bx5MykpKaSkpDBy5EjOnz9PZmYm58+f\np1q1agwfPpwtW7awZMkS/vWvfxEeHs7+/fupWbMmffv2Zffu3axfv56O/1y3/ueff/K///1PH8v3\n339P7dq1CQ8PZ+HChURHRzN06NBcMZ8+fZrNmzcXap3370P16tWN/ddQchj1vOgeWVlZysnJSSUk\nJKiMjAzl5uam4uLicrUJDg5W3t7eSimlIiMjlbu7e4F9U1NT9f3nzJmj3nnnnTy3r+GuCSO7cOGC\niomJUUopdePGDVWvXr0HvitKKZWTo9SHHyrVqJFSFy4UdZTmQcvhstS0VDVz70xVa1Yt1XVVVxWW\nEKZycnLy7TN79mw1YsSIXJ/l5OQoFxcXtWfPHjVjxgwVHByslFLq5ZdfVn/99Zdq166dUkqp33//\nXcXHx6tjx46pzz//XP36668qLS1NHTt2TPn4+CillPL391cRERH6dXfv3l0ppdTevXvVqlWr1A8/\n/KCUUmr37t3q/fffV1FRUUoppYYMGaLv06NHD3Xjxg2VmJioxo4dq5RSqnHjxurGjRu5Yi7sOs+c\nOfPAPpQkxj52ajZcFhUVhbOzMw4ODtja2jJgwACCgoJytdm0aRM+Pj4AuLu7k5KSQnJycr59n37a\n8CC9mzdvUqVKFa12QRSR6tWr638TrlChAq6uriQlJeVqoxSMH6+7RDksDOQXR+O5fPsyH+/4GMc5\njkQlRfHLwF/Y8uYWOjp0LPAO/czMTCpVqpTrs61bt+Lu7k7btm3Zt28fHTp0QClFcnIyGzduxNnZ\nmc2bN2NlZYWzszP169dn//79vPTSS5QpU4ZVq1bRo0cPAP744w/96EZycrL+jMHDw4OgoCB9u3bt\n2nHq1ClatWrF9evXKVVKN0hz5swZlFJUqFCBffv24eHhQWpqKqD7rgFkZGTw66+/FnqdGzduxMXF\nJdc+iIfTrMgkJibmGsayt7cnMTGxUG2SkpLy7fvRRx9Rp04dli9fzqRJk7TahRKjOI03nzlzhpiY\nGNzd3fWf5eToXjS2e7fukTFP8ntFccqF1tZuXsuY0DHUm1uP5JvJhA8LZ03fNTSvUfg5jy5dunDo\n0CH9cmpqKosWLWL27NkAXLlyhQoVKrB9+3Z69OhB2bJl6dmzJ927d6d9+/ZcunQJpRTp6enY2toC\nkJKSQv369cnIyODGjRvs378fgOjoaFq3bk10dDSpqalYWVnpt33nzh39nFBISAhdunQhIiJCvy6A\nnTt30qZNG6Kjo2nZsqU+5pUrV5KVlVXodZYrV44ePXrk2gfxcJrNyRT2GUXqMR5f8MUXX/DFF1/g\n7+/P2LFjWbp0aZ7thg4dioODAwCVKlWiWbNm+ksV7x5sZNl8lu/cucOUKVOYPXu2/sDSvr0n770H\nUVFh+PvDs88+2fbuMof9NVX8xy4fY+yCsYRFhjFy9EgOjzhM/MF4Eg8n4uLp8sjr6969O++99x52\ndnY888wzLFq0iEOHDpGYmEhWVha//PIL69atY8iQIbRq1YrZs2dz9OhRbt68yccff8zZs2epUqWK\n/iGVQ4YMYf78+VStWhUnJycuXLhAWFgYSUlJXLhwAWdnZ3bu3ElmZibp6ekArFixgpo1awK60Y7Q\n0FBsbGzo3bs3NjY2fPrpp2zbto0333yT2bNnc/36dSZMmEBWVhYnTpygS5cuKKWoVq0a6enphIWF\ncfz4cf18zJkzZ0hMTKRt27Y0bNiQMWPGcPToUerUqUPfvn3N5vvxOMthYWEsW7YMQH+8NCqjDr7d\nIyIiQnl5eemX/fz8lL+/f642vr6+KjAwUL9cv359lZycXKi+Sin1119/qUaNGuW5fQ13TWggIyND\nvfLKK+qrr77Sf5aZqdSgQUq99JJS9wyfW7QnmZOJToxWvdf0VlWnV1X/F/Z/6spt419ifK8VK1ao\nlStXarqNgiQnJyullEpJSVHvvvuuSWMpLox97NRsuKxly5bEx8dz5swZMjIyWLNmjX6s864ePXqw\nYsUKACIjI6lUqRJ2dnb59o2Pj9f3DwoKMsrljMK0lFK88847+t8QATIydE9SvnoVgoPhn+Fz8YiU\nUvx++nc6r+hM7zW96VCnAwnvJzCl4xSeK/ecZtu9cOECixcvfmCIvKhNmjSJjRs3smjRIqZOnWrS\nWCyWUUvWfUJCQlS9evWUk5OT8vPzU0optWDBArVgwQJ9m5EjRyonJyfVtGlTdeDAgXz7KqW7yatx\n48bKzc1N9e7dW128eDHPbWu8a8XKDhPcwPcodu/eraysrJSbm5tq1qyZcnNrplq33qJ69FAqLc24\n2zL3XBSksGcy2TnZakPcBtVqUSvVYF4DtTRmqUrPSs/VprjnwpgkFwbGPnbKo/4twN2x7uLg9m3o\n1QsqVdK9D+afuWCjKU65yEtBj/rPzM7kh8M/ELA3gAqlKzC53WR6NeiV5z0uxT0XxiS5MDD2sVOK\njDAbN2/q3mJZp47ujZal5PGtD3hYkbmVcYslMUuYGT6TepXrMbndZF6u+7K8JEw8MnmfjCiRrl8H\nb29o1AgWLgRreeBRoVy7c415UfOYFz2PdnXasb7felrVamXqsITQk3/KFuD+y1/NzdWr0LkzvPCC\n9gXG3HNRWEk3kpiwdQLOc505nXKaMJ+wRy4wJSUXxiC50I6cyQiTunQJunSBV16B6dNBRncK9t4v\n7/FT3E8MbjqYGN8Y6lSsY+qQhHgomZMRJpOUpDuD6dsXPv1UCkx+YpNj8d/jz5oq/2KK2s5o99FU\nKS+PVBLGJxP/hSRFxrydPQudOsHbb4OHhxW8tMPUIRUbnsrT1CGIEkwm/sUjM7fLM0+f1hWY//wH\nxo3TPfCyqA6c5paLvCil2HxiM/57/bl06xIfeHzAELchlClVxqjbKQ65KCqSC+1IkRFF6sQJ3RDZ\npEnw73+bOhrzkpWTxZoja/Df608p61JMajuJvg37YmNtY+rQhHhsMlwmisyff+om+D/7DIYNM3we\nFmaFp6fl/l3dybzD0tilzAifQZ2KdZjcbjJeTl5yj4swCRkuE8VSbKzuPpiZM+HNN00djXm4nnad\nb/d/y+x9s2lVsxU/9P4Bj9oepg5LCKOS+2QsgKnvAYiKAi8vmDvX9AXG1LkAuHjzIpN/m4zjHEeO\nXDrC1re2smngpiIvMOaQC3MhudCOnMkITe3ZA717w5Il8Nprpo7GtM6knGHG3hkEHglkYOOB7H93\nP3WfrWvqsITQlMzJCM1s3w79+8OqVbozmYcp6XMyRy4dIWBvACHxIbzX4j3GvDgGuwp2pg5LiDzJ\nnIwoFkJDYfBgWLcOLPXK0IhzEUzbM43opGjed3+fed7zqFi2oqnDEqJIyZyMBSjq8eagIBgyRPdf\ncyswWudCKUXoyVA6LuvIoA2D6OrcldOjTzOp3SSzKzAyD2EgudCOnMkIo1q3DkaNgpAQaNnS1NEU\nneycbNYfXY//Hn8yczKZ1HYS/Rv3p5S1/BMTlk3mZITRrFoFEybohsrc3ArfrzjPyaRnpbPijxVM\nD59O1fJVmdxuMt3qdcvzJWFCFAcyJyPM0uLF8Mkn8Pvv0LChqaPR3o30Gyw6sIgvI7+kqV1TlvRY\nQvs67eUGSiHuI79uWQCtx5u/+Qb+7/90zyAz9wLzpLm4fPsyH+/4GMc5jkQlRbF54Ga2vLmFDs93\nKHYFRuYhDCQX2pEzGfFEZs3SFZmdO6FuCb7l49z1c8wMn8nKQyvp27Av4cPCcansYuqwhDB7Micj\nHtvnn8OKFbohstq1H3895jwnc+zyMQL2BrDp+CaGNRvG2DZjqfl0TVOHJYRmZE5GmJxSMGUK/Pyz\n7gymRg1TR2R80YnR+O/1Z8/ZPYxqNYr4/8TzXLnnTB2WEMWOzMlYAGOONysF48fD5s26OZjiVmDy\ny4VSit9P/07nFZ3ps7YPHZ/vyOnRp5nScUqJLDAyD2EgudCO5kUmNDSUBg0a4OLiQkBAQJ5tRo8e\njYuLC25ubsTExBTYd8KECbi6uuLm5kbv3r25fv261rshgJwc3T0wu3frHhlTtaqpIzKOHJXDhqMb\ncF/szqgto3ir6VucHH2S0e6jear0U6YOT4jiTWkoKytLOTk5qYSEBJWRkaHc3NxUXFxcrjbBwcHK\n29tbKaVUZGSkcnd3L7Dv1q1bVXZ2tlJKqYkTJ6qJEyc+sG2Nd83iZGUp9c47Snl4KJWSYtx179hh\nmr+r9Kx0tTRmqWowr4FqtaiV2hC3QWXnZJskFiHMhbGPnZrOyURFReHs7IyDgwMAAwYMICgoCFdX\nV32bTZs24ePjA4C7uzspKSkkJyeTkJDw0L5dunTR93d3d2f9+vVa7obFy8qCoUMhMRF+/RUqVDB1\nRE/mVsYtFh9czKyIWdSvUp953vN4ue7Lxe4SZCGKA02HyxITE6l9z2VH9vb2JCYmFqpNUlJSgX0B\nvv/+e1599VUNoi8Z0tLScHV1pVmzZjRs2JDJkyc/Uv9bt3RPUv77bwgOLt4F5uqdqwz7ehiOcxzZ\ndXYX6/utZ9vgbXRy7GSRBUbmIQwkF9rR9EymsP9w1WNeLvfFF19QunRpBg0alOfPhw4dqj8TqlSp\nEs2aNcPznyc23v1SWcLyV199RdmyZcnOzuajjz5iz549ZGVlFdj/3DmYPt2TFi3A1zeMqCjz2J9H\nXU66kcTYBWMJiQ+hbZ22hPmGcfHPi9yKvwW1MHl8plqOjY01q3hMuRwbG2tW8RTlclhYGMuWLQPQ\nHy+NyqiDb/eJiIhQXl5e+mU/Pz/l7++fq42vr68KDAzUL9evX18lJycX2Hfp0qXKw8ND3blzJ89t\na7xrxdKtW7dUy5Yt1Z9//llg2/XrlapaVamFC5XKydE2Lq3mZOKvxKt3N72rnvV/Vr2/5X11NuWs\nJtsRoiQx9rFT0yNxZmamcnR0VAkJCSo9Pb3Aif+IiAj9xH9+fbds2aIaNmyo/v7774duW4qMQXZ2\ntnJzc1MVKlRQEyZMyLdtZqZS48cr9fzzSkVHF018xi4yB5MOqn7r+qkq06uoj7d/rP6+9fDviRAi\nt2JVZJRSKiQkRNWrV085OTkpPz8/pZRSCxYsUAsWLNC3GTlypHJyclJNmzZVBw4cyLevUko5Ozur\nOnXqqGbNmqlmzZqpESNGPLBdKTIGO3bsUEoplZKSotzd3fXL90tKUqpDB6W6dlXq8uWijO/J/65y\ncnJUWEKY6rqqq6o5q6aauXemSk1LzWNbO554WyWF5MJAcmFg7GOn5nf8e3t74+3tneszX1/fXMvz\n5s0rdF+A+Ph44wVoQSpWrEi3bt3Yv3+/fmz2rl27YOBA8PWF//0PrIvJbbo5KofgE8FM2zONv2//\nzQceH7Cx/0bKlCpj6tCEEMizy0q8y5cvU6pUKSpVqsSdO3fw8vLik08+oVOnToDuDv4vv4QZM2D5\ncvDyKvoYH+fZZVk5Waw+spqAvQGUsi7F5HaT6ePaBxtrG42iFMIyyLPLxCO5cOECPj4+5OTkkJOT\nw+DBg/UFJjUV3n4bzp2Dffvg+edNHGwh3Mm8w9LYpcwIn8HzFZ9nRpcZeDl5WeQlyEIUB8VkUEQ8\nriZNmvDll18SGxvLoUOHmDBhAgBHjkCrVmBnp3tMjLkXmOtp15m2exp1Z9cl9GQoP/b+kbChYXR1\n7vpIBebupZtCcnEvyYV25EzGAv3wA4wZoxsmGzzY1NHk7+LNi3wd+TWLDi7iVZdX2TZ4G03smpg6\nLCFEIcmcjAVJT4exY+G332D9emhiJsfqvOZkEq4lMCN8BoFHAhnUeBDjPcZT99kS/FY0IcyEzMmI\nx3L2LPTtC/b2EB0NFSuaOqK8Hbl0BP89/oSeDOW9F97j2Mhj2FWwM3VYQojHJHMyFmD69DBat4Z+\n/XRnMOZYYMLPhfNa4Gt0WdmFxtUac2r0Kfw6+Rm9wMjYu4HkwkByoR05kynBsrPhiy9gzhxdcenY\n0dQR5aaUIvRkKOWANze8yQceH7C271rK2ZYzdWhCCCOROZkS6tIleOst2LYNwPwv783MzqSUtfzO\nI4SpGfvYKcNlJdDu3fDCC9CypW5Z6R4fZPI/aZlpLNq/COc5zngs8eCX47+QnZONUkoKjBAllBSZ\nEiQnBwICdBP8CxeCn5/uc1OPN99Iv8HM8Jk4znFkw7ENLOmxhD1v76F7ve5YWxXtV9DUuTAnkgsD\nyYV25NfHEuLKFfDxgatXdVeP1alj6ojg71t/MzdqLt/u/5ZOdTsRPCiYZtWbmTosIUQRkjmZEmDf\nPt3bK/v2hWnTwNbW8DMrK93zyYrS2etnmRU+i5WHVtK3YV8+aPsBzs85F20QQojHInMyJVB2djbN\nmzfntddee6R+SsHXX8Nrr+n+O3Nm7gJT1I7+fZS3g96m+cLmlLYpzZF/H2HRa4ukwAhhwaTImIHZ\ns2fTsGHDR3oGV0oK9OkDq1ZBZCT06vXwtlqPN0cnRtN7TW86LuuIYyVHTv7nJDNemUHNp2tqut3H\nIWPvBpILA8mFdqTImNj58+cJCQlh+PDhhT5FPXhQd/VYzZqwdy84OmocZB6UUvx2+jc6r+hMn7V9\n8HTwJOH9BKZ0nMKz5Z4t+oCEEGZJ5mRM7I033uDDDz8kNTWVmTNn8ssvvzy0rVKwYAF8/DF8843u\nDv6CGHtOJkflsPHYRqbtmcbNjJtMbDuRQU0GUdqmtPE2IoQwGXl2WQmyefNmqlWrRvPmzQs8Xb9x\nA957D+LidGcv9eoVTYx3ZWRn8MOhHwjYG8AzZZ7hw3Yf0rNBzyK/BFkIUbzIEcKEwsPD2bRpE3Xr\n1mXgwIFs376dIUOGPNDu8GHdjZUVKujmXx61wDzJePOtjFvMjpyN8xxnfjzyI9+8+g37hu/jddfX\ni2WBkbF3A8mFgeRCO8XvKFGC+Pn5ce7cORISEli9ejUvv/wyK1as0P9cKfj+e3j5Zfjf/+C776Bc\nET3W6+qdq/zfzv+j7uy67Dq7i/X91rNt8DY6OXaSt1AKIQpNhsvMyL0H71u3YORIiIqCnTuhYcPH\nX6+np2eh2yamJvJV5Fd8H/M9vRr0Ytfbu2hQpcHjb9zMPEouSjrJhYHkQjsy8W+Gjh6FN96AFi3g\n22/hqacef12FnfiPvxLP9L3TWX90PUPchvDfNv+ldsXaj79hIUSxJDdjlnA//AAdOuhej7x8+ZMV\nmLvyG2+OuRBD/5/64/G9BzWfrsmJ/5zg665fl9gCI2PvBpILA8mFdjQvMqGhoTRo0AAXFxcCAgLy\nbDN69GhcXFxwc3MjJiamwL7r1q2jUaNG2NjYcPDgQa13oUikpYGvL3z6qe71yMOH685CtKCUYueZ\nnXRd1ZXugd1pXbM1p0ef5tOXPqVK+SrabFQIYZmUhrKyspSTk5NKSEhQGRkZys3NTcXFxeVqExwc\nrLy9vZVSSkVGRip3d/cC+x49elQdP35ceXp6qgMHDuS5bY13zaji45Vq1kypfv2Uun7duOu+Nw3Z\nOdkq6FiQarO4jXKe46y+O/CdSstMM+4GhRDFmrGPnZpO/EdFReHs7IyDgwMAAwYMICgoCFdXV32b\nTZs24ePjA4C7uzspKSkkJyeTkJDw0L4NGpjXRLSDgwPPPPMMNjY22NraEhUVVei+P/0E//43TJ0K\nI0Zoc/aSlZPF6iOr8d/jT2mb0kxqN4k+rn2wsbYx/saEEOIemhaZxMREatc2jO3b29uzb9++Atsk\nJiaSlJRUYF9zYWVlRVhYGM8991yh+6Snw4QJsHkzhIQYXjBmTHcy7wDlsB9tT4OWDZj1yixecXrF\noi9BDgsLkyuJ/iG5MJBcaEfTIlPYg5nS6CqwoUOH6s+EKlWqRLNmzfRfpLsTfcZa3r17NxUrVixU\n+zNnoGvXMBYcf4m5U6FVMDDvn6Dr/vPfBCMtT4UprvNoVK0RnAcrZytN9r+4LN9lLvGYcjk2Ntas\n4jHlcmxsrFnFU5TLYWFhLFu2DEB/vDQqow6+3SciIkJ5eXnpl/38/JS/v3+uNr6+viowMFC/XL9+\nfZWcnFyovp5mMidTt25d1axZM/XCCy+oRYsW5ds2KEipatWUmjVL5Z4wMYILNy6oidsmqucCnlNv\nbXhLHb542KjrF0KUfMY+dmp6JM7MzFSOjo4qISFBpaenFzjxHxERoZ/4L0xfT09PtX///jy3XZRF\nJikpSSml1KVLl5Sbm5vatWvXA20yMpSaMEGpOnWUCg/XB2mU7Z++elqN2DxCPev/rBoZPFKdvnra\nKOsVQlgeYx87Nb2EuVSpUsybNw8vLy8aNmxI//79cXV1ZeHChSxcuBCAV199FUdHR5ydnfH19WX+\n/Pn59gX4+eefqV27NpGRkXTr1g1vb28td6NANWrUAKBq1aq8/vrrD0z8nz8Pnp5w5AgcOABt2hhn\nu4cvHuatDW/R8ruWVCpbiaMjjzLv1XnUfbZurnb3DxVZMsmFgeTCQHKhIaOWLDNSVLt269YtlZqa\nqpRS6ubNm8rDw0P9+uuv+p+HhiplZ6eUn59S2dkPBPlY29x7dq/q/mN3VX1mdTVt9zSVcicl3/Y7\ndux4rO2URJILA8mFgeTCwNjHTnmszBNKSEjg9ddfByArK4s333yTyZMnk52tuyz5++/hxx+hY8c8\ngyz0y16UUoSeDGXanmmcTz3PBI8JDG02lHK2RfTETCGERTD2sVOKjAaSk2HgQLC21hUYO7uHNCxE\nkcnOyeanuJ/w3+tPdk42k9pNol+jfpSylmebCiGMT55dZubCwnSvRu7QAbZuzafA3Cc9PT33clY6\niw4sov68+syJmsNnL33GH//6g0FNBj1ygSlovDktLe2R1lecydi7geTCQHKhHSkyRpKTA35+ujOY\npUt1zyCzKeQN9Zs3b+bGjRsA3Ei/wczwmTjOcWTjsY183/N79ry9h+71uhvtJsqcnBzGjRunXz5/\n/jy//fabUdYthBD3kjEXI7hyBQYPhtRUiI4Ge/vC971w4QKpqamocoop26fw7f5v6ezYmeBBwTSr\n3swo8d29AQvg2rVrLF26lJ07d+o/c3Z2JiQkhLZt21KuqN6KZiL35sLSSS4MJBfakTOZJxQZqXvv\nS6NGsGPHoxUYgK++/Yq95fdSf159Lt26ROTwSFb3XW20AnO/Z599lnHjxvHMM8/k+rxbt24EBgZq\nsk0hhOWSIvOYlIKvv4YePWDOHJgxA2xtC9//6N9HAZizfQ7ly5fnD98/6HijI6vnr2b58uWMHDmS\n06dPF2pdR44c4fPPPycyMhLQPU7nXoUZb3ZycuLw4cOF34FiSsbeDSQXBpIL7chw2WO4fh2GDYO/\n/oK1f4fxUkUg7DFWtGMHQ1ctZ8YrMzh48CB9+vRh/fr1pKen88Ybb+hv8izI7du3sbW1RSnF0aNH\nqVq16mMEo7sEWwghjEnOZB5RTIzu6rHq1WHvXt1nytMz15/Nt27xyrRpdJw6lVemTeOXmzfZVieL\nl89+Ru2YIcwud4ibHq1Qnp5Y//PQhRYtWlCmTBkiIiLw9PTE09Oz0PMjrVu35uDBg7Rp04bIyEja\ntm2b6+eFHW++fft2ofNQXMnYu4HkwkByoR05kykkpeC77+Cjj2DuXBgwIO92wcHBvP/++5w6dUr/\n2c6YnVTtU5XPfT9nUJNB2NoYxtVs/rkELTo6mrp163LkyBHq1q3L7t27ad++fb4xJSQkULeu7hEy\n5cuXByAyMpL/+7//e6x9tLaW3zmEEMYlR5VCuHkThgzRFZc9ex5eYADmzJmTq8AApP+dTqOERvg0\n88lVYMBQHEJDQ9mwYQNt27bl559/1v88IiKCjz/+mJiYGH744Qf954mJiXTu3Fm/XKdOHdatW8eB\nAwews7MjPDxc3++jjz7St7t16xZfffUVR48e5euvv+bWrVuA7okCTz/99KMnp5iRsXcDyYWB5EI7\nciZTgLg46NsX3N1h3z74pyY81P03Vd71sBse7e3tuXbtGlOmTMnz5zVr1uT555/H1tZWX5AAatWq\nxZIlSwBYvHgxnp6e1KpVi379+ul/frdf2bJl9f2eeuopxo4dy9ixY3Nt59ChQ7i7u+e/c0II8Yjk\nTAL5v0gAAAlDSURBVCYfq1bpnjk2YYLuBsuCCgxAmTJl8vz83gP9vd59913WrVv30PXt27ePzp07\nc+DAgQfmaO4WtNq1a3Pz5k127drFhAkTHujXqlWrAuP+/fffeeONNwpsV9zJ2LuB5MJAcqEdeXZZ\nHtLS4P33dY+IWbcOmjZ9eNswqzA8lad+Oa85GScnJ2bPnk23bt3yXMfu3bt5/vnnqVOnzmPF+6T+\n/PNPsrKycHNzM8n2hRDmw9jPLpPhsvucPAlvvAH16sH+/fCo0xR3C8ncuXNJS0ujbNmy/Oc//3lo\ngQEKnOB/UmEFvL+8UaNGmm7fnBSUC0siuTCQXGhHisw9NmyAf/0LPvkE/v1v3UOSC3LvWcxd3bp1\ny7eoCCGEpZDhMiAjAyZOhI0bYe1aKMQUhhBClEgyXGZkZ89C//5QtSocPAjPPmvqiIQQouSw6KvL\ntmyB1q2hd28ICiq5BUbuATCQXBhILgwkF9qxyDOZrCzdvMuKFfDTT9CunakjEkKIksni5mQuXIBB\ng6BUKfjhB6hWzQTBCSGEmZLXLz+BHTugZUvw9ITQUCkwQgihNU2LTGhoKA0aNMDFxYWAgIA824we\nPRoXFxfc3NyIiYkpsO/Vq1fp0qUL9erV45VXXiElJaXAOHJy4IsvdGcwy5bphsoK+2rkkkDGmw0k\nFwaSCwPJhXY0KzLZ2dmMGjWK0NBQ4uLiCAwM5OjRo7nahISEcPLkSeLj41m0aBEjRowosK+/vz9d\nunThxIkTdOrUCX9//3zjuHIFunfXnbns3w9dumizv+YsNjbW1CGYDcmFgeTCQHKhHc2KTFRUFM7O\nzjg4OGBra8uAAQMICgrK1WbTpk34+PgA4O7uTkpKCsnJyfn2vbePj48PGzdufGgMERG6VyM3aQLb\nt0OtWhrtrJkrzNmepZBcGEguDCQX2tGsyCQmJlK7dm39sr29PYmJiYVqk5SU9NC+Fy9exM7ODgA7\nOzsuXrz40Bh69dI9nj8g4NFejSyEEMI4NLuE2aowz2SBQl3FoJTKc31WVlb5bicyEv55p5dFO3Pm\njKlDMBuSCwPJhYHkQjuaFZlatWpx7tw5/fK5c+ewt7fPt8358+ext7cnMzPzgc9r/TPWZWdnR3Jy\nMtWrV+fChQtUe8glYk5OTjg6Fq7QWYLly5ebOgSzIbkwkFwYSC50nJycjLo+zYpMy5YtiY+P58yZ\nM9SsWZM1a9YQGBiYq02PHj2YN28eAwYMIDIykkqVKmFnZ0flypUf2rdHjx4sX76ciRMnsnz5cnr1\n6pXn9k+ePKnVrgkhhCgkzYpMqVKlmDdvHl5eXmRnZ/POO+/g6urKwoULAfD19eXVV18lJCQEZ2dn\nnnrqKZYuXZpvX4BJkybRr18/lixZgoODA2vXrtVqF4QQQjyhEnvHvxBCCNMrFnf8m8tNneZAi1xM\nmDABV1dX3Nzc6N27N9evX9d8P4xBi1zcNWvWLKytrbl69apm8RuTVrmYO3curq6uNG7cmIkTJ2q6\nD8aiRS6ioqJo3bo1zZs3p1WrVkRHR2u+H8bwJLkYNmwYdnZ2NGnSJFf7Rz52KjOXlZWlnJycVEJC\ngsrIyFBubm4qLi4uV5vg4GDl7e2tlFIqMjJSubu7F9h3woQJKiAgQCmllL+/v5o4cWIR7tXj0SoX\nW7duVdnZ2UoppSZOnGjRuVBKqbNnzyovLy/l4OCgrly5UnQ79Zi0ysX27dtV586dVUZGhlJKqUuX\nLhXhXj0erXLRsWNHFRoaqpRSKiQkRHl6ehbhXj2eJ8mFUkrt2rVLHTx4UDVu3DhXn0c9dpr9mYw5\n3NRpLrTKRZcuXbC2ttb3OX/+fNHu2GPQKhcA48aNY/r06UW6P09Cq1x8++23TJ48Gdt/bjKrWrVq\n0e7YY9AqFzVq/H97d+yS7hbGAfxLg9F4aQpUKKshRK0spEmIloaGiBBpqpZoDMeChlRoCGpxkug/\naKnFSFoMrcYgooyWhhIbEjOj5w5xIy7R7+rr8/p6+X5mD5zny+t5eD0eTtfXG/7z8/PXv12tzEgW\nwOe18H/9cP9JrWun5ZuMFQ51WoVWFt8lk0lMTk4qzL6xtLLY39+H3W6Hx+NRrqBxtLK4vr7GyckJ\nAoEAgsEgzs7OlCsxTiuLeDyOlZUVOJ1ORCIRxGIx5UqMM5LFb2pdOy3fZKxwqNMqGpnFTzY2NmCz\n2RAOh+sabyaNLMrlMqLRKNbX1+sa3yxaz8X7+zuKxSJOT0+xubmJ2dnZeqZnKq0sFhYWsL29jfv7\ne2xtbWF+fr6e6Zmq3ixqWQv/y9pp+UvLmn2o00oamcW/x+7u7uLg4ABHR0eKFTSORhY3Nze4u7uD\n1+v9+vzw8DCy2aylnw+t58Jut2N6ehoAMDIygra2NhQKBXR2dmqWY4hWFtlsFqlUCgAwMzODxcVF\nzTIaot4s/vRTYM1rp5GNJTNUq1Xp6emRfD4vlUrlj5tXmUzma/Pqt7GRSETi8biIiMRisZbY7NbK\n4vDwUAYGBuTx8dHcggzQyuK7Vtn418oikUjI2tqaiIhcXV2Jw+Ewsar6aGUxODgo6XRaRERSqZT4\n/X4Tq6qPkSz+kc/nf9z4r2XttHyTEfn8N0d/f7+4XC6JRqMi8vkFSCQSX59ZXl4Wl8slHo9Hzs/P\nfx0rIlIoFGR8fFz6+vpkYmJCisWieQUZoJFFb2+vOJ1O8fl84vP5ZGlpybyCDNDI4rvu7u6WaDIi\nOlm8vb3J3NycuN1uGRoakuPjY9PqMUIji1wuJ6Ojo+L1eiUQCMjFxYV5BRlgJItQKCRdXV1is9nE\nbrdLMpkUkdrXTh7GJCIiNZbf+CciotbFJkNERGrYZIiISA2bDBERqWGTISIiNWwyRESkhk2GiIjU\nsMkQEZEaNhkiE+RyOXi9XlQqFZRKJbjdblxeXjZ7WkTqeOKfyCSrq6t4fX1FuVyGw+FomZsmiYxg\nkyEySbVahd/vR0dHBzKZTEtcL0FkFH8uIzLJ09MTSqUSXl5eUC6Xmz0dIlPwTYbIJFNTUwiHw7i9\nvcXDwwN2dnaaPSUidZa/tIzo/2Bvbw/t7e0IhUL4+PjA2NgY0uk0gsFgs6dGpIpvMkREpIZ7MkRE\npIZNhoiI1LDJEBGRGjYZIiJSwyZDRERq2GSIiEgNmwwREalhkyEiIjV/A+2ZkA6sFarJAAAAAElF\nTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x634bf10>"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.8-1 Page Number 726"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Prediction of Time for Batch Leaching\n",
      "\n",
      "#Variable Declaration\n",
      "Es = 0.2             #Fraction unextracted\n",
      "d1 = 2.0             #Initial particle diameter, mm\n",
      "d2 = 1.5             #Initial particle diameter, mm\n",
      "t1 = 3.11            #Time in hr\n",
      "#Calculation\n",
      "# Using figure 5.3-13 page 349 for sphere Es = 0.2 alpha*t/a**2 = 0.112 it is same in both sizes\n",
      "absc = 0.112\n",
      "a1 = d1/2\n",
      "a2 = d2/2\n",
      "t2 = t1*a2**2/a1**2\n",
      "\n",
      "#Results\n",
      "print \"Time require for 80% separation wich changed size\",round(t2,2),'h'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Time require for 80% separation wich changed size 1.75 h\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.9-1 Page Number 731"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Single Stage Leaching of Flaked Soyabeans\n",
      "import numpy as np\n",
      "import matplotlib.pylab as plt \n",
      "#Variable Declaration\n",
      "V2 = 100.0        #Fresh Solvent, kg\n",
      "F = 100.0         #Feed of Soyabeen flakes, kg \n",
      "xA2 = 0.0         #Compositions in wt fractions\n",
      "xC2 = 1.0\n",
      "y0 = 0.20\n",
      "yA0 = 1.0 \n",
      "Nn = 1.5          #kg insoluble rtained/ jgsolution retained\n",
      "\n",
      "#Calculation\n",
      "B = F*(1.0-y0)\n",
      "L0 = F*y0\n",
      "N0 = B/L0\n",
      "M = L0 + V2\n",
      "    # Mxam = L0*y0 + V2*xA2 \n",
      "xAm = L0/M\n",
      "    #B = Nm*M\n",
      "Nm = B/M\n",
      "xA = np.array([0.0,0.2,0.4,0.6,0.8,1.0])\n",
      "yA = np.array([0.0,0.2,0.4,0.6,0.8,1.0])\n",
      "N = np.array([0,1,2,3,4,5])\n",
      "plt.grid(True)\n",
      "plt.plot([0,yA0],[0.0,N0])\n",
      "plt.xlabel(\"$x_A,y_A$\")\n",
      "plt.ylabel(\"$ N $\")\n",
      "plt.ylabel(\"$ N $\")\n",
      "plt.plot([0.,1.0],[Nn,Nn])\n",
      "plt.plot([xAm,xAm],[0.0,Nn])\n",
      "plt.text(0.6,0.1,\" $N$ vs $x_A$ \")\n",
      "plt.text(0.6,1.6,\" $N$ vs $y_A$ \")\n",
      "plt.text(yA0,N0,\" $L_0$ \")\n",
      "plt.plot(yA0,N0,'ro')\n",
      "plt.text(xAm,Nm,\" $M$ \")\n",
      "plt.plot(xAm,Nm,'ro')\n",
      "N1 = 1.5\n",
      "yA1 = xAm\n",
      "xA1 = xAm\n",
      "plt.text(xA1,0,\" $V_1$ \")\n",
      "plt.plot(xA1,N1,'ro')\n",
      "m = (N[5]-N[0])/(xA[5]-xA[0])\n",
      "yAm = m*xAm\n",
      "plt.text(xA1,N1,\" $L_1$ \")\n",
      "plt.plot(xA1,Nm,'ro')\n",
      "plt.plot(xA2,0,'ro')\n",
      "l = (Nn-0.0)\n",
      "l1 = (yAm-0.0)\n",
      "l2 = (Nn-yAm)\n",
      "V1 = M*l1/l\n",
      "L1 = M*l2/l\n",
      "\n",
      "#Results\n",
      "print 'Equilibrium amounts of L1, V1 are %3.1f and %3.1f kg'%(L1,V1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Equilibrium amounts of L1, V1 are 53.3 and 66.7 kg\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1YVHX6P/D3+EVbEQKlRB1ofaIVBBkQIQNryFoTVtdf\nqNmlm6zmRT6Tu2655Rcqcrfdikvlh9GlRaVCylpyKdKD7oQiIyYPobJmKSsgjKLxU9J8gPP7g5jD\nACPDyJw5Z+b9+sszc2bmnrtpbu7PfeYclSAIAoiIiKzQx94BEBGRcrGIEBGR1VhEiIjIaiwiRERk\nNRYRIiKyGosIERFZjUWEiIisxiJCRERWYxEhInJS7777Lry8vJCeno6GhgarnsOll2MiIiKFCAsL\nQ3R0NJYsWWL1c7ATISJyUkeOHEF4ePhdPYdkRaS5uRkhISGYNm1al/evWLECfn5+CA4ORmlpqVRh\nERE5raNHjyqniKxfvx4BAQFQqVSd7svLy8P333+P06dP47333sPixYulCouIyGkdO3YMYWFhxm1r\nzscrSRGpqalBXl4ennvuuS6DzM3Nxfz58wEAERERaGxshMFgkCI0IiKndOXKFQCAm5sbAODGjRt4\n/fXX8dVXXyEjI8Pi55GkiLzwwgv45z//iT59un652tpa+Pr6Grd9fHxQU1MjRWhERE7p6NGjJl3I\n1q1bUVVVhccffxw3btzAuXPnLHoemx+dtWfPHgwePBghISHQ6XRm9+vYoXS17EVERHfv6NGjWL9+\nPfr164fNmzfjxIkTOHXqFEaMGAGgtTsxGAx44IEHun0umxeRw4cPIzc3F3l5efj5559x5coVPPvs\ns/joo4+M+6jValRXVxu3a2pqoFarOz2XWq3G+fPnbR0yEZFDGQXg+3Z/qE+YMAG5ubmd9luzZg0A\noLGxEd7e3pY9uSAhnU4n/O53v+t0+969e4WpU6cKgiAIRUVFQkRERJePlzhcWUtKSrJ3CLLBXIiY\nC5Gz5qKlRRC2bxeEh/v+VhAAQQAs/u4sKCgQDhw4IKSmplr8epL/2LBtmaptcJOQkICYmBjk5eVh\n9OjRGDBgAD744AOpw1Kcqqoqe4cgG8yFiLkQOWMuDAZg8WLg1CnghTdX4OX/+wPe+OEHix8/adIk\nAEB0dLTFj5G0iDz66KN49NFHAbQWj/bS0tKkDIWIyGEIApCdDSQmAgsXAllZwD33xKLgQWDtxo3A\n55/b7LVVgmDFgcF2olKprDqO2RHpdDpotVp7hyELzIWIuRA5Sy7adx+ZmcCECZ33seV3J4sIEZEC\ndew+kpKAe+7pel9bfnfy3FkKdafDpZ0NcyFiLkSOnAuDAYiLA1JSgD17gHXrzBcQW2MRISJSCEFo\nnXeMGweMGQOUlHS9fCUlLmcRESmAJbMPc7icRUTkpOTYfbTHIqJQjrze21PMhYi5EDlCLuQ0+zCH\nRYSISGbk3n20x5kIEZGM3M3swxzORIiIHJySuo/2WEQUyhHWe3sLcyFiLkRKyoUSZh/msIgQEdmJ\nUruP9jgTISKyA1vMPszhTISIyEE4QvfRHouIQilpvdfWmAsRcyGSYy6UPPswh0WEiMjGHK37aI8z\nESIiG5Jy9mEOZyJERArjyN1HeywiCiXH9V57YS5EzIXInrlwxNmHOZIUkZ9//hkRERHQaDQICAjA\nmjVrOu2j0+ng4eGBkJAQhISEICUlRYrQiIh6jbN0H+1JNhO5du0aXF1dcfv2bURFReGtt95CVFSU\n8X6dTod33nkHubm55oPlTISIZEoOsw9zHGIm4urqCgC4efMmmpubMWjQoE77sEAQkdI4Y/fRnmRF\npKWlBRqNBt7e3oiOjkZAQIDJ/SqVCocPH0ZwcDBiYmJw8uRJqUJTJK59i5gLEXMhkiIXzjT7MEey\nItKnTx+UlZWhpqYGBQUFnf4Dh4aGorq6GuXl5Vi+fDlmzJghVWhERD3i7N1Hey5Sv6CHhwdiY2Px\nzTffQKvVGm93d3c3/nvq1KlYsmQJLl++3GnZKz4+HsOHDwcAeHp6QqPRGJ+nrTA5w7ZWq5VVPNyW\nz3YbucRjr+2223r7+f39tVi8GCgp0eHVV4Hnn5fH+22/rdPpkJmZCQDG70tbkWSw3tDQABcXF3h6\neuL69euYMmUKkpKSMHnyZOM+BoMBgwcPhkqlQnFxMWbPno2qqirTYDlYJyI7EQQgOxtITAQWLgSS\nkpSzdKX4wXpdXR0ee+wxaDQaREREYNq0aZg8eTIyMjKQkZEBAMjJyUFQUBA0Gg0SExORnZ0tRWiK\n1fGvTmfGXIiYC1Fv5oKzD/MkWc4KCgpCSUlJp9sTEhKM/166dCmWLl0qRThERBbp2H1kZbF4dMRz\nZxERdUHOv/voKcUvZxERKQWPvOoZFhGF4tq3iLkQMRcia3LB2UfPsYgQkdNj92E9zkSIyKk50uzD\nHM5EiIh6GbuP3sEiolBc+xYxFyLmQnSnXHD20XtYRIjIabD76H2ciRCRU3CG2Yc5nIkQEVmJ3Ydt\nsYgoFNe+RcyFiLkQ6XQ6zj4kwCJCRA5HEID9+9l9SIEzESJyKM48+zCHMxEiom5w9mEfLCIKxbVv\nEXMhctZcdDX7KCrS2Tssp8AiQkSKxe7D/jgTISJF4uzDcpyJEBH9gt2HvLCIKJSzrn13hbkQOXou\nevK7D0fPhVzYvIj8/PPPiIiIgEajQUBAANasWdPlfitWrICfnx+Cg4NRWlpq67CISEHYfciXJDOR\na9euwdXVFbdv30ZUVBTeeustREVFGe/Py8tDWloa8vLycOTIEaxcuRJ6vb5zsJyJEDkdzj7unuJn\nIq6urgCAmzdvorm5GYMGDTK5Pzc3F/PnzwcAREREoLGxEQaDQYrQiEim2H0ogyRFpKWlBRqNBt7e\n3oiOjkZAQIDJ/bW1tfD19TVu+/j4oKamRorQFIvrvSLmQuQoueiNc145Si7kTpIi0qdPH5SVlaGm\npgYFBQVd/sft2GqpVCopQiMiGWH3oTwuUr6Yh4cHYmNj8c0330Cr1RpvV6vVqK6uNm7X1NRArVZ3\n+Rzx8fEYPnw4AMDT0xMajcb4XG3FyRm2tVqtrOLhtny228glHku3d+3SITUVuHxZiz17gJ9+0qGo\nyPrna7tNLu9Pym2dTofMzEwAMH5f2orNB+sNDQ1wcXGBp6cnrl+/jilTpiApKQmTJ0827tN+sK7X\n65GYmMjBOpGTEAQgOxtITAQWLgSSkni69t6m6MF6XV0dHnvsMWg0GkRERGDatGmYPHkyMjIykJGR\nAQCIiYnByJEjMXr0aCQkJCA9Pd3WYSlex786nRlzIVJaLmx5vQ+l5UKpbL6cFRQUhJKSkk63JyQk\nmGynpaXZOhQikomO3UdWFrsPpeK5s4hIUvzdh/QUvZxFRATwyCtHxSKiUFzvFTEXIrnmwh7XOpdr\nLhwNiwgR2Qy7D8fHmQgR2QRnH/LBmQgRKQa7D+fCIqJQXO8VMRcie+fCHrMPc+ydC2fBIkJEd43d\nh/PiTISI7gpnH/LHmQgRyQ67DwJYRBSL670i5kIkVS7kNPswh58LabCIEJHF2H1QR5yJEJFFOPtQ\nLs5EiMhu2H3QnbCIKBTXe0XMhai3c6GE2Yc5/FxIg0WEiDph90GW4kyEiExw9uF4OBMhIptj90HW\nYBFRKK73ipgLkbW5UPLswxx+LqQhSRGprq5GdHQ0xo4di8DAQGzYsKHTPjqdDh4eHggJCUFISAhS\nUlKkCI3IqbH7oLslyUykvr4e9fX10Gg0aGpqwvjx4/HZZ5/B39/fuI9Op8M777yD3Nxc88FyJkLU\nazj7cB6Kn4kMGTIEGo0GAODm5gZ/f3+cP3++034sEES2x+6DepPkM5GqqiqUlpYiIiLC5HaVSoXD\nhw8jODgYMTExOHnypNShKQrXe0XMhai7XDji7MMcfi6kIWkRaWpqwsyZM7F+/Xq4ubmZ3BcaGorq\n6mqUl5dj+fLlmDFjhpShETk0dh9kKy5SvdCtW7cQFxeHefPmdVkg3N3djf+eOnUqlixZgsuXL2PQ\noEEm+8XHx2P48OEAAE9PT2g0Gmi1WgDiXx7OsK3VamUVD7fls92mbdvfX4vFi4GSEh1efRV4/nl5\nxWur7bbb5BKPlNs6nQ6ZmZkAYPy+tBVJBuuCIGD+/Pnw8vJCampql/sYDAYMHjwYKpUKxcXFmD17\nNqqqqkyD5WCdyGKCAGRnA4mJwMKFQFKS4y5d0Z3Z8rtTkk6ksLAQW7duxbhx4xASEgIAWLduHc6d\nOwcASEhIQE5ODjZt2gQXFxe4uroiOztbitAUq/1fWM6OuRC15aL9kVd79jjn0hU/F9KQpIhERUWh\npaXljvssXboUS5culSIcIofVNvto6z6ysth9kG3x3FlEDoK/+yBzFP87ESKyHR55RfbEIqJQHY/E\ncWbOnIuOv/v47W91XL76hTN/LqTEIkKkQOw+SC44EyFSGM4+qKc4EyEidh8kSywiCsX1XpEz5MLS\nc145Qy4sxVxIg0WESMbYfZDccSZCJFOcfVBv4UyEyImw+yAlYRFRKK73ihwpF3d7vQ9HysXdYi6k\nwSJCJAPsPkipOBMhsjPOPsjWOBMhckDsPsgRsIgoFNd7RUrMha2uda7EXNgKcyENFhEiCbH7IEfD\nmQiRRDj7IHvhTIRIwdh9kCNjEVEorveK5JwLW80+zJFzLqTGXEhDkiJSXV2N6OhojB07FoGBgdiw\nYUOX+61YsQJ+fn4IDg5GaWmpFKER2QS7D3IW3c5Etm7dinnz5t3Vi9TX16O+vh4ajQZNTU0YP348\nPvvsM/j7+xv3ycvLQ1paGvLy8nDkyBGsXLkSer3eNFjOREgBOPsgubHrTCQ1NRU7duxAfn4+Ll68\naNWLDBkyBBqNBgDg5uYGf39/nD9/3mSf3NxczJ8/HwAQERGBxsZGGAwGq16PyB7YfZAzculuhw0b\nNiAyMhJXr15FSUkJDAYDBEHAxYsXERoaiocffrhHL1hVVYXS0lJERESY3F5bWwtfX1/jto+PD2pq\nauDt7d2j53cWOp0OWq3W3mHIghxy0b772LPHfsVDDrmQC+ZCGt12IpGRkQAAd3d3eHt7o6KiAq+9\n9hoOHjyIS5cu9ejFmpqaMHPmTKxfvx5ubm6d7u/YbqlUqh49P5HU2H2Qs+u2E6mrq0N2djaysrLg\n4eGBuXPnQq/Xw93dvUcvdOvWLcTFxWHevHmYMWNGp/vVajWqq6uN2zU1NVCr1Z32i4+Px/DhwwEA\nnp6e0Gg0xr822o7GcIZtrVYrq3iccXvXLh1SU4HLl7XYswf46ScdiorsH18be+fH3tttt8klHim3\ndTodMjMzAcD4fWkr3Q7W3dzcsGzZMqxcuRJDhw616kUEQcD8+fPh5eWF1NTULvdpP1jX6/VITEzk\nYJ1kSRCA7GwgMRFYuBBISrLtYbtEd8uW353dFpHU1FSEhobiwoULxiCGDRuG0NBQ5OXlYebMmd2+\nyKFDh/DII49g3LhxxiWqdevW4dy5cwCAhIQEAMCyZcuQn5+PAQMG4IMPPkBoaKhpsCwiRu3/wnJ2\nUuZC7kde8XMhYi5Etvzu7HY564UXXuh0W319Pfbv34+//e1vFhWRqKgotLS0dLtfWlpat/sQ2UPH\n7iMri90HEXCX5846cOAAHnvssd6M547YiZA9yL37IOqObM+dJWUBIZIaj7wi6h7PnaVQHY/EcWa2\nyIXU57zqLfxciJgLabCIELXD7oOoZ3g9EaJfcPZBjkq2MxEiR8Dug8h6LCIKxfVe0d3kQqmzD3P4\nuRAxF9JgESGnxO6DqHdwJkJOh7MPcjaciRD1AnYfRL2PRUShuN4rsiQXjjb7MMdcLlJTU+Hm5oa6\nujoAQGFhIcaPH4+tW7dKGJ20+P+INFhEyKGx+2gVGhqKZcuWITs7G0DrdYJefPHFu770NRFnIuSw\nOPsQ7dy5E1FRUfj973+P4uJiXL16FYWFhXjyySeN+6xZswa+vr5YsmQJACA5ORnu7u5YvHgxZs2a\nhdraWjQ3N2Pt2rWYPXu2vd4KWYEzEaIeYPfRmSAIGDp0KDw8PPCf//wHJSUlGD9+vMk+Tz/9NHbs\n2GHc3rlzJ+bMmYN9+/ZBrVajrKwMFRUVJoUHAI4fP46UlBTj9X/i4+Nt/n5IPlhEFIrrvaL2uXCW\n2Yc53X0u5s6di23btsFgMOD+++83uU+j0eDChQuoq6tDeXk5Bg4cCLVajXHjxuHLL7/ESy+9hEOH\nDuHee+81edy1a9fQt29fCIKAysrKTs9rL/x/RBosIgrw7rvvwsvLC+np6WhoaLB3OLLE7sO8+vp6\nDBs2DAAQFxeHXbt2mV3amDVrFnJycrBjxw7MmTMHAODn54fS0lIEBQXhlVdeweuvv27ymPDwcJSU\nlGDixInQ6/WIjIw0uX/VqlW4fv26Dd4ZyUG3F6Ui+wsLC0N0dLRxrRoAr9jWjr+/FnFxrbOPPXuc\nu3h09bk4evQoJk+eDABwd3dHYGAgLl682OXjn376aTz33HO4dOkSCgoKAAB1dXUYOHAg5s6dCw8P\nD2zZsqXT41xdXQEAer0er732mvH2yspK1NfXo76+HiNGjLjbt9cj/H9EGiwiCnDkyBGEh4fbOwzZ\n4dUGu3fgwAEkJyfjxo0bxquQzps3D15eXl3uHxAQgKamJvj4+MDb2xsAUFFRgdWrV6NPnz7o168f\nNm3a1OlxDzzwAHbu3Iljx44ZH9f22KioKNTV1UleREgaPDpLAeLj4xEfH2/yl5WzXz+6/ZFXy5fr\n8PzzWnuHJAv2+Fxs3rwZo0aNglqtxmeffYa//OUvAID8/Hw0NzejoqICDz74IJ566ilJ43L2/0fa\nU/zRWQsWLIC3tzeCgoK6vF+n08HDwwMhISEICQlBSkqKFGEpxrFjxxAWFmbcdsZC2qar2ceYMfaO\nyrn5+vqiqakJBQUFWL16NYDWHzNWVFQgNjYWXl5eKCwstHOUZCuSdCIHDx6Em5sbnn32WVRUVHS6\nX6fT4Z133kFubu4dn8cZO5ErV64gMjLSmLebN2/iwIEDuHnzJsLCwowDU2fA330QWUfxncikSZMw\ncODAO+7jbMWhvYK9e/HKlClI1mrxypQpKNi713jf0aNHTbqQrVu3Ijg4GJmZmU6TMx55RSRfshis\nq1QqHD58GMHBwVCr1XjrrbcQEBBg77AkUbB3Lz5fuRJv/PCD8baXf/l3/8GDsX79evTr1w+bN2/G\niRMn8N1332HBggXw8PCwV8iSat99mDvyimvfIuZCxFxIQxZFJDQ0FNXV1XB1dcW+ffswY8YMfPfd\nd/YOSxJfbNhgUkAA4I0ffsDajRvxen5+t0t8jopHXhEpg2RHZ1VVVWHatGldzkQ6GjFiBI4dO4ZB\ngwaZ3K5SqYBgAJ6/3PArAEMAtB05eLbtCZSzHZwPlBlaN3W/3KwFoP018LXWzOPvB5CP1jyMktf7\n4Ta3uS2D7bMAyn7Z9gTwte1GBrLoRAwGAwYPHgyVSoXi4mIIgtCpgLQRyhxrDvDKlCnAF18AaC0e\nbSaNmQJdZr75B/7TpmHZRcfuIymD3QdRb1CpVDZ7bkkG68888wwefvhhnDp1Cr6+vnj//feRkZGB\njIwMAEBOTg6CgoKg0WiQmJhoPF21M/jtihV4edQok9v+OmoUnli+/I6Pc7TzAt3NOa8cLRd3g7kQ\nMRfSkKQTycrKuuP9S5cuxdKlS6UIRXYeiY0FAKzduBH/8/nnaJ4yBU8uX2683dFx9kGkbPzFupyo\nVK3fqk6Cv/sgkobifydC1B5/90HkOFhEFEqp6722uN6HUnNhC8yFiLmQBosISYLdB5Fj4kxEThx0\nJsLZB5F9cSZCisTug8jxsYgolNzXe6W81rnccyEl5kLEXEiDRYR6FbsPIufCmYicKHwmwtkHkTxx\nJkKyxu6DyHmxiCiUXNZ7pZx9mCOXXMgBcyFiLqTBIkJWYfdBRABnIvKikJkIZx9EysKZCMkCuw8i\n6ohFRKGkXu+Vw+zDHK59i5gLEXMhDRYRuiN2H0R0J5yJyInMZiKcfRA5Bs5ESFLsPojIUiwiCmWr\n9V45zz7M4dq3iLkQMRfSkKSILFiwAN7e3ggKCjK7z4oVK+Dn54fg4GCUlpZKERa1w+6DiKwhyUzk\n4MGDcHNzw7PPPouKiopO9+fl5SEtLQ15eXk4cuQIVq5cCb1e3zlYzkRsgrMPIsem+JnIpEmTMHDg\nQLP35+bmYv78+QCAiIgINDY2wmAwSBGaU2P3QUR3SxYzkdraWvj6+hq3fXx8UFNTY8eI5O9u13uV\nOPswh2vfIuZCxFxIw8XeAbTp2GqpVKou94uPj8fw4cMBAJ6entBoNNBqtQDED41it1tvtOnrCQJQ\nX69FYiLw+OM6pKYCEybI5P1bud1GLvHYc7usrExW8dhzu6ysTFbxSLmt0+mQmZkJAMbvS1uR7Hci\nVVVVmDZtWpczkeeffx5arRZz5swBAIwZMwZff/01vL29TYPlTOSucPZB5JwUPxPpzvTp0/HRRx8B\nAPR6PTw9PTsVELIeZx9EZCuSFJFnnnkGDz/8ME6dOgVfX1+8//77yMjIQEZGBgAgJiYGI0eOxOjR\no5GQkID09HQpwlK0jks55jjS7MMcS3PhDJgLEXMhDUlmIllZWd3uk5aWJkEkzkMQgOxsIDERWLiw\ntRNxtOJBRPbHc2fJSS/NRDj7IKL2HH4mQr2Dsw8ikhqLiEJ1XO91htmHOVz7FjEXIuZCGiwiCsfu\ng4jsiTMROenhTISzDyKyBGciZILdBxHJBYuIAqSnp+Pee+/FpUuXjLOPNWt0CAqajfPn43HmTKW9\nQ7Qrrn2LmAsRcyENFhEFCA8Px9SpU/Huu1XG7mP16u/Qr18T1q5dC39/f3uHSEROijMROTEzE9my\n5V/YsKEOly+rsWvX/8GECUBBQQFWrVqFb775xg6BEpGS2PK7UzZn8aXO2n51vmqVgCee8MXEiVWY\nMAEoKirCyJEjMXjwYHuHSEROjstZMtX+dx9r1gB//asv6uqqcevWLahUKnz88ccIDw+3d5iywLVv\nEXMhYi6kwSIiA+nJyXj6vvsQD+Dp++7D808lG2cfOt0VTJgwEL6+vjh37hz0ej0eeughVFZWIiIi\nwt6hE5GT43KWnaUnJ+PbN97AJ7dvt95w6RKe+/QNLFwIrFuXjP37j2L8+PHw9PTEmTNn4O7uDgC4\ncOECJvC4XgDiRXmIuWiPuZAGOxE7+zotDe+2FZBfbMZtnPksDYcOHcKaNWuwZ88eAEBUVBQ0Gg3S\n09NRVlaGQ4cO2SNkIiIjHp1lZ8/e64mPrv6/TrfHe3ggs7HR7ON07S6j6+yYCxFzIWIuRDw6ywG1\nHXlVd7Xr/wQ/u/A/DRHJHzsRO2h/zqvfT0zG5Q/fMFnSSnBxQfDLL2NJcrL9giQih8FOxEF0fbXB\nZKT7AHPS0vCrS5fws5cXHlm2jAWEiBRBssF6fn4+xowZAz8/P7z55pud7tfpdPDw8EBISAhCQkKQ\nkpIiVWiSuNP1PpYkJyO7oQGZALIbGiwqIDwGXsRciJgLEXMhDUk6kebmZixbtgxfffUV1Go1JkyY\ngOnTp3c659Ojjz6K3NxcKUKSDK91TkSOTJIiUlxcjNGjR2P48OEAgDlz5mD37t2diogjzDvaaz/7\n2LOnd0/XzqNORMyFiLkQMRfSkGQ5q7a2Fr6+vsZtHx8f1NbWmuyjUqlw+PBhBAcHIyYmBidPnpQi\nNJvg9T6IyFlIUkRUKlW3+4SGhqK6uhrl5eVYvnw5ZsyYIUFkvU+qa51zvVfEXIiYCxFzIQ1JlrPU\najWqq6uN29XV1fDx8THZp+10HgAwdepULFmyBJcvX8agQYNM9ouPjzcui3l6ekKj0Rjb1rYPjT22\nBQH43//VIS0NWLxYi6wsoKhIB52uB8/XeqMs3o+SttvIJR57bpeVlckqHntul5WVySoeKbd1Oh0y\nMzMBwPh9aSuS/E7k9u3b+M1vfoP9+/dj2LBhCA8PR1ZWlslMxGAwYPDgwVCpVCguLsbs2bNRVVVl\nGqxMfyfSa9c67+E11omILKH434m4uLggLS0NU6ZMQXNzMxYuXAh/f39kZGQAABISEpCTk4NNmzbB\nxcUFrq6uyM7OliK0u8Ijr4jI2fEX61bqte6jvR50IjqeF8iIuRAxFyLmQmTL706exbeHeOQVEZGI\nnUgP2KT7aI8zESKyAXYidsbug4ioaywi3ZDqdx891fHwVmfGXIiYCxFzIQ0WETPYfRARdY8zkS7Y\nfPZhDmciRGQDnIlIhN0HEVHPsIj8Qq6zD3O43itiLkTMhYi5kIbTFxF2H0RE1nPqmYjdZh/mcCZC\nRDbAmUgvY/dBziY1NRVubm6oq6sDABQWFmL8+PHYunWrnSMjpXO6IqK02Yc5XO8VMRcic7kIDQ3F\nsmXLjCc2jYyMxIsvvoh58+ZJGJ20+LmQhtMUEXYf5MwuXLiAlStXIisrCwBw9epV3HvvvSb7rFmz\nBunp6cbt5ORkvP3227h27RpiY2Oh0WgQFBSEHTt2SBo7yZtTzERkN/swhzMRspEdO3Zg9uzZeOKJ\nJ7Bx40YYDAYEBATg/vvvN+5TVlaGxMRE41/wY8eOxRdffAG9Xo/PP/8c7733HgDgypUrJgWoubkZ\nn3zyCc6cOQNfX18UFxfjT3/6E0aOHCnpeyTzOBOxErsPIlNz587Ftm3bYDAYTAoIAGg0Gly4cAF1\ndXUoLy/HwIEDoVarMW7cOHz55Zd46aWXcOjQoU4dTHl5OeLi4jBy5Ei0tLRg1qxZGDp0qJRvi+zI\nYYuIo8w+zOF6r4i5EHWVi/r6egwbNgwAEBcXh127dpn9q3TWrFnIycnBjh07MGfOHACAn58fSktL\nERQUhFdeeQWvv/66yWNCQ0Nxzz33oKioCFqtFlqtFv379zfZZ9WqVbh+/XovvEPL8XMhDYcrIo7U\nfZw8eRLh4eH4wx/+gIsXLwIASktLMXbsWOj1ejtHR0px9OhRhIaGAgDc3d0RGBho/Dx19PTTTyMr\nKws5OTntoc2hAAAJCElEQVSYNWsWAKCurg6/+tWvMHfuXPz5z39GSUlJp+dvaGjA8ePHMWLECBw8\neNDk/srKStTX16O+vt4G747sTZLL40ql/exjzx7lFo82AQEBiI2Nxa9//Wvj0oNKpcLOnTsREBBg\n5+jkg1evE3XMxYEDB5CcnIwbN25g5syZAIB58+bBy8ury8cHBASgqakJPj4+8Pb2BgBUVFRg9erV\n6NOnD/r164dNmzaZPCY/Px/e3t6IjIzEp59+ivvuu8/k/oqKCkRFRaGurg4jRozopXfaPX4upOEQ\ng/WO1zpPSlLo0lUXg/UtW7bg/PnzWLt2LQBg27ZtmDt3rj2iI+qx/Px8NDc3o6KiAg8++CCeeuop\ne4fklBQ/WM/Pz8eYMWPg5+eHN998s8t9VqxYAT8/PwQHB6O0tNTi53b02YePjw9qamoAAPv378fk\nyZMBcL23PeZCJKdcFBYWoqKiArGxsfDy8kJhYaGkry+nXDgymxeR5uZmLFu2DPn5+Th58iSysrJQ\nWVlpsk9eXh6+//57nD59Gu+99x4WL17c7fM60uzjTnx8fFBdXY3m5mZcuHABQ4YMAdB6OCa1Yi5E\ncspFZGQkVq9eDQBYtGgR3n77bUlfX065cGQ2LyLFxcUYPXo0hg8fjr59+2LOnDnYvXu3yT65ubmY\nP38+ACAiIgKNjY0wGAxdPt8rU6Zg99a9Dt19tNfWiezevRvTp0833q7X63H+/Hk7RiYfjY2N9g5B\nNpgLEXMhDZsXkdraWvj6+hq3fXx8UFtb2+0+bUs4HaV88QU+mb8Snv+z12G7j/Y8PDxw+fJl9OnT\nBwMGDADQeshmeXm5JBfoIiK6E5sXEZVKZdF+Hb8Q7/S47S0/QH11o8N2Hx1FRkaadCFDhgzBPc7y\n5i1QVVVl7xBkg7kQMRfSsPkhvmq1GtXV1cbt6upq+Pj43HGfmpoaqNXqTs81CoCxtHz+OVIsLFCK\nYuY9dXW+oo55dGYffvihvUOQDeZCxFy0GjVqlM2e2+ZFJCwsDKdPn0ZVVRWGDRuGTz75xHgSuDbT\np09HWloa5syZA71eD09PT+Mx6u19z+UbAK0n00tMTERMTIxDn4WViOTP5kXExcUFaWlpmDJlCpqb\nm7Fw4UL4+/sjIyMDAJCQkICYmBjk5eVh9OjRGDBgAD744ANbh6VogwcPxvbt2+0dBhGRsn5sSERE\n8iLLc2fZ8seJStNdLrZt24bg4GCMGzcOkZGR+Pbbb+0QpTQs+VwAredycnFxwa5duySMTlqW5EKn\n0yEkJASBgYEOfQqQ7nLR0NCAJ598EhqNBoGBgcjMzJQ+SAksWLAA3t7eCAoKMruPTb43BZm5ffu2\nMGrUKOHs2bPCzZs3heDgYOHkyZMm++zdu1eYOnWqIAiCoNfrhYiICHuEanOW5OLw4cNCY2OjIAiC\nsG/fPqfORdt+0dHRQmxsrJCTk2OHSG3Pklz8+OOPQkBAgFBdXS0IgiBcvHjRHqHanCW5SEpKEl56\n6SVBEFrzMGjQIOHWrVv2CNemCgoKhJKSEiEwMLDL+231vSm7TqS3f5yoZJbkYuLEifDw8ADQmgtz\nv69ROktyAQAbN27EzJkzO10rw5FYkovt27cjLi7OeARfx5MiOgpLcjF06FBcuXIFQOsFtby8vODi\n4lDnngUATJo0CQMHDjR7v62+N2VXRHr7x4lKZkku2tuyZQtiYmKkCE1yln4udu/ebTxtjqW/UVIa\nS3Jx+vRpXL58GdHR0QgLC8PHH38sdZiSsCQXixYtwokTJzBs2DAEBwdj/fr1UocpC7b63pRdObbF\njxOVqifv6d///jfef/99yU9yJxVLcpGYmIi///3vxjOWdvyMOApLcnHr1i2UlJRg//79uHbtGiZO\nnIiHHnoIfn5+EkQoHUtysW7dOmg0Guh0Ovzwww944oknUF5eDnd3dwkilBdbfG/Kroj05o8Tlc6S\nXADAt99+i0WLFiE/P/+O7aySWZKLY8eOGa/G19DQgH379qFv374mv/Z3BJbkwtfXF/fddx/69++P\n/v3745FHHkF5ebnDFRFLcnH48GG8/PLLAFp/dDdixAicOnUKYWFhksZqbzb73uyVyUovunXrljBy\n5Ejh7Nmzwo0bN7odrBcVFTnsMNmSXPz3v/8VRo0aJRQVFdkpSmlYkov24uPjhX/9618SRigdS3JR\nWVkpTJ48Wbh9+7bw008/CYGBgcKJEyfsFLHtWJKLF154QUhOThYEQRDq6+sFtVotXLp0yR7h2tzZ\ns2ctGqz35vem7DoR/jhRZEkuXnvtNfz444/GOUDfvn1RXFxsz7BtwpJcOAtLcjFmzBg8+eSTGDdu\nHPr06YNFixY55NUwLcnFX//6V/zxj39EcHAwWlpa8I9//AODBg2yc+S975lnnsHXX3+NhoYG+Pr6\n4tVXX8WtW7cA2PZ7kz82JCIiq8nu6CwiIlIOFhEiIrIaiwgREVmNRYSIiKzGIkJERFZjESEiIqux\niBARkdVYRIiIyGosIkQdNDc3Y/v27UhJScGHH36IpUuX4syZMxY//vjx40hJSYFerwcAxMfH2yhS\nIvtjESHqoLy8HHFxcRg5ciRaWlowa9YsDB061OLHX7t2DX379oUgCKisrHToa5sQsYgQdRAaGop7\n7rkHRUVF0Gq10Gq16N+/v/H+VatW4fr162YfHx4ejpKSEkycOBF6vR6RkZEm93f3eCIlYREh6uDo\n0aNoaGjA8ePHMWLECBw8eNB4X2VlJerr61FfX9/pcWfPnjX+29XVFQCg1+sxceJEix5PpEQsIkQd\n5OfnY9euXYiMjMSnn35qcl9FRQWioqJQV1dncnttbS0ef/xx4/YDDzyAnTt34tixY/D29u728URK\nJbtTwRPZ29q1a7u8PT8/HwMGDMCZM2c6dRJqtRpbtmwBAGzevBlarRZqtRqzZ8+26PFESsVOhMgC\nhYWFqKioQGxsLLy8vLq8DPGNGzcAtF5VsKmpCQUFBVi9erXFjydSIl5PhIiIrMZOhIiIrMYiQkRE\nVmMRISIiq7GIEBGR1VhEiIjIaiwiRERkNRYRIiKyGosIERFZjUWEiIis9v8B4nxTvxynuvcAAAAA\nSUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x65319f0>"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.10-1 Page Number 735"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Counterurrent Extraction of Oil from meal\n",
      "import numpy as np\n",
      "from scipy.optimize import curve_fit, root\n",
      "import matplotlib.pyplot as plt\n",
      "from scipy.interpolate import interp1d\n",
      "from scipy.integrate import quad\n",
      "\n",
      "#Variable Declaration\n",
      "X = []\n",
      "N = np.array([2.00,1.98,1.94,1.89,1.82,1.75,1.68,1.61])   #kg of inert solid B/kg solution\n",
      "yA = np.array([0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7])          #kg of inert oil A/kg solution\n",
      "FMi = 2000.      #Rate of Mass of inert solid meal, kg/hr\n",
      "FMo = 800.       #Rate of Mass of oil, kg/hr\n",
      "FMb = 50.        #Rate of Mass of Benzene with feed, kg/hr\n",
      "FSb = 1310.      #Rate of Mass of Benzene with fresh solvent, kg/hr\n",
      "FSo = 20.        #Rate of Mass of oil with fresh solvent, kg/hr\n",
      "LS = 120.        #Rate of Mass of Leached solids, kg/hr\n",
      " \n",
      "#Calculation\n",
      "f = interp1d(yA,N,kind='quadratic')\n",
      "L0 = FMo+FMb\n",
      "yA0 = FMo/L0\n",
      "B = FMi\n",
      "N0 = B/L0\n",
      "Vn1 = FSb + FSo\n",
      "xAn1 = FSo/Vn1\n",
      "M = L0 + Vn1\n",
      "xAM = (L0*yA0 + Vn1*xAn1)/M\n",
      "NM = B/M\n",
      "sL0Vn1 = B/LS\n",
      "\n",
      "cL0Vn1 = NM - sL0Vn1*xAM\n",
      "xx = -cL0Vn1/sL0Vn1\n",
      "\n",
      "plt.grid(True)\n",
      "plt.xlabel('$x_A$  $y_A$')\n",
      "plt.ylabel('$N$')\n",
      "plt.plot(yA0,N0,'ro')           #plot L0\n",
      "plt.text(yA0,N0,'$L_0$')\n",
      "plt.plot(0.0,0.0,'ro')          #plot origin\n",
      "plt.plot(xAn1,0.0,'bo')         #Plot Vn+1\n",
      "plt.text(-xAn1-0.06,0.2,'$V_{N+1}$') \n",
      "plt.plot([xAn1,yA0],[0.0,N0])   #plot line L0 to Vn+1\n",
      "plt.plot(xAM,NM,'ro')           #plot M\n",
      "plt.text(xAM-0.05,NM-0.5,'$M$')\n",
      "plt.plot(yA,N,'b-')             #Plot N vs yAN+1\n",
      "plt.text(yA[len(yA)-1],N[len(yA)-1],'$N$ $vs$ $y_A$')\n",
      "\n",
      "ff= lambda x:f(x)-sL0Vn1*x\n",
      "sol = root(ff,0.01)\n",
      "yAn = sol.x[0]\n",
      "Nn = f(yAn)\n",
      "\n",
      "plt.plot([0.0,yAn],[0.0,Nn])\n",
      "plt.plot([xAn1,yAn],[0.0,Nn])    #Plot Vn+1 to Ln\n",
      "\n",
      "s1 = (NM-Nn)/(xAM-yAn)\n",
      "c1 = NM-s1*xAM\n",
      "x1 = -c1/s1\n",
      "X.append(x1)\n",
      "plt.plot([x1,yAn],[0.0,Nn])      #Plot Ln to V1 \n",
      "sdL0 = (N0-0.0)/(yA0-x1)\n",
      "c2 = -sdL0*x1\n",
      "\n",
      "s3 = (Nn-0.0)/(yAn-xAn1)\n",
      "c3 = -s3*xAn1\n",
      "delx = (c3-c2)/(sdL0-s3)\n",
      "dely = sdL0*delx+c2\n",
      "plt.text(delx,dely-0.5,'$\\delta$')\n",
      "plt.plot([yA0,delx],[N0,dely])     #Draw a line from V1 to delta\n",
      "plt.plot([xAn1,delx],[0.0,dely])   #Draw a line from Vn+1 to delta\n",
      "plt.plot([1.0,-0.4],[0.0,0.0])\n",
      "x = x1\n",
      "j = 0\n",
      "while x > xAn1:\n",
      "    j = j+ 1\n",
      "    y = f(x)\n",
      "    plt.plot(x,0.0,'bo')\n",
      "    plt.text(x,-0.5,'V'+str(j))\n",
      "    plt.plot([x,x],[0.0,y])            #Move to N vs y curve\n",
      "    plt.plot(x,y,'bo')\n",
      "    plt.text(x,y+0.5,'L'+str(j))    \n",
      "    plt.plot([x,delx],[y,dely])        #from x,y Draw a line joining to delx,dely\n",
      "    slope = (y-dely)/(x-delx)\n",
      "    inter = y - slope*x\n",
      "    xnew = -inter/slope\n",
      "    X.append(xnew)\n",
      "    x = xnew\n",
      "\n",
      "a = np.array([[1,1], [yAn,X[0]] ])\n",
      "b = np.array([M,M*xAM])\n",
      "Ln,V1 = np.linalg.solve(a, b)\n",
      "\n",
      "#Results\n",
      "print 'Rate of leached solution %5.1f kg/h'%Ln\n",
      "print 'Composition of leached solution %5.4f kg/h'%yAn\n",
      "\n",
      "print 'Rate of solvent out %5.1f kg/h'%V1\n",
      "print 'Composition of solvent out %5.3f kg/h'%X[0]\n",
      "\n",
      "print 'Rate of leached solids %8.1f kg solution/h' %(M)\n",
      "print \"Number of equilibrium stages required are\",j "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Rate of leached solution 1014.0 kg/h\n",
        "Composition of leached solution 0.1183 kg/h\n",
        "Rate of solvent out 1166.0 kg/h\n",
        "Composition of solvent out 0.600 kg/h\n",
        "Rate of leached solids   2180.0 kg solution/h\n",
        "Number of equilibrium stages required are 4\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFFcXxt+lK4oUAcEFURQEVKotsWBBNJaYaDTWaKLR\nFDCaYoktlhQTe4kmajRYY/kSW0JRiqAoTZReBKX3Xrec748VbJRl2YVdvb/nmQd2yr3vzuzMmXvO\nvedyiIjAYDAYDMYTlNpbAIPBYDDkC2YYGAwGg/EczDAwGAwG4zmYYWAwGAzGczDDwGAwGIznYIaB\nwWAwGM+h0t4CxMHOzg6RkZHtLYPBYDAUCltbW9y7d6/FxylEiyEyMhJEJPfLhg0b2l0D08l0KqpG\nplP6i6Qv1AphGBSF1NTU9pYgFkyndFEEnYqgEWA65QVmGBgMBoPxHMwwSJEFCxa0twSxkLXOTp06\nNbrtwoULUFJSQnh4eLPlsPMpPRRBI8B0ygscIpL7XEkcDgcKIJPxhM6dO6OsrOyl9WVlZZg4cSL4\nfD727dsHBwcHqdTXqVMnlJeXP7fu4MGDOHDgAJSVlaGhoYGDBw/C1tZWKvUxGIqCpM9O1mKQIn5+\nfu0tQSzaS+e6deuwatUqqKuri/VjFVcnh8N5ad2cOXNw//59REREYM2aNfjyyy9bKldsFOG6K4JG\nQD50Hjx4EHp6ejhw4ADy8/Mb3EcedMoSZhgYbUJ4eDgyMjLw1ltvAWj4YS5NOnfuXP9/eXk5unbt\nKtP6GK8OTk5OGDVqFD799NPX9nfDXEkMqfOiK0koFGL06NE4fvw4evTogVGjRuGXX36Bo6OjTOqr\n48CBA9ixYwcqKipw69Yt9OzZUyr1NURD7qwdO3bgyJEjUFFRgb6+Po4ePQpTU1OZaWBIh/3796Oi\nogLffPNNe0tpNcyVxJBbysvLER0dDWdnZ/Ts2RPBwcGYMmWKWAHo1vDpp58iKSkJO3bswIcffijT\nuhpqATk4OCAsLAyRkZGYPn36K/GgeR0ICQnBoEGD2ltGu8IMgxRRFL9jW+vU0tJCXl4eUlJSkJKS\ngiFDhuDy5cvNBp+lpXPmzJkyNUKN6XR2doaGhgYAYPDgwUhPT5eZhuZgv03xCQsLg5OTU/3nht64\n5UGnLGGGgSF1KisrYWJiUr/s2rWrzTUkJSXV/3/16lUMGDCgzTU8y5EjR+rjK+1FQ92IAwIC4ODg\nAFVVVVy4cKEdVLUvAVevYq2rKzY6O2Otqyv+PXcOwNNzVVNTg82bN8PHxweHDh1qT6ltCosxMBQe\nZWVlGBsb139esWIFHj16BB8fH6iqqkJfXx8HDhxA7969ZaahsTgHAJw4cQIHDhyAv78/VFVVZaah\nORrS+OjRI5SWluKXX37BlClTMG3atHZS1/YEXL0Kz2XLsDU5uX7dbCMjFNnY4F9vbwAigx4UFISj\nR49iz549mDp1qkLFiSR9dipEEj0GoykEAkF7S2gUHx8ffP/99wgICGhXo9AYPXr0AAAoKb1+zgOv\nPXuwNTkZtegAghD3UYPyrCykCoU4fPgwoqOjER8fX99poVOnTsjJyVEowyApr9+vQYYoit+R6ZQu\njemMiIjA0qVLcfny5Xbv9qjo51LaPHoE3E8di6U4j7O4Dk+4YyCASwBm9u2LRYsWYefOnbh27Rq0\ntLQAAMXFxTA0NGxTne0FazEwGFKgLq5Sx4oVK3Dt2jVUVFRg+vTpAERv53///Xd7SXytKS0FfH0B\nb2/RUlRImFrrhPdQAyPsgRXO1O8reNJhoI633noLvr6+UFJSei1aCwCLMTAYrw1NxUEWLlyIyZMn\n4913321jVbKBzwdCQgAvL5EhiIwEhgwBXFwAl6F8qO2NR15INoIEG/BtWlD9cWvMzTF+926MmDix\nHdVLDxZjYDAYElOXv19RIQKSk5+2CHx9AVNTYNw4YP16YPhwoEMHoPRuKWJmxUBzvC6GxzpD6fpq\nrNu7F8rV1RBoaGC8m9srYxRaBckBjx8/JmdnZ7K2tiYbGxvavXv3c9vlRGaz+Pr6trcEsWA6pYsi\n6PT19SUlJSXicrn1y86dOykkJIS4XC5pamqSnp4e9evXr911ikthIdH580Qff0zUsyeRkRHR/PlE\nJ04QZWc/v69QIKTHvzymQINAyr2Q26Y62xNJn51y0WJQVVXFzp07YWdnh/Lycjg6OsLFxQVWVlbt\nLY3BeGVorPdWWlpaGyuRjNpaIDhY1CLw8gJiY4Fhw0TuIXd3wNoaaCgFV21eLeI+iAO/iA+HOw7o\nYNah7cUrGHIZY5g6dSrc3NwwZswYACzGoChcvRqAPXu8UFOjAnV1Ptzdx2HixBHtLYuhoBABcXFP\n3UMBAUCfPiL3kIsL8MYbgLp602UU+RYhdl4sus3rBrNNZlBSfb06Yr4yMYbU1FRERERg8ODB7S3l\nlSQ/H6ioANTUAFVV0VL3v7Jyw29c4nD1agCWLfNEcvLW+nXJyd8CgMyMAzNErx55ecD160+DxkpK\nIiMwdy7wxx+AuL1+hXwhHm1+hKzfs9D3WF/ojtOVrfBXDLkyDOXl5Zg+fTp279790vD9BQsWwMzM\nDACgra0NOzs7ODs7A3jap7i9P9etkxc9DX3eswfYs2cXlJTswOE4g8cDqqv9wOMBHI4zVFUBJSU/\nqKgAmpqizwKB6LO2tuhzVZXos76+M9TUgJISP8TFHUFRkceTsyCqLzl5K775Zh2CgoTQ0AAGD3aG\npiYQG+sHDQ1g9GjR55AQP6iqtux83r4diSNHcp8Yorr6PAEAmprCNj2/u3btksvf47Of7927hy++\n+EJu9NR9rq4G9u/3Q1gYEBfnjPh4P9jZAU5OgI+PMywsAH9/0f5du4pXvtc5Lzza8giDDAbBMdwR\nt+NuA36vx/n08/PDsWPHAKD+eSkJcuNK4vF4mDRpEiZMmFB/wutQFFeSn59f/cWSZxrTKRAAPJ5o\nqa0V/29tLbBmzUbExm58qUztHmswftgWVJUrobJS1FppaOFwAE3N5xeBwA+mps7o3BnQ0hItdf8f\nPrwW0dFbMGTIFdy9Ox5CoegdZ/TodfDy2gxlZRmfxGdQhOsua407d+7EunXrkJiYCCMjIwQFBcHd\n3R3Lly/H3Llz6/cjAh48eOoeCgoC+vV76h6qrvbD2LGS68y/nI/4xfHgLuPCdKUpOEqymfdDEa45\nIPmzUy4MAxHhgw8+gJ6eHnbu3PnSdkUxDK8zrq5r4eW15aX12kOXQWv7+/i8e3csMjKCTgNpIYhE\nxqXOSFRWAuXloqW0FCgrE/199v+zZzfC1HQoli9fig8/jEJ1tSYAQElpI4CN0NB43pDULTo6gJ7e\ny0vXrk//V1MT/3szd5YIf39//PvvvzA0NMTy5csBAH/99RdmzJiBrCzAx0fkHvLxERl9FxfRMno0\noK3d+vqFNUI8XPUQef/Lg/Upa3R5o0vrC30FUOgYQ1BQEE6cOIEBAwbA3t4eAPDDDz9g/Pjx7ayM\nIS7u7uPg7x+Jmpqn8yqbm6/B7m+nwdDGBrszMtDrzh3MNjCAO5cLy44d6/fjcERBRHV1QFdMV3By\nciXmzFmKnTsP1hsFAHBxEeDaNZFxedGolJYChYVAQYFoSU4W/c3Pf7qusBDQ0GjeeOjpAbGxAdi5\n0xOPH28F1ARArbLM4yrySm5uLpYtW4a3334bS5Ysx3//leHMGS1s3gxkZIgMgIsL8N13QK9e0q27\nMqkSMe/HQMNEA07hTlDVlb+cVIqGXBiGYcOGQSgUtreMVqMozUtZ6DTqPhQq/CI4cqfjVno+XF2H\nw81tfP0D0kNLC5k1Nfg1MxMjIiLg2LkzvuBy4aKj0+g0n03pXLbsEUJCOiEkxLV+nbn5Gri5jYeS\nEtCpk2hpKUQiA1JnKF40HHFxT/+/c8cLZWVbAdv/AQvNgC/skJy8FfPmrYOz84hmjYuODqDSRneg\nLH+bQiGQnExITjZCUlIX6OvHwdw8B2+95YiVK0XxAmVlIDk5GZcuXQaXy4WTkxM2bNiA48ePIyoq\nCuHh4aiqqoKpqSkmTJgAAIiKisLff/+NsWPHYsiQIViwYEG9/7yOnFM5SFqWBLONZjD+1FjmU8bW\noSj3uqTIhWFgKD5LP4/DN8qnsD7yN3D09PDff34v7WOsro7NPXtijakpTufm4qvkZAiIsIzLxVxD\nQ3QUMzBQWhqCjh39YWv7G1xd1yHbswzdXDs/Z4gkhcMBunQRLc292To7q8A/qwyYlg7sHQtA9FAy\nMVHG7NlPDUhWFhAV9byxKSgASkpErq7mWiYvLs80tsTi6tUAbNx4BJqaflJzd6WlPR1PcP26yP02\nbRowf/4cqKmdhJNTf8yYMfK5Y3Jzc2FgYIDq6mqYmZnB3NwcAHD06FG8//77iImJQVVVVf3+lZWV\nUFVVBREhNjYW+vr69dsEFQIkuieiJLAEA7wHoLNdZzCkh1zEGJqDxRjkm+B7xRg3sBb3F22C2a/7\nxL5eRATf4mLsTk/HrdJSLDIywmfGxuC+kMTsWYRCHsLCnGBq+g0MDecAAPw4fnAmZ2l9HbEZOW0T\nAma6AHt7A4FPH1quruvw33+bmz1eIACKi19ulTS21O2jrNy04XjWuNy/H4AffvBEStpagC8a2GVu\n/i1273ZtkXEoKwP8/J4GjfPzgTFjREFjW9tsVFUlYdiwYSgrK8OQIUOwfv16zJw586VyZsyYgV9/\n/RV6enq4cOECpk2bhvDwcLi7u0NXVxeXLl16bv+ZM2fi7Nmz+OOPP6Cjo4OpU6ei/EE5YmbG4AAO\nYK//XnTWZ0ahMRQ6xsBQbJZ8HoMvlLxgtmlDi47jcDgYraOD0To6SKqsxN6MDAwIDYWrri6Wde+O\nIV1eDiCmpf0CdXVjGBjMlpZ8iagUCJD16Qjo/hOFwsCh9evr3Fni8OwD3sJCvHqJRAH6xgxHSgoQ\nGvp0XVSUF6oNxgOf9wUORgLV2khO3oqFC9dh0qTG3V3a2qKy6jKSRkQAgwaJ4gQnTwJ2dqIxBgBw\n+XJI/WDUzp07o1+/fsjLy2tQf05ODvT09BAaGoohQ4bA29sbGRkZCAwMbHBe7o5PmkfBwcH47rvv\nkHkoEylrUyD4UoDa+7XIL89nhkEGMMMgRRTF7yhNnT6hKUi+Y4Gliy4AzzT1W0rvjh2xu08fbOrZ\nE39kZWF2bCw0IiOxfupUTNPXh6qSEiorE5CWth1OTmFt5ktuCCLCwrg4DDIywPuuHGwKnoeOIWnQ\neCGuIgs4nKfxkydz7DRJ/3dTENX7XeDESqD6afcffX1lvPHGUwOSmAg8fgykpgI5OaIeYUQiF5GO\njmjEsYqKqKtpZqbIgHC5QM+eN7Bx40bU1NTUpxefO3cu9PT0GtQzYsQInD9/Hl26dIGTkxPy8/OR\nl5dX34Ppxd+mqakpzp07h9C7oShwL0BlQiXsA+1xJfIKhmkNQ1ZWVv1EOm2JotzrksIMA6NVfLos\nHm5KETDe8LVUyuuiooIvTEzgxuXih+xsHMrKwlfJyfjM2AhjCxfDzGwdNDTEeCLKkE2PHuFxTQ18\nbW2hYW2NTpoE51GjgAbiKu3JmagzSLD6B/jTB8iqfm6biYkA06cDN26IjIG/v8gYuLiI3ENjxwLd\nuoniII25th4/Bj76aDTCwsKeK3vy5MmNatq8+XkXm62tLWxtn/Zke3Zw4+HDh+Hs7Iwu+V0w9NFQ\nqA1TQ98/+8Lbzxuampp4+PAhsrOzJT9BjMaRPG9f26EgMl87Tt0MIk2VAspZ/PVz66V9vSJKS2lr\n2CY65GtFS2KjKaq8/LntvvCVan1NcTYnh0xv3aKs6urnN8jZb/TXkF+p+/butO+vo2RuvoZE7/+i\nRUdnNVla+lOnTkSurkS//EJ0/z6RUNjeqp/n32v/0pEFR2hl55WUczGHiIgCAwNp27ZtRET022+/\n0YoVK9pTotwj6b3Igs8MiRAIBTAddg6zwzLwc8oswNi4fpu0r1dNTRZCQ23Btf4Px0t08WtmJvpr\nauILLhfjdXURoOTfJsHn0NJSTHjwAN4DBsCu8wt+bQ5H9NxtZ4gIPwb+iN/Df4fXXG8I8s2xc2cA\nLl70Rl6eMjp3FsDV1QVLl47Am2+KxmzII7W5TzKilvJhfdoaGqZyKlTOkfRefL1SDcqYZ5vB8ow0\ndO7xuYCSUFd8NSvnOaMgTep0Jia6wdh4CXroOGC9mRlShwzBXENDrE1JgdXduwCAcj5fJhrqyKip\nwTvR0fjdwuIloyAv152I4H55JQ4EncTg6ECMcTDH2LFAbe0ILF06BsBGlJZuxrlzIzBmjHwaBT8/\nPxRdL0KofSg6OXSCnb+dXBoFebnmsoLFGBgtpqK2Als2FGMR5yQMN30u07ry8v6HioooWFmdqF+n\nrqSE+d26YZ6hIQJLSiDAPZgFB2OhkRE+794dPaT8xKsUCPD2gwf41NgYU1sRYJcFNTXArVuAp7cA\nR7KXolDtPsZm+2PoaD1sWAFYWooaM35+wObme9C2K0K+EJlHMqF2XRRL0B3LMqK2F8yVxGgxX138\nGYfe/xjxM7bC+MS2l7ZL63rxeMUICekHa+tT0NZuvKePH8cPPSoHY19GBo5lZ2OUtja+4HLxZpcu\nre69JCTC+zExUFdSwp99+zZeXhu5koiA6Oin4wkCAwFLmxpUjJuHDroF8Prwb+i96OZqW4kSUZ1W\njdjZsVDqqASrP62gZtiChFWMRlHoJHrNwQyD/JBRmgGbCecxO0wTB+LGAg2k9pXW9YqPXwoAsLQ8\n2OR+zw5wK+PzcTw7G3syMqClrIxlXC5mGhhATUkyr+nGlBR4FRXhhq0tNJoamS3Dp25OztMkdN7e\nopxSddlIBw+vwCLvd9FRtSNOTzsNDZXGW0vyahjyL4kyopqsMIHJ1yYyy4j6OiLxvdi6mHfboCAy\nFWYe2NbonHn8U+qsVkyP3vuy0X2kcb2KigJo796uxOMVN7tvQ72SBEIhXcnPp7H37pFRUBBtSkmh\nnJqaFmk4k5NDPW7douxmjvP19ZVqr6TKSiJPT6KvviIaMIBIW5vonXeIDhwgSkx82nuosLKQ3jjy\nBi34ewHxBLxmNcrbbSSoFlCCewLd6nGLim+JrvPrcA+1JZLeiyzGwBCbsMwweB81xwzOJZh+v1Rm\n9QgE1YiPXwwudxlUVCRLn6zE4WCinh4m6ukhqrwcezIyYHn3Lt7p2hXLuFzYNpNhL6S0FG6JifC2\ntYVhS/JwS4BQCERGPnUPBQcDtraiVsHBg8DAgS8n28suz4brCVeMNhuN7a7bocRRrH4klYmViJkZ\nA42eGnCKcIKqDsuIKk8wVxJDLIgIw3+djKgvTyF8/Hfo9b/tje7b2uuVkrIOFRWx6NfvvFj7i5sr\nKb+2Fr9lZWF/RgYsO3bEMi4Xk/T0oPxC3CCjpgaDw8Kw38ICb4s7l2QL/TQZGU+T0Pn4iEYX181R\n4OwsSuLXGKnFqXDxcMH8AfOxdsRaseMo8uJKyj6RjeTlyTDbZAbjpW2XEfV1hMUYGDLl77i/8fny\nxxjja4jj92yBvn0b3bc116u8/AEiI8fAySkS6upGYh3T0iR6tUIhzuflYVd6Ogp4PLhzuVjYrRu0\nVFRQKRBgREQE3jMwwEpTU/GFN/PULS8XjS6uaxVkZ4tGF9cZA3HSWwBATF4MXE+44ps3voHbYDfx\n9TUvUeYIKgRI/DwRJbdLYHPWBp1sJciLzmgRLMYgByiK37GlOmv4NdRrmy3pdCiluLeWN7u/pNdL\nKORTaOggysj4jYjE1ynpyGehUEi3iotpRlQU6d68Se7x8TQ+MpLmx8SQsAXDgBuKMfD5RHfvEm3Z\nQjRyJFGnTkTOzkRbtxKFhIi2t5S76XfJ8GdD8oj0aPGx7R1jKLtXRsGWwRS7IJb45Y1/+Vf1Hmov\nJL0XWYyB0SwHQg5A487ncBX6wHLbRzKrJyNjH5SUOsDISHZ1PAuHw8HQLl0wtEsXpFVX4/2YGNwt\nLcV4XV34FxdjpLZ2i9wcqalP3UM3bgBGRqLWwDffACNGSDZxUB2+Kb6YeX4mDk85jCmWUyQvqI0h\nImT+monUDakw32mObnO7tbckhhgwVxKjSQqrCmG5wwGcHx/gxtAN6Oe1o9ljJLle1dWPEBrqCAeH\nW+jYUcwc1E+QxnwMZ3JysOrhQ/ja2cGzsBC7MzKgxuHgCy4XswwMcPe//+C1Zw9UamrAV1fHOHd3\n2A6bWJ+Wev8BDgwNCGPHPk1C1717qyTV80/cP1h8eTHOTj+LUT1HSVxOW7uSeEU8xC+OR/XDalif\nsUZHixbOMMRoNWw+BoZM2OS/CVZJ26DPD0C/nz+QSR1EhISET2Bi8mWLjYI0uFtaCvekJPjY2qJn\nhw5Y2r07PjY2hndREXalp+PLuDjYXL+OcyEh6FZUBAD4wD8Z/3IAu+ET4eIiKicr6+kcBdLCI9ID\nX3t/jWtzrsHJ2Em6hcuQktsliJkVg65vd4X1SWsoqStWr6nXHXa1pIii5E8RV2dCQQI8ws4h6eIE\nrB3sI+pDKQNyc0+jpiYDJiZfPbe+Lc5nenU13o2KwmFLSwx4xtejxOFgnI4u9nQYgOGbfkN/Ilgd\nP475q1cjzMICx2uSsWjYXnh5AQMHinRK2yjsvbMXa26swY0PbrTaKLTVb5OEhEc/PkLU1Cj02dMH\nfXb3aZFReNXuIUWFtRgYjfKN9zcYmXsEvNpg2G+fK5M6amvzkZS0Av37X4aSUtv2Za8QCPB2VBTc\nuVxMedIttbBQNIdxXe+h2lpguCALB/zOYMuRIzg8cSLe2bQJPXJyYBQbC75QKHVdRITNAZvhcd8D\nNxfehJm2mdTrkAW1ObWInR8LYaUQjqGO0DCRv+R3DPFgMQZGg/im+GLhxSWgraH4y2ojBgc1H1uo\noyXXKzZ2PlRVu6J3b/HLfxFJYgxCIsyIjkYHjjI+yusLHx8OvLyAuDhg+PCnE9ZYWQHrxrtii5dX\n/bF8JSX8b/hwrFi0CMrm5nDjcvGlqalUHPhCEmKF5wr4pvrCc64nunWSXrBWljGGQp9CxH0QB6MP\njdBjQw8oqTBnhDzAYgwMqSEQCrDCawUmlHggueoeBm+fIZN6Cgs9UVJyEwMHRsmk/IYgAmJjgeX3\nUxHCrwXP3Q5x5hyMGwds2wYMHSrKRfQs49zd8W1yMrYmJwMAVIRCRKSn46SODjrY2GB3ejoA4POE\nBLhzubDoKFmQlS/kY/HlxUgoSID/An9oa2g3f1A7I+QLkbohFdnHsmH1pxV0xui0tySGFGBmXYoo\nit+xOZ0e9z2gwekEr1+tsK7/P8CQIVLXIBBUICFhKSwsDkJZWVMineKSlwecPg0sXAiYmAAjv8vB\nrU452KbRD6mJSggJAbZuFY04PnLkALS0tFBQUFB//IiJE3HLyAi2xsb4zMkJ61xdMX73boyYOBED\ntbSwKDcXAKCtooJhERGYeP8+vAsLW/SmVs2vxnvn3kNWWRa85npJ3SjI4rdZ/bga90beQ1lYGZwi\nnKRiFF6Ve0jRYS0GxnNU1Fbg2xvfYhH5wr88BsN3vCOTelJS1qNLl+HQ1XWVetnV1aJ01HVjClJS\nRA99Fxdg4lel+LQ4CbdsbdG/08s5kAYNGoQJEyYgNTW1fkL78PBwdOjcGRcDAmBubt5ovVt69cK3\nPXrgVG4uViQng4iwjMvFHENDdGwiM2tZTRmmnp0KvQ56ODvrLNSU5T/ldN7feUhYkgCTr0xg8iXL\niPqqwWIMjOfY6LcRcbmJiFh2AAcMN2HMvcZzIjVGc9ertDQEDx5MxsCBUVBTEzMXURP4cfygc8+5\nPmB86xbQv//TOMGgQYCqKpBWXY0h4eE4aGGByY3kQLpw4QKysrLQvXt3vPOOyCgGBARgxYoVCA0N\nbVzECw58IsKN4mLsTk/H7dJSLDYywmfdu6P7C36qgsoCvHXqLdga2uLXib9CWamJ1N6tRBoxBkG1\nAA+/foiCKwWwOm2FLkMkS3LIaBtYjIHRajJKM7D37l5s1InB4+JkjD41Wep1CIU8xMcvQu/eO1pl\nFDIzn85RsAjA9OkiQ7B0KXD2LKD9giemrgfSF1xuo0YBED3QTUxMkJqaCgC4ffs2evXqBQMDgxbp\n43A4GKOjgzE6OkisrMTejAz0DwnBeF1dLONyMVhLC5llmRjnMQ4T+0zEj2N/lPtkcpXxlYh5PwYd\neneAY4QjVLVZRtRXFRZjkCJt6XeMiYnBoEGDMG/ePOTl5QEAIiIiYGNjg2vXrjV5bGM6v73xLT62\nX4pDm9Sxzvw0OM4jpS0baWm/QF3dGAYGs5rd91mdFRXAv/8CK1YA/fqJlsuXRakmACAxEThwAHjn\nnZeNgpAI82NjYdupE74yMWm2XhMTE6SlpYHH44HD4eDevXsYNGiQWDobok/HjtjTpw8eDh4Mp86d\n8X5MDOxv/gP734diVv85+MnlJ5kbhdb+NrP/zEbEsAgYLzWG9V/WMjMKiuK7VxSdksJaDAqKtbU1\nJk6ciB49ekD/yTzEHA4H586dg7W1dYvLC8sMg2eyJ342ToRPfgrGHxkn8j1IkcrKBKSlbYeTU1iz\nD0KhEIiPB27fFrmHQkIABweRa+joUcDREahz2/stabreDampyOXxcMrausl6S0tLoaOjAxMTEzx+\n/BjBwcEYPnw41q9fj6FDh7b0676EtqoqVpiYYJRqIcaeWAo98w9xUMUZyo8eYbGxMfRU5e8NnF/O\nR+JniSgLKYPtDVt06s8yor4WSJy2rw1REJltzuHDh2nTpk31n0+cOCFROUKhkEb+MZIOhhwie7NC\n+tvi66fThElAQ9dLKBRQePhISkvb1ehxjx4RHT5MNGMGkZ4ekZUVkbs70eXLRKWljdfXVHbVk9nZ\nZHb7NuWKMXubj48PFRUVERGRo6MjRUREEBGRq6sr5eXlNX2wmL/RW49vkcHPBnTmwRkiIgovLaUP\nYmJI++ZNWhIXR9Hl5WKVIwktvY1KI0op2CKYYj9sOiMqQ36R9NnJXEkKDJfLRfqTPvTXr1/HmDFj\nJCrnn/jYzCGjAAAgAElEQVR/UFBVgG4ZCyHIzsWUnaOk3lrIyjoCobAK3bt/Xr+utBS4dAlwcxNN\n7+DoKBp1PH48cO8eEBMD7N4NTJoENDK/fZPcKS3FF0lJuNyvH/SbmYUtMDAQq1evxpUrVwAAw4YN\ng52dHQ4cOIB79+4hMDCw5QJewDvZG1POTMGxt49hZr+ZAAD7zp1xzMoKcYMGwUhdHaPv3YNrZCT+\nLSiAsJ06XBARMvZn4P64+zDbYIa+R/pCWVN2QXGGHCJd+yQbFERmm+doj4qKogkTJhCfz6dTp06J\nfdyzOmv4NdR7T2/6L9GTBvcpoL96rWxVa4Ho5etVXZ1JgYH6VFx8n27fJvruO6Jhw0RzFIwZQ/Tj\nj0Th4UQCQeM6m/w+DbQYHldVkXFQEF1u7k1fCogz5/P56POkv02fAlIDmtyvWiCgY1lZZBcSQpbB\nwbQ/PZ3KeE3P5yyuRnFuo9qCWnow9QGFOIRQRWJFq+ttKYoyz4Gi6JT02claDApMXYvhn3/+wZQp\nohz90dHRcHR0BI/HQ3JyMlavXo3q6upGyzgQcgBaKVooCrFByeNivPvLG1JtLSQnA56ebggKWgIz\ns/74+GNRS2HtWiAnR9SzaOVKwN5eeknoKgQCTImKwnIuF5PEnZpThhyNOAq3f93gOdcTw3sMb3Jf\ndSUlfNCtG8IdHfGbpSV8iopgFhyMb5KT8biJ6ygNSm6VINQ+FBpmGnC45YCOvVma7NcVNo5BweFy\nudi3bx+mTp0KALh37x4SEhIAiNwhAoEAJs/0xMnIyED3JxMFFFYVwuIHC9iH2aM0cSfcak5hburW\nVhmGoiJAV5eDJUsI3t6AtfX/8NFHq1Fefg9jx2qgmwzmaXk2V5KQCNOjo6GtooIjlpZt1wW0kUEC\nO27vwJ47e+A1zwsWepKlFH9YVYV9GRk4np2N0To6+ILLxRtaWi3+bo2NYyAh4fFPj5G+Ox2Wv1ui\n6+T2N6YM6cDGMbymvPnmm/WtBQCoqKjAe++9h0WLFsHExOSl3jRxcXH1hmGT/ybMGDwDVWkG8PWp\nwvsnBrbYKPB4QHCwaDyBtzcQHS1ab2EBfPppMcrL3WBtfQra2m2TaXNdSgryeDycbqYHkqwhIqzz\nXYfzMedxc+FNmHRpvptsY/Tq0AE7evfGd2ZmOJadjQ9iY6GjqoovuFy8p68PtVY0tWqyaxA3Lw7C\nmicZUbksIypDTsYx/Pfff+jbty/69OmDn376qb3lSEx79G0+e/YslJ55MHA4HHA4HPTq1QuJiYn1\n65OSkuDp6YnQ0FBs27YNR88fhUekBzY6b4T/f1Vw0z0BlWlvN1sfkSgD6d69wJQpQNeuwBdfAHw+\n8P33orxEgGi8gbr6KujpTYK29giJvltLz+fJnByczs3FRRsbqEt7coQmeFGnkIT4/Nrn+Dfp31Yb\nhWfprKICNy4XCYMHY0OPHvgjKwtmwcHYkpqKvNraFmkEgEKvQoQ5hEHrDS3Y3rCVC6OgKOMDFEWn\npLR7i0EgEODzzz+Hj48PunfvjoEDB2LKlCmwsrJqb2kKx507dxAUFIQ33ngDH374Ia5evVq/rXfv\n3ujduzdUVFSgrKyMXdm7sHLYSoT4EXJyE6D3MbdRJ39+vigWUJdyAhCNMp4zRzSmoCE3fnFxAAoK\nrmDQoGhZfNWXCC4pwfKkJNywtW22B5Is4Ql4WPDPAqSXpsP3A19oqWtJvQ4lDgeTunbFpK5d8aC8\nHLvT02Fx9y7e7doVy7jc5yYcagghT4jU9anI9siG1Ukr6IxiGVEZLyC9+Ldk3Lp1i1xdXes///DD\nD/TDDz88t48cyHwl8L9yheY6OdH8tweQ5tfq5Oj4IZl1vkdb1b6kK//cqN+vupro+nWiVauIHByI\ntLSIJk8m2rOHKC6u8U5LV67407hx3xIAGjx4BJ08+aNMv09dfb7wJbVBn9KGU5dlWl9TGgigsS6r\nyOmrUTTp1CSqrK1sUx25NTW0JTWVjIOCaHREBF3KyyPBkwv19LoQjR2+inb1PUKREyKpJrf5sR0M\nxUbSZ2e7P3HPnTtHixYtqv/s4eFBn3/++XP7MMPQevyvXKE15ubE54B6LVEiQ5uhBBB1RQ69j5PE\n5e6mjz5KovHjiTp3Jho8mGjdOqKAAKLa2ubLv3LFn8zN19CT8CYBRObma+jKFX+ZfJ9n6/OFr8zr\na04DPfnOnQw/pL//ud5mGl6kRiCgk9nZ5BQaSua3b9PHf5ynnuarn1wX0dJD72u6fMmv3TQy2g6F\nNQznz59/ZQyDPPdt/nbcOCKA/rADab6lQYCQund6SCtN15IyeAQQcbl36MIFosLClpdf90b6rGEA\niFxd10qsuanz+Wx9dYahtfW1lKcafOsNQ1traAyhUEhBxcVk+Mayeo3PGgd50NgQ8nwPPYui6JT0\n2dnuMYbu3bsjLS2t/nNaWhq4XO5L+8l75klFYCsA3ANwrxqAOTLKg/BT+S8AtgAA0tOBadMkLd22\nvhwRfgCc4el5U0bX7ml993DvyTpZ1tcQdUkG78HvmbWenpfB4WxpYP/2YCRE1+IeAOcn6/zkTKNi\nQk+6gdYFop2dndv9s5+fH44dOwYAMDMzk+yLAe3/Ks7j8ahXr16UkpJCNTU1ZGtrSzExMc/tIwcy\nFZ66FgMBNA5OpKWVS7NnbyVl5VqpvEU+32KQ/Ztpv5FftWl9DfHmqC/aXUNjCIVCyvwjkwapfiq3\nGhmyR9JnZ7t3V1VRUcG+ffvg6uoKa2trzJw5k/VIkgHj3N3x7ZPZx94BQSjgoKDACAKBKKOnufka\nuLm5SFz+kiW2MDae/dy61pbZGLdLSvD4rV4w6bW6TepriIisCMT0vAh9rlu7aWgMfhkfcfPjkPZz\nGr7eORnm5t8+t10eNDLkHCkbKJmgIDLl3u/of+UKrXV1pT6G39PcWetp6MCPaOTIDeTqurZVQVuh\nUEiRkePp6NHPyNV1LWlrm5Gj46znyty5cyd98sknRERUUlJC3bt3fymW9CINnc/UqioyCgqiq/n5\ndOWKf5P1LVy4kBwcHMjOzo6sra1p167GM7u2hIDUANLfpk/no8/TlSv+NHDg3EY1TJgwgYYOHUo2\nNjY0YMAAOnv2rFQ0NEZpeCkF9wmmuEVxxK8QZURtTuMnn3xC48ePJ21tbZo0aZJM9TWHvN9DdSiK\nTkmfnQrxxGWGQXokJhJpal6mmJjDUiszO/sk3b07gAQCUfel3377jRYuXPjcPkOGDKGbN28SEZG7\nuzvNnj27xYahjMejAXfv0o7Hj59b31R9tU+6VJWXl1OPHj0oLS2txd/vWa4mXCX9bfrkleT1nM6m\nNCQlJRERUWZmJhkZGVFJSUmrNDSEUCiktN1pFKgfSNmns1/a3pzGGzdu0OXLl5lhEBNF0ckMA0Ms\n5s3Lo4ULdxCfXyWV8mpq8igw0JBKSu7WrysoKCADAwPiPckKmpKSQqampkREFBoaSu+//z4dO3as\nWcPwLAKhkN6+f58+io0l4QsDKZqqr468vDzq3bs3FRQUSPQ9iYhOPzhNBj8b0O202y9tE0cDEZGt\nrW29oZAWtQW1dP/t+xTqFEqVSY2Pn2hOo6+vb7sbBoZ0kfTZ2e4xBkbbkZoKXLqkhuXLO0JZWTrp\nD5KTV8DQcDa0tAbWr9PV1cWgQYPqpxg9c+YMZs6cCSLCV199he3bt7e4nm9TUlDE5+OAhcVLvY4a\nqw8Q9XIbMGAATE1NsXz5cujq6kr0PQ+GHsSXXl/CZ54PhnCHvLS9KQ113L17FzweD+ZPYj3SoDiw\nGKH2oehg3gH2QfboYN6h0X3F0chgAHKSK+lVQd7zp2zZko/Jk48jN9dMKuUVFnqipOQmevbc/NK2\nWbNm4cyZMwBE+ZxmzZqF/fv346233oKxsbFYGR/rzuef2dn4KzcXF2xsGk0Y11B9gGj+5vv37yM5\nORm7du1CUlJSi7/nj4E/YlvQNgQsCEB/w/6N6mxMAwBkZWVh/vz5+OOPP1pcf0OQgJC6JRXR06Nh\nccACvbf3hpJa47ezOBrlAXm/h+pQFJ0SI9V2i4xQEJly7XdMTyfS0iqjiIj9UtHJ45XR7dtmVFDw\nX4Pby8rKyMDAgMLDw8nCwoKIiObMmUOmpqZkZmZGXbt2JS0tLVq9enWjdfj6+lJQcTHpBwY2O+Vl\nQ/W9yIcffkjnzp0T8xuK/PbfeH1DNvttKKM0o0mdTWkoKSkhBwcHunDhgth1N0V1ZjVFjI6g8JHh\nVJ1eLdYxzWkkIvLz82t3V5I830PPoig6JX12KsQTV1EMgzzzySf5NHPmAeLzpTOncGLicoqJmdfk\nPjNnziRbW1vauHHjS9vEiTHU9UC6lp8vlqYX60tPT6fKSpHPvbCwkCwtLSk+Pl6ssvgCPi36ZxEN\n+n0Q5VeIV39DGmpqamj06NFS6xGV/28+BXULopSNKSTkSzbTXmPXhcUYXj2YYWA0SlaWqLVw9+5e\nqZRXUnKXAgMNqaam6Wkz//77b1JSUmrwYXzs2DFyc3Nr9NhSHo/6371LO1/ogdSS+ry9vWnAgAFk\na2tLdnZ2dPz4cbHKqeHX0Ht/vUejj4+m0upSsetvSIOHhwepqqqSnZ1d/RIZGdmiMomIBLUCSvom\niW5xb1GRX1GLj29KIxHRsGHDSF9fnzp06EBcLpe8vLyaKIGhKDDDIAfIa/Ny2bJ8mjbtd+LxRA+5\n1ugUCGrp7t0BlJ19UkrqGqhDKKQp9+/TxOPHX+qBJGvKa8rJ1cOVpp6ZSlU88Xpuyfq6Vz6spNDB\noRQ5MZJq8iTLiCqvv80XYTqli6TPThZ8fsXJzwf++EMdK1ZUQkWlc6vLS0v7Berq3WFgILug5ZqH\nD1HC52MZl9umObKKqoow7sQ4dOvUDefeOwcNlfafuCb3fC7CB4fDYKYB+l/uD7Wu7TfXBOP1gc35\n/IqzcmUh4uIu48KFqVBR6dKqsiorExAe/gacnMKgodFDSgqf53h2NjanpuKOoyP0VFVlUkdDZJdn\nw/WEK0aZjcIO1x1Q4rTvO5OgSoDkFcko9CqE9VlraDlJf8IfxqsPm/OZ8RLFxcChQ2r455/iVhsF\nIiHi4z+Gmdk6mRmFoJISfJ2cDH87uzY1CqnFqXDxcMH8AfOxdsTads/kWxFbgZiZMdC00YRThBNU\ntNhtymhbmCtJishb3+bt24swdOhlvPHG/OfWS6IzK+sIhMIqdO/+uZTUPU9qVRWmR0fjz759YaWp\nCaBtzmdMXgxG/DEC7oPcsW7kOomMgrR0EhGyjmbh3oh74C7jwuqUldSMgrz9NhuD6ZQP2KvIK0pp\nKbB/vwrOncuCqmrr5vStqclESsoa2NreAIejLCWFTynj8zE5KgqrTE0xXk9P6uU3RkhGCCafnoyf\nXX7GPNt5bVZvQ/BL+Uj4JAHlkeWw87ODpo1mu+phvN6wGMMryubNxQgI8MHVq85QU+vaqrKioqZB\nU9O6wRHOrUVAhKlRUTBWU8PBBtJdyAq/VD/MODcDh6ccxhTLKW1SZ2OUhZUh5v0YaI/WRu+dvaHc\nUfrGl/F6wmIMjHoqKoDdu5Xg4fGo1UYhL+9/qKiIhpXVSSmpe57VDx+iXCDAvj592swoXIq/hEWX\nFuHs9LMY1XNUm9TZEESE9N3pePz9Y/TZ1wcGMwzaTQuD8SwsxiBF5MXvuH9/Cfr188OYMXMb3C6u\nTh6vGImJbrC0/F1qSfee5VhWFi7m5eG8jQ1UG8iBJIvz6RHpgY8vf4xrc65JzShIopNXwEPUlCjk\nnsqFQ7CDzI2CvPw2m4PplA+YYXjFqKoCtm8HVqxIgJqaYavKevhwFfT0JkFbe7iU1D0lsLgY3zx8\niMv9+7dZD6S9d/ZizY01uPHBDTgZO7VJnQ1RHCDKiNqxb0fYB9qjQ6/GM6IyGO0BizG8YuzaVYrz\n54Nw/bod1NWNJC6nuDgAMTGzMWhQdKu7ur5IalUVhkZE4FjfvnCVMA12SyAibA7YDI/7HvCe5w0z\nbTOZ19mgDgHh0dZHyPw1E5ZHLaE3oe0C7YzXExZjYKCmBvjpJyH27YuCuvoEicsRCKoRH78Yffrs\nk7pRqOuBtNrUtE2MgpCE+NLzS9xIvYGbC2+iW6duMq+zIWoyaxA7NxYA4BjmCHVj9XbRwWCIA3Ml\nSZH29jsePVoGU9MwTJzYdLqK5nQ+erQFmpr9oa8/VYrqRD2QZsfG4k0tLbh1797s/q09n3whHx9d\n+gh3M+/Cf4G/zIxCczoL/i1AmGMYtEdpw9bbtl2MQnv/NsWF6ZQPWIvhFYHHA374gYeffgqHhsYY\nicspL3+ArKzf4OQUKUV1IlY9fIhKgQB726AHUjW/GrMuzEIVrwpec72gqdb24wKEtUI8XPMQeX/l\nwfova2gP125zDQyGJLAYwyvCkSPl2L8/ArdumUqcsoJIgPDwN2BktAjGxoulqu+PrCx8//gx7jg4\nQFfGweaymjJMPTsVeh30cOLdE1BTbvvEc1UPqxAzKwZqhmro+0dfqOq1XYoPBqMOSZ+dzJX0CiAQ\nAFu3VsPd/U6r8hhlZOyDklIHGBl9JEV1wM3iYqx6+BCX+/WTuVEoqCzAWI+xMNcxx+lpp9vFKOT+\nlYvwIeEwnG2Ifv/0Y0aBoXAwwyBF2svveOpUBTQ1kzFjxjti7d+QzqqqVKSmboal5W/gSDGzaEpV\nFWbExMDDygp9NVvmzmnp+cwsy8TIYyPh3MMZhyYdgrJS24wgrtMpqBQg/uN4pHybggH/DgB3Wdum\nDW8KRfGJM53yATMMCo5QCGzZUgE3t5vo2NFcojKICAkJS2Fi8iU6drSQmrZSPh+THzzAt6amGCfj\nHkjJhckYdnQY5g6Yi59cfmrzB3JFdAXCBoVBUCGAY5gjOju2fu4LBqO9YDEGBeevvyqxYUM8QkM7\nQlPTUqIycnJO4vHjbXB0DIWSknTcHgIiTHnwAKYaGjgg42Dzg5wHmHByAtaNWIclTktkVk9DEBGy\njmQhZXUKem3rhW4LuslNK4HBYOMYXkOIgO++K8Nnn92ApuaXEpVRW5uPpKQv0b//ZakZBQBYmZyM\naqEQe3r3lumDMjg9GG+feRt7xu/BzH4zZVZPQ/BL+UhYkoCK6ArYBdhB04plRGW8GjBXkhRpa7/j\nP/9UobY2DwsWtGww27M6k5NXwNBwDrS0BkpN15GsLFwqKMC5RnIgiUtz59M72RuTT0/GsbePtblR\nKA0tRahDKFR0VFD6c6ncGwVF8YkznfIBMwwKChGwcWMxPv3UE506WUtURmGhJ0pKbqJnz01S0xVQ\nXIw1T3IgybIH0oWYC5hzcQ4uzriICX0kH+XdUogIaTvS8OCtB+j1Yy9YHLCAsjpLk814tWAxBgXl\n2rVqfPbZI0RG1kBLa0CLj+fzyxEa2h8WFgehq+sqFU0Pq6rwRng4PKys4CLDYPPRiKNYe2Mtrs6+\nCnsje5nV8yK1+bWIWxAHXj4P1qet0aEnS37HkG/YOIbXCFFroRBLl16TyCgAQGrqenTpMlxqRqGu\nB9I6MzOZGoUdt3dgk/8m+C3wa1OjUOxfjDD7MGjaaML+pj0zCoxXGmYYpEhb+R1v3KhFdnY1liwZ\nKdHxV6/+ipycUzA33yEVPQIizIqJwUhtbXwmRg4kcXn2fBIR1t5Yi9/CfsPNhTdhoSe9brVNQQJC\nysYUxLwfA4vfLWD+kzmUVJ+/bRTB36wIGgGmU15gvZIUkA0bcrF48SVoa3/R4mOFQh7S0n6Gk9OO\nVs/uVsc3ycmoEQqxu3dvqZT3IkISwv1fd9xOv42bC29CX1NfJvW8SE1GDWLmxICjzIFjuCPUjVhG\nVMbrAYsxKBiBgbWYMSMbDx7kQE+v5T2JHj36HiUlgejf/6pUupEeycrCtsePEezgAB0ZBJt5Ah4W\n/LMA6aXpuDzrMrTUtaReR0MUXC1A3Edx4LpxYbrKFBxlNjaBoXiwcQyvCevXZ+Ojj/6Gnp57i4+t\nrExAWtoOODmFScUo+D/pgXTT3l4mRqGKV4X3zr0HAPhvzn/ooCp7v76wVoiHqx8i73webM7bQHsY\ny4jKeP1gMQYpImu/4507fERHq8DNreUtBSIh4uM/hpnZOgQHp7Ray8OqKsyMjsZJKytYdOzY6vJe\npLSmFEPWDUEXjS7438z/tYlRqEquQsSbEahKroJThJPYRkER/M2KoBFgOuWFdjcMX3/9NaysrGBr\na4t3330XJSUl7S1Jblm/PhMLFlyEgcHQFh+blXUEQmEVunf/vNU6Sp70QFpvZoaxMuiBlFeRh1HH\nR6Fnl57weMcDqsqyz06acyZHlBF1viH6/a8fVHVZRlTG60uzMYYTJ05g7ty5MhPg7e2NMWPGQElJ\nCatWrQIA/Pjjj8+LZDEGRETwMW5cAe7fT4SR0bAWHVtTk4nQUFvY2t5Ap079W6WDLxRiclQUzDU0\nsM9C+j2D0krS4OLhgves38OmUZtknndIUClA0rIkFPsXw/qMNTo7sOR3jFcHmcUYdu7cCTU1NWhp\nacHR0RH6+tLtEeLi4lL//+DBg3HhwgWplv+qsH59BubNuwIjo89afGxiohuMjZe22igAwNcPH4JP\nhF0y6IGUUJCAcR7j4D7YHSuGrpB6+S9SHlWOmJkx6OzQGY5hjlDpzEJuDAYAgJohMDCQiIhKS0vJ\nz8+Pzp49S2fOnKG9e/dSUFBQc4e3iEmTJtHJkydfWi+GTLnA19dXJuVGRfFJRyeP0tJutPjY3NyL\nFBxsSXx+Vf06SXX+lpFBFsHBVFhbK9HxTRGeGU5GvxjRkfAj9etkdT6FQiFlHMqgwK6BlHUsi4RC\nYavKk5VOaaIIGomYTmkj6bOz2VekN998EwDQuXNnGBoawsfHBxcvXkS/fv3Qo4d4s4W5uLggOzv7\npfXff/89Jk+eDADYunUr1NTUMHv2bPGt2mvC+vVpmD37P3Tv3rKU0jxeMRIT3WBtfRrKyhqt0uBX\nVIS1KSky6YEU+DgQ7559F79O/BXTrKdJtewX4ZfwEf9xPCrjKmF30w6afeU7+R2D0R40axiysrJw\n5swZnD59Gl26dMGcOXMQHByMzp3F98V6e3s3uf3YsWO4du0arl+/3ug+CxYsgJmZGQBAW1sbdnZ2\ncHZ2BvC0h8Cr+DkhQQhPz/s4fLi83t8u7vFGRmegpzcJ9+4JAPjVb6/bR1w9Jz094ZaQgHNz58Ki\nY0epfr9ridcwe/tsrB2+tt4oyOp8OnR0QMz7MUgckAjjn43rjUJry69bJw+/l6Y+P6tVHvQ09NnZ\n2Vmu9DT1uQ550VN37o4dOwYA9c9LiWiuSaGpqUkrV66kzMxMiZokzfHvv/+StbU15eXlNbqPGDJf\nWd5//yF9/PGhFrs7ior8KSioO/F4xa2qv5jHI6s7d+hAenqrymmIMw/OkMHPBnQ77bbUy34WoUBI\nj395TIEGgZR7IVemdTEY8oSkz85mu6tu3rwZEyZMQGBgIP766y/89ddfCAwMRGVlJc6fPy+5RXqC\nm5sbysvL4eLiAnt7e3z66aetLrO9ePFNorWkpAhx7ZoOvv66R4t65wgE1YiPX4w+ffZBRaXLS9vF\n1ckXCjEzOhpjdHTwiRRzIAHAodBDWOG1Aj7zfDCEO6TBfaRxPmvzavFg0gPknc+Dwx0H6L8r/XQa\n0r7uskARNAJMp7zQrCtp+fLlL63Lzs7G9evX8cMPP2D69OmtEpCYmNiq419lvvvuEd591xfm5gtb\ndNyjR1ugqdkf+vpTW1X/V8nJEALYaS7ZXNKN8WPgj/gt7DcELAiAua50y36WIt8ixM6LRbd53WC2\nyeyl5HcMBqNhWpUr6caNGxg9erQ09TTI6ziOIS2N0K9fKYKDA2FlNVHs48rL7yMyciycnCKhrm4k\ncf2/ZWZiR1oabksxBxIRYZXPKlxJvALved4w7mwslXJfRMgX4tHmR8j6PQt9j/WF7jjZpQFnMOQZ\nSZ+dLImenPLxx6morPSHh8c8cDjivekSCRAePhRGRh/D2HiRxHX7FhXh/ZgYBNrbo4+U0l0IhAJ8\ncvUTROZE4trsa9DrqCeVcl+kOr0asbNjoaSuhL4efaHejWVEZby+sIl65ABp+R2zsghnz+pg1Sod\nsY0CAGRk7IOSUkcYGX3U5H5N6UyqrMSsmBictraWmlGoFdRi1oVZSC5Khs88H7GNQkvPZ/7lfIQ5\nhUF3gi4GeA5oM6OgCP5mRdAIMJ3yAhvqKYds3foI48cHwsZG/DEdVVWpSE3dDAeHWxKnkSjm8TA5\nKgrf9eyJ0To6EpXxIhW1FZj21zR0UO2Aq7OvQkOldeMpGkJYI8TDVQ+R97889LvYD13eeDngzmAw\nxIe5kuSM3FxCnz5l8PO7Dnv7d8Q6hohw//4EaGuPRI8eqyWqly8UYtKDB7Do2BF7+vSRqIwXKaoq\nwqTTk9BHtw8OTzkMFSXpv4dUJlUiZmYMNEw1YHnEkiW/YzCegbmSXhF+/PExxoy5Bju7KWIfk5t7\nCrW1WTAx+Urier9MTgYB2CGlHkg55TlwPu6MgcYDcfTtozIxCjmnchAxNAJGHxrB5qINMwoMhpRg\nhkGKtNbvWFgIHD2qjdWrVcDhKIt1TG1tHpKSvoSl5WEoKYn3YHxR56HMTHgVFeGstTVUlFr/k0gt\nTsWwP4ZhutV07HTdCaUWxEma0lmHoEKAuI/ikPpdKgZ4D0D3z7rLPAtrUyiCv1kRNAJMp7zADIMc\n8fPPjzBsmBccHd8W+5jk5BUwNJwDLa2WT94DADeKirAhJQWX+/WDthS6pcbkxWDEHyPgPsgd60au\nk/oDu/xBOcIGhoH4BMcwR3S2Y2myGQxpw2IMckJpKWBmVozLl73x5pvviXVMYaEnEhKWYuDAKCgr\ntzwZXGJlJYZFROCMtTVGSSHYHJoZikmnJuFnl58xz3Zeq8t7FiJC5qFMpK5Lhfl2c3Sb302q5TMY\nr75w8VgAACAASURBVCJszmcFZ/v2Rxg4MAJDh4rXWuDzy5GQsBQWFgclMgrFPB4mP3iATT17SsUo\n+KX6Yca5GTg85TCmWIofHxEHXjEPCYsTUJlYCftAe3S0lP5UogwG4ynMlSRFJPU7VlQA+/ZpYdWq\nGigpqYl1TGrqenTpMhy6uq4tru/6jRuYGRMDV11dLDFu/ejjS/GXMOPcDJydflaqRsHPzw+ld0oR\nZh8GtW5qcAh2kEujoAj+ZkXQCDCd8gJrMcgBu3alwdY2EiNHipfbqLT0LnJyTmHgwCiJ6tufmQmO\nnh62S6EHkkekB772/hrX5lyDk7FTq8urg4SEnNM5ePD3A1gcsoD+VOknv2MwGA3DYgztTFUV0KNH\nIU6c8MS4cbOa3V8o5CEszBGmpqtgaNjySY0OZmRgd0YGgh0c0EWlde8Fe+/sxbZb2+A51xPW+tat\nKutZanNrETs/FoIyAaxPW0PDVPqD4hiM1wEWY1BQ9u1Lh6VlNMaMEa+1kJb2M9TVuTAwaN6IvMiN\noiJsTE1FoL19q4wCEWFLwBb8ef9P3Fx4E2baZhKX9SJF14sQOz8W3RZ0g9l3ZlBSYd5OBqOtYXed\nFGmp37GmBti+XQMrVxZAWblDs/tXViYgLW0HLCx+bXE30MQnOZDOWFsj/e7dFh37LEISYoXnCpyP\nPS9VoyDkC/Fw7UPEzotF3+N90WtrLwQEBkilbFmjCP5mRdAIMJ3yAmsxtCOHDmXAzCweEyY031og\nEiI+/mOYma2DhoZ4c23XUfSkB9KWnj3hrKMDPwn18oV8LL68GAkFCfBf4A9tDW0JS3qe6rRqxMyK\ngbKmMpwinKBmKF4AnsFgyAYWY2gneDygZ89c7NnjhXffndvs/pmZvyMr6/CTJHnijYoGRDmQJjx4\ngH6amtjZu7fEeqv51Zh9YTYqeZW4MOMCNNVa3kW2IfL/yUf8x/EwWWECk69NwFFqvxHMDMarBosx\nKBhHjmShW7dETJnSfGuhpiYTKSlrYGt7o0VGAQCWJydDhcPBz716SSoVZTVleOfsO9DtoItLsy5B\nTbn1b/TCGiGSv05G/qV89Pu7H7oMZRlRGQx5gcUYpIi4fkeBAPjhBw6++uoxVFQ6Nbt/YqIbjI2X\nolOn/i3S82tGBq4XFeHMCzmQWuIfLagswFiPseil0wunp52WilGoTKhE+NBw1GTUwCnCqVGjoCh+\nXEXQqQgaAaZTXmCGoR34889saGunYtq05geD5eVdREVFNExNv21RHT6FhfguNRWX+/eXuAdSZlkm\nRh4bCecezjg06RCUlVrWWmmI7BPZiHgzAkaLjWBz3gaqOiwjKoMhb7AYQxsjFAIWFhlYt84XH3zQ\ndGyBxytGSIgNrK3PQFt7uNh1JFRWYnhEBP6yscFIbckCxMmFyRh3YhwWOyzGqmGrJCrjWfjlfCR+\nnojS4FLYnLVBJ9vmW0oMBqN1sPkYFIQzZ3KgppaDWbMmNrvvw4croac3uUVGoa4H0taePSU2Cg9y\nHmDksZH45o1vpGIUyiPLEeYUBg6HA6cwJ2YUGAw5hxkGKdKc35EI2Ly5FitWxEBNrenEdcXFASgo\nuApz85/Erp8nFOK96GhM1NPDoiZyIDWlMzg9GGM9xuKXcb9gidMSsetuCCJCxoEMRI6NRI+1PdD3\nj75Q1hTfHaUoflxF0KkIGgGmU15gvZLakAsX8iAQFGH+/AlN7icQVCM+fjH69NkHFRXxe+t8kZQE\nNSUl/CxhDiTvZG/Mvjgbx6cex1t93pKojDp4RTzEL4pHdUo17IPs0dFC/pLfMRiMhmExhjaCCBgw\n4BGWLr2Jzz5rOrbw8OFaVFbGoV+/82KXvz8jAwcyMnBLwhxIF2MvYumVpbgw4wKG9xDfddUQJbdL\nEDMrBl3f7grzbeZQUmcNUwajPWDjGOScK1fyUVFRiY8+GtfkfuXl95GV9RucnCLFLtu7sBCbU1Ml\nNgpHI45i7Y218JzrCXsj+xYfXwcJCY+3PUb6znRY/m6JrlO6SlwWg8FoP9irnBRpzO9IBGzcWAo3\ntzBoaBg0ejyRAPHxi9Cz5/dQ/397dx4XVfX/D/wFwyKCiiibgLIrOOy4kFmYYe71FTNzJdLUj2mZ\n+bHPT9NU3NNPpJ9cSnPFstRcQlzKyQVwAdlx2HHYFAaRHQbm/P5QSWSAAYeZO/F+/ndn7tz7Ah53\n3txzzj1H11yucworKzEjORnHBw6ErV7r8y29mHN7xHas/WstBAGClyoKtQ9qETc6DsW/F8PrjpdC\nioK6tOOqQ051yAhQTq6gwqAEFy4Uo7CwHvPmjWxxv5ycHeDx9GFu/qFcxy1+OgJpg60tXmvjCCTG\nGL7880vsjdqLax9cg2MvxzZ9vlGOy8W443kH3Yd0h9sVN3SxommyCVFn1MegBD4+aXjnnUgsX958\n30JVVRaiorzh6RmBrl0dWj2mRCrFmLg4uBkYYFsb50CSMikWn1+MiJwIhE0Pg7F++xbBkUqkyFqd\nhYKDBXA65ISeI19+iVBCiOJQHwNHCQSPkJ2thYULRzS7D2MMKSnzYWW1VK6iAACfpKVBV1MTW9o4\nAklSL0HA6QDklObgyuwr6K7bvU2ff6Y6uxpJ05LA6/Z0RlQTmhGVkH8KakpSIFntjqtWPcS//nUD\nBgYWzX7u4cMQ1Nbmw8rqc7nO87/cXFwtKcExZ2fw2rAuQ5WkCpOOT0JGdAbCpoe1uygUnipE1OAo\n9H6nN1xDXTusKKhLO6465FSHjADl5Aq6Y+hA4eGPIRTq4+zZ5od/1tYWIi1tKVxczkJTs/V5gy4V\nFyMoOxs3PDzQvQ0jkEprSjHx2ERYdLfAJyM+gZ62fB3Vz6uvrkf65+ko/r0Y/NN89BhKM6IS8k9E\nfQwd6M0378HH5y7WrWt+Gc7k5JnQ1jaBvf22Vo93r6ICr8fE4NeBAzG8DZ3NhRWFGH10NIZaDMWO\nsTugqdH2G8VKYSWSpiZBz14Pjt87QtuQJr8jhOuoj4Fjbt8uQ0yMIY4fH9rsPmJxGB4/vo5BgxJa\nPV6xRIIJCQnYaGvbpqIgeizCqCOj4O/kj3Uj1rV5SVAAKDhUgPSl6bAJsoH5R+btOgYhRH1QH4MC\nPd/uuGqVCHPmXIGRkY3MfevqypGSMh+OjnvA47W8GtqzOZDe7tULgebyPd8AACniFAz/cTjmeMxB\n0BtBDV/o8raP1pXXIXlWMu5vug+3P93QZ14fpRYFdWnHVYec6pARoJxcwYnCsG3bNmhqaqK4uFjV\nURQiNrYcN2/2xtKlg5rdJytrFQwNX4ORUctPQjPGsCg1FXqamtjchhFIMQUx8D3gi1Wvr8LSV5bK\n/blnymLKEOUVBQ1tDXjd9oKBC82ISkhnofI+BpFIhLlz50IoFCIqKgpGRkZN9lG3Poa3306EnV0C\ntm9/T+b7paW3EB8/EYMGJUBHp+UnhHfk5GBPXh7CPT3l7my+fv86Jv08CbvG7YK/s3+bsjPGkPu/\nXGSvyYZ9sD1Mp5m26fOEEO5Q2z6Gzz77DFu2bMHbb7+t6igKkZRUgatXTbFnj+zOWalUAqFwDuzt\nt7daFC4WF2PD/fsIb8MIpPOp5zHrt1kImRQCPzu/NmWXFEsg/FCI6vvV8IjwQFd7mhGVkM5IpU1J\np0+fhqWlJVxdXVUZQ2EEAgFWr87E9Ol/wsxM9hQTItFW6OpawsSk+ZFKwJMRSDOSk/GLszNs5JwD\n6eeEnxFwOgBnpp5psSjIah99fOMx7njcQRfrLvAM9+REUVCXdlx1yKkOGQHKyRUdfsfg5+eHgoKC\nJq+vX78eGzduxMWLFxteU6fmIllyc2tw6ZI5EhJk19vKSiFEou3wfrqaWXPET0cgbbG1xatyjkDa\nc2cP1l5di8szL8PF1EXuzEzKcH/TfeR8+3RG1Ak0IyohnV2HF4ZLly7JfD0hIQGZmZlwc3MDAOTk\n5MDLywu3bt2CiUnTGUgDAgJgbW0NADA0NIS7uzt8fX0B/F29Vb0dGtoHU6ZcQVpab6SlPWz0PmNS\nGBqugbX1KkRGZgLIlHk8iVSKkQcPwktPDwFDhsh1/o92fISzwrO4vvY67IzsWt3/2Ws+A3xwb+Y9\n3HpwC/129GsoClz5farL9rPXuJKnue3ns3Ihj6xtX19fTuVpafsZruR59rs7cOAAADR8X7aHyjuf\nn7GxsVHrzuesrGq4ulYhLi4H1tZN/2PPy9uL/Pz98PS8AQ0N2ctbMsYwPyUFebW1+I3Pb3W6C8YY\nvrj8Bc6lnsOlmZfQp1vzy3m+qPhiMe4F3IP5XHP0+7IfNLU4MUCNEKJA7f3u5My3gbo/NLVmTQpe\neWWnzKJQU5OHzMwV6N//+2aLAgDsyM1FeGkpQpycWi0K9dJ6zDs3D4JsAa4GXJW7KEglUhyddhT3\nAu/B6agTbNbYcLYovPifGVepQ051yAhQTq5Q+aikZzIyMlQdod1yc2tw4kRffPed7IfPUlMXoU+f\n+TAwaL7tP0wsxsb79xHh4YFurYxAqq2vxYyTMyCuEuPyzMvopttNrpxVWVVIfj8Z1dLqJzOiGtOM\nqISQpjjTlNQSrjclzZsXi/LyLBw92nTIbWHhSWRk/D94e8eAx5O9gE3y0zmQTg4c2Gpnc0VtBfyP\n+0NPWw/H/I+hi5Z8i+IUnihEyoIU9F3eF5ZLLKGhqd53aISQ1qntcwzq7sGDWhw71g83b9Y1eU8i\nKUFq6iI4O//UbFEQP12FbaudXatFoaS6BONDxsPeyB4/TPwBWpqt//nqq+uR/lk6ii8Uw+WcC7oP\nbt9U24SQzoObjctqJCgoGaNHX4OTk1eTdseMjOXo3XsiDA1lT7tdK5XCPyEB/sbGmG1m1uJ5HpQ/\ngO8BX3j38cb+t/fLVRQq7lUgekg0JGIJvKO9G4qCurSPUk7FUYeMAOXkCrpjeAlFRXU4dKgvrl2r\nafJeSclfEIt/x+DBiTI/yxjDx6mp6K6lhQ22ti2eJ6skC36H/TDLdRZWvray1Y56xhgKDhYgY1kG\nbDbYwHwOzYhKCJEf9TG8hKVLY5Genovffhvb6PX6+mrcueMGW9vNMDZ+R+Zng3NysC8/Hzda6WxO\nLkzGW0fewrJXlmHRkEWtZqorq0Pqv1JRFl0G55+dYcCnye8I6ayoj0HJSkrqsW9fX/zxR1WT97Kz\ng6Cv79JsUTgvFmPT/fuI9PRssSjcybuDCccmYMubWzDTbWarmcqiy5A0NQmGrxvC67YXeF2bHxpL\nCCHNoT6GdtqyJQHDht2Ep+eQhtcEAgHKy+OQn78XDg47ZH4uqaICs+/dw68DB6Jfl+ZHFAmyBBh7\ndCz2jN/TalFgjCHn2xzEjY6D9Vpr9P++f4tFQV3aRymn4qhDRoBycgXdMbRDWZkUu3dbIDS0rFHb\nPWP1EArnwMZmA3R1mz7TUFRbiwnx8fjazg7DejS/XvJZ4Vl8eOZD/Dz5Z4ywGdFiFolYgnuB91Cb\nVwvPCE/o2bV9LWdCCHke9TG0w1dfxSI8vBAXLoxsVBhEom8gFp+Gm9ufTTp7a6VSjIqNxdDu3bGp\nhQV3jsQdwecXP8e5aefg3ce7xRwl10qQPD0Zxu8aw3ajLTR16AaQEPI36mNQkspKKXbu7IOTJx83\n+vKvqspCdnYQPD0jmhQFxhgWpqbCsJURSDtv7cTmG5vx5+w/4Wzs3Ox+rJ4he2M2cnfmYsC+Aeg1\nrtfL/2CEEPIU/YvZRt98kwA+PxHDh//9bAJjDCkp85GT83/o2tWhyWeCc3Jwq7QUR5ycoClj2Chj\nDOv+Wofgm8G49sG1FotCTX4NYkfF4tHlR/CO8m5XUVCX9lHKqTjqkBGgnFxBdwxtUF3NEBxsipCQ\n4kZ3BQ8fhqC2Nh8mJp83+cx5sRhbRCJEeHrCQMYIJCmTYumFpfgz609c++AazAyaf9BNHCaG8AMh\n+szvg34r+0GDR88mEEIUj/oY2uDrr+Nw6lQprl8f1lAYamsLcfu2C1xczqJ790GN9k+sqMCImBic\n5vPhI6OzuU5ah7ln5yJFnIJz759DT72eMs8rlUiRuTITD0MewumIEwxfl2/xHkJI50Z9DB2stpZh\n+/be+P77okZ3C+npn8HUdHqTolBUW4uJ8fHYZmcnsyhU11Vj2olpqJRU4uKMi9DX0Zd53qrMKiS9\nnwTt3trwuusFnd40IyohpGNRH4Oc9uxJhKVlNsaO9W14TSwOw+PH12FjsxbA3+2OtVIp/BMTMcXE\nBDNlzIFUVlOG8SHjoaWphTPvn2m2KDz89SGih0TD5D0TuJx1UVhRUJf2UcqpOOqQEaCcXEF3DHKQ\nSBi2bDHEt98+gIbGk1paV1eOlJT56N9/L3i8v7/YGWNYkJICI21trLexaXKs4qpijDk6Bq4mrtg9\nfjd4mk0fRKuvejoj6sViuIS6oLs3zYhKCFEe6mOQw549idi9uxLR0Z4NK7ClpS2BRCKGk9OhRvtu\nF4lwqKAA1z08mnQ255XlYdThURjrMBab39wsc2K7iqQKJL2XBH2+Phz3OEKrO9VuQkj7UB9DB5FK\ngU2bDLBpU35DUSgtvYUHD45h0KCERvv+Lhbja5EIkTJGIKUXp2PUkVGY6zkXX7z6RZPzMMZQ8GMB\nMpZnwHaTLcwCzWhGVEKISlAfQysOHUqEvv4jTJ7sCwCQSiUQCufA3n47dHR6N+yXWFGB6SEhODFw\nIPq+MAdSwsMEvH7gdfz7lX/LLAp1pXVInpEM0XYR3AXuMP+wY6fJVpf2UcqpOOqQEaCcXEGFoQVS\nKbBhQxcsX14IHu/JHYBItBW6upYwMXm/Yb/Cp3MgLbSwaDICKTInEm8eehNfj/oa87znNTlHWVQZ\noryiwDPgweuWF/QHyu6IJoQQZaE+hhaEhCRjzZp6JCX1B4+njcpKIaKjh8HbOwpduvQD8GQE0pux\nsXi1R48m011czriMaSem4cA7BzDWofGaDYwx5ATn4P6G+3DY6QCTKSZK+7kIIZ0D9TEoGGPA+vU8\nLFsmAo/HB2NSCIUfwdp6VUNRYIxhfkoKemlrI+iFEUgnk09i/rn5ODHlBIb3a7y0Z21RLYQfCFH7\noBaekZ7Qs6UZUQkh3EFNSc04eVKI6mopAgJeBwDk5/8AqbQGFhYLG/bZnpODu+XlODxgADQ1NBra\nHX+8+yM+Dv0YF2ZcaFIUSq6WIMozCl0HdIXHdQ+VFAV1aR+lnIqjDhkByskVdMcgA2PAunVSLF16\nH1paA1BTk4fMzBVPp9N+MjLpXFERtssYgfTfiP8i+GYwBAECOPZy/PuY9QzZ67ORtysP/ff3R68x\nNCMqIYSbqI9BhrNnU/HxxxpITbWEjk4XJCRMgr7+QNjYrAMAJJSX443YWJzh8zH0aWczYwyrrqzC\nL0m/4NLMS7DqYdVwvJq8GiRPTwY0AKcjTtDto6u0n4UQ0nm197uTmpJkWLu2BkuWpENHpwsKC0+i\noiIJffuuAPBkBNLEhAR8Y2/fUBSkTIpF5xchNC0U1z641qgoiM+LEeUVBcM3DOF2yY2KAiGE86gw\nvODChXTk5RlgwYLhkEhKkJq6CP37fw8erwtqpFJMSkzENBMTTDM1BQBI6iWYdWoW4h/GY431Ghjr\nGwMApLVSpH2ehpR5KXA+7gzrL605M022urSPUk7FUYeMAOXkCioML1i7thyLFwuhq9sVGRnL0bv3\nRBgaDm+YA8lYWxtrn45AqpJUYdLxSSipLkHY9DAY6Bg8eT2jCndfvYuqlCp43/WG4XCaJpsQoj6o\nj+E5f/2Viffe00JGRk/U1kYhKWk6Bg9OhJZWD3x9/z6OPnyI6x4e0OfxUFpTionHJsKiuwUOvH0A\n2jxtAMDD4w+R+nEq+q3oB4vFFjStBSFEZeg5BgVYvfoRPv64ELq6ryM+fi4cHHZCS6sHzhYV4b85\nOYj09IQ+j4fCikKMPjoaQy2GYsfYHdDU0ER9ZT3SPk1DyZUSuJ53RTevbqr+cQghpF2oKemp8PBs\nJCaa49NPX0F29jro67vC2PgdxJeX40OhECf5fFh16QLRYxFeO/AaxtiPwc6xO6GpoYmKxApEDY5C\nREYEvKK8OF8U1KV9lHIqjjpkBCgnV9Adw1NffVWIBQvEAMyRn/89vL1j8fC5EUhDundHijgFow6P\nwqLBi7D0laVgjCHvhzxk/icTtltsUWFdQdNkE0LUHvUxALhzR4S33tJBeroW0tPHwNz8I/QyC8TI\nmBiM6NkT62xsEFMQg7FHxyLojSAEegSi7nEdhPOEqEyqhPPPztB3osnvCCHcQn0ML2H16nzMmVOC\nsrIk8Hj6MDMLRKBQCDMdHayxtsb1+9cx6edJ2DVuF/yd/VF6uxRJU5Ng9JYRPG96gqfXdBU2QghR\nV52+jyEuLhfh4Tb45BMzZGcHwdFxL7bl5CCuogIHnZxwIS0Mk36ehKOTjmLSgEkQbRchflw8bDfb\nwvE7x0ZFQV3aHSmnYqlDTnXICFBOruj0dwyrV4sQEFCGwsJtsLJaisuVPRGck4JIT0+cS/4Vi8MW\n4/TU0/DS80L8hHhIxBJ43vSEng3NiEoI+WdSeR/Djh078N1334HH42HcuHHYvHlzk306qo8hOTkf\nPj46CA8/hYqKHdDpL4BffBLOubggJvUnrPlrDcKmh8HqnhWSZyTDZJoJbIJsoKnd6W+0CCFqQC37\nGK5cuYIzZ84gLi4O2traKCwsVOr5V6/OxLRpj/Ho0QpYDjiF1xPv4Vt7e1yJ24U9UXvw18y/wPsf\nD0l7ktD/x/7oNZpmRCWE/POp9F/fXbt24T//+Q+0tZ88NWxsbKy0c6emPsCFCwMwffpx9DaZjmnZ\nXTDT1BR347bjUNwhXB5zGWWTy/D42mN4RXvJVRTUpd2RciqWOuRUh4wA5eQKlRaG1NRUXL16FUOH\nDoWvry/u3LmjtHOvXZsKf38BeDwBtkimw1xHBwWJmyDIFuA3i9+Q/1o+jEYZwe2iG3TNaUZUQkjn\n0eF9DH5+figoKGjy+vr167FixQq88cYbCA4Oxu3bt/Hee+8hIyOjaUgF9zFkZxfBxYWHY8dGQGT3\nOfaW94dN1jcoKS/AtrhtqPq1Ck4hTjB8lSa/I4SoL872MVy6dKnZ93bt2oVJkyYBAAYNGgRNTU2I\nxWL06tW02SYgIADW1tYAAENDQ7i7u8PX1xfA37d18m7Pnx8Cb+8H0Lboj3XFNjA+vwz5NbXYKtgK\nXh8eKnZWIKYuBr5o3/Fpm7Zpm7ZVsS0QCHDgwAEAaPi+bBemQrt372arVq1ijDEmFAqZlZWVzP0U\nGVMkKmLduhWzX04NZNZXzzDXI1PYlO1TmMBYwETfiphUKm33sa9cuaKwnB2JciqWOuRUh4yMUU5F\na+93p0pHJQUGBiIwMBAuLi7Q0dHBoUOHOvyc69bFY8TIDBzv5Q9p9km4xehiwZkF4Ifx0c2T25Pf\nEUKIMqj8OQZ5KKqPoaCgBI79pVj2fSD+W2eDd09V4pMun8DxO0dodev0z/oRQv5h2vvd2akKw8KF\n55GW9QD3ApPxf9/V4otZy2E6y5QW0yGE/CO197uz0zzCW1T0CIeODIam/13MOGyA9f8LgtlsM4UW\nhWedQFxHORVLHXKqQ0aAcnJFp2k/mfX5WTgP6Y7XUp3x75/mgNeFZkQlhBBZOkVTUl1dHdx9r2DC\nFCE2Lv5YgckIIYS7qI+hFYwx6ksghHQq1MfQCmUUBXVpd6SciqUOOdUhI0A5uaLTFAZCCCHy6TRN\nSS86fPgwQkNDERgYCD8/P4UemxBCuICzcyVxVVVVFY4dO6bqGIQQwjmdtinp5s2buHfvnkKPqS7t\njpRTsdQhpzpkBCgnV3TKwnDhwgXY29tj6dKlqo5CCCGc0+n6GNLS0vDTTz9h5cqV4PP5SEhIUMhx\nCSGEa2i4qpz279+P999/HwBgY2Oj4jSEEMI9na4wVFVVwcLCAsXFxbC3t1fosdWl3ZFyKpY65FSH\njADl5IpOVxgWLFiAgwcPYu/evVi5cqVCjx0TE6PQ43UUyqlY6pBTHTIClJMrOt1wVUdHRzg6OnbI\nsUtKSjrkuIpGORVLHXKqQ0aAcnJFp7tjIIQQ0jIqDAqUlZWl6ghyoZyKpQ451SEjQDm5Qi2Gq7q7\nuyM2NlbVMQghRK24ubm1qz9ELQoDIYQQ5aGmJEIIIY1QYSCEENIIJwtDcXEx/Pz84OjoiFGjRrU4\nNKy+vh4eHh6YMGGCEhM+IU9OkUiEESNGYODAgeDz+fj222+Vli8sLAwDBgyAg4MDNm/eLHOfxYsX\nw8HBAW5ubrh7967Ssj2vtZxHjx6Fm5sbXF1dMWzYMMTFxXEu4zO3b9+GlpYWTp48qcR0f5Mnp0Ag\ngIeHB/h8Pnx9fZUb8KnWchYVFWH06NFwd3cHn8/HgQMHlJ4xMDAQpqamcHFxaXYfLlw/reVs1/XD\nOGjZsmVs8+bNjDHGNm3axJYvX97svtu2bWPTpk1jEyZMUFa8BvLkzM/PZ3fv3mWMMVZWVsYcHR1Z\nUlJSh2erq6tjdnZ2LDMzk9XW1jI3N7cm5/3999/ZmDFjGGOMRUZGsiFDhnR4rvbkDA8PZyUlJYwx\nxs6fP6/0nPJkfLbfiBEj2Lhx49ivv/6q1Izy5nz06BFzdnZmIpGIMcZYYWEhJ3OuXr2affHFFw0Z\njYyMmEQiUWrOq1evsujoaMbn82W+z4Xrh7HWc7bn+uHkHcOZM2cwe/ZsAMDs2bPx22+/ydwvJycH\noaGhmDNnjsIX8pGHPDnNzMzg7u4OADAwMICTkxPy8vI6PNutW7dgb28Pa2traGtrY+rUqTh9+nSz\n+YcMGYKSkhI8ePCgw7O1NaePjw969OjRkDMnJ4dzGQFgx44dmDx5MoyNjZWa7xl5coaEhMDf3x+W\nlpYAgN69e3Myp7m5OUpLSwEApaWl6NWrF7S0lPs87vDhw9GzZ89m3+fC9QO0nrM91w8nC8ODmiCm\nTwAABV5JREFUBw9gamoKADA1NW32l71kyRJs3boVmpqq+THkzflMVlYW7t69iyFDhnR4ttzcXFhZ\nWTVsW1paIjc3t9V9lP2lK0/O5+3btw9jx45VRrQG8v4uT58+jQULFgBQzhrjL5InZ2pqKoqLizFi\nxAh4e3vj8OHDyo4pV865c+ciMTERffr0gZubG4KDg5Uds1VcuH7aSt7rR2VTYvj5+aGgoKDJ6+vX\nr2+0raGhIfMiO3fuHExMTODh4dGhE1q9bM5nysvLMXnyZAQHB8PAwEDhOV8k7xfTi3dayv5Ca8v5\nrly5gv379+PGjRsdmKgpeTJ++umn2LRpU8M0x6q4g5Unp0QiQXR0NP744w9UVlbCx8cHQ4cOhYOD\ngxISPiFPzg0bNsDd3R0CgQDp6enw8/NDbGwsunXrpoSE8lP19dMWbbl+VFYYLl261Ox7pqamKCgo\ngJmZGfLz82FiYtJkn/DwcJw5cwahoaGorq5GaWkpZs2ahUOHDnEqJ/DkYvT398eMGTPwzjvvKDRf\ncywsLCASiRq2RSJRQ/NBc/vk5OTAwsJCKfmayyArJwDExcVh7ty5CAsLa/G2uSPIkzEqKgpTp04F\n8KTj9Pz589DW1sbEiRM5ldPKygq9e/eGnp4e9PT08NprryE2NlaphUGenOHh4VixYgUAwM7ODjY2\nNhAKhfD29lZaztZw4fqRV5uvH0V1gCjSsmXL2KZNmxhjjG3cuLHFzmfGGBMIBGz8+PHKiNaIPDml\nUimbOXMm+/TTT5WaTSKRMFtbW5aZmclqampa7XyOiIhQSeeZPDmzs7OZnZ0di4iIUHo+eTM+LyAg\ngJ04cUKJCZ+QJ2dycjIbOXIkq6urYxUVFYzP57PExETO5VyyZAn76quvGGOMFRQUMAsLCyYWi5Wa\nkzHGMjMz5ep8VtX180xLOdtz/XCyMIjFYjZy5Ejm4ODA/Pz82KNHjxhjjOXm5rKxY8c22V8gEKhk\nVJI8Oa9du8Y0NDSYm5sbc3d3Z+7u7uz8+fNKyRcaGsocHR2ZnZ0d27BhA2OMsd27d7Pdu3c37LNw\n4UJmZ2fHXF1dWVRUlFJytTXnhx9+yIyMjBp+f4MGDeJcxuepqjAwJl/OrVu3MmdnZ8bn81lwcDAn\ncxYWFrLx48czV1dXxufz2dGjR5WecerUqczc3Jxpa2szS0tLtm/fPk5eP63lbM/1Q1NiEEIIaYST\no5IIIYSoDhUGQgghjVBhIIQQ0ggVBkIIIY1QYSCEENIIFQZCCCGNUGEghBDSCBUGQgghjVBhIARP\nFnwKCQlBUFAQDh48iIULFyIjI6Ndx0pISEBQUBAiIyMBAAEBAQpMSkjHo8JACIDY2Fj4+/vD1tYW\nUqkU7777LszNzdt1rMrKSmhra4MxhuTkZJWtz0BIe1FhIASAp6cndHV1ERERAV9fX/j6+kJPT6/h\n/c8++wxVVVVyHWvw4MGIjo6Gj48PIiMjMWzYsEbvt+VYhKgCFQZC8GSt5qKiIiQkJMDGxgbXrl1r\neC85ORkFBQUy1+VoTteuXQEAkZGR8PHxealjEaJsVBgIwZPF6U+ePIlhw4bh1KlTjd6Lj4/Hq6++\nivz8fLmP17dvX/zyyy+IiopqWOWvvcciRNlUtlAPIVzy5Zdfynw9LCwM+vr6yMjIkPu//B9++AG+\nvr6wsLDAlClTXupYhKgC3TEQ0owbN24gPj4e48aNQ69eveReUtTKygrl5eW4evUqli1b9lLHIkQV\naD0GQgghjdAdAyGEkEaoMBBCCGmECgMhhJBGqDAQQghphAoDIYSQRqgwEEIIaYQKAyGEkEaoMBBC\nCGmECgMhhJBG/j+vXVOxmdQUfQAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x65e4090>"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.11-1 Page Number 739"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Yield of Crystalization Process\n",
      "import numpy as np\n",
      "from numpy.linalg import solve\n",
      "\n",
      "#Variable Declaration\n",
      "F = 10000.           #Weight of salt solution, kg\n",
      "xFc = 0.30           #Weight percent of salt\n",
      "Ts = 293.            #Temperature of salt solution, K\n",
      "S = 21.5             #Unhydrous Solubility, kg/100 kg of water\n",
      "MW = 106.0           #Molecular wt of Na2CO3\n",
      "MWh = 180.2          #Molecular wt of 10.H2O\n",
      "\n",
      "#Calculation\n",
      "MWhs = MW + MWh      #Molecular wt of Na2CO3.10.H2O\n",
      "xFs = 1.0 - xFc\n",
      "xWs,xWc = 1.0, 0.0\n",
      "\n",
      "xCs,xCc = MWh/MWhs,MW/MWhs\n",
      "xSs,xSc = 100/(S+100),S/(S+100)\n",
      "\n",
      "#Part A\n",
      "W = 0.0\n",
      "a = np.array([[1,1], [xSs,xCs]])\n",
      "b = np.array([F-W, F*xFs-W*xWs])\n",
      "[Sa,Ca] = solve(a,b)\n",
      "\n",
      "#Part B\n",
      "W = F*0.03\n",
      "a = np.array([[1,1], [xSc,xCc]])\n",
      "b = np.array([F-W, F*xFc-W*xWc])\n",
      "[Sb,Cb]= solve(a, b)\n",
      "\n",
      "#Results\n",
      "print \"Answer to PART A\"\n",
      "print \"kgs of Hydrayred Crystal produced and Saturated solution are\", round(Ca,1),\"&\", round(Sa,1),\"respectively\"\n",
      "print \"Answer to PART B\"\n",
      "print \"kgs of Hydrayred Crystal produced and Saturated solution are\", round(Cb,1),\"\", round(Sb,1),\"respectively\"\n",
      "print 'The results are checked by using tools like calculator and\\nother the results of this code are more correct than book'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Answer to PART A\n",
        "kgs of Hydrayred Crystal produced and Saturated solution are 6361.7 & 3638.3 respectively\n",
        "Answer to PART B\n",
        "kgs of Hydrayred Crystal produced and Saturated solution are 6636.2  3063.8 respectively\n",
        "The results are checked by using tools like calculator and\n",
        "other the results of this code are more correct than book\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12.11-2 Page Number 741"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Heat Balance in Crystallization\n",
      "\n",
      "from numpy.linalg import solve\n",
      "\n",
      "#Variable Declaration\n",
      "F = 2268.0             #kg of feed solution\n",
      "TF = 327.6             #Temperature of feed solution, K\n",
      "CF = 48.2              #kgMgSO4/100 kg water\n",
      "Tc = 293.2             #Temperature cooled to, K\n",
      "S = 35.5               #kgMgSO4/100 kg water \n",
      "cp = 2.93              #Average heat Capcity of Solution at 298.2 K, kJ/kg.K\n",
      "delHs = -13.31e3       #Heat of solution at 298.2 K, kJ/kmol\n",
      "MW = 120.368           #MW of MgSO4\n",
      "MWwh = 126.107         #MW of Water of Hydration 7H2O\n",
      "\n",
      "#Calculation\n",
      "xFs = 100./(100+CF)\n",
      "xFc = 1.0 - xFs\n",
      "xSs = 100./(100. + S)\n",
      "xSc = 1.0 - xSs\n",
      "xCs = MWwh/(MW + MWwh)\n",
      "xCc = 1.0 - xCs\n",
      "\n",
      "a = numpy.array([[1.,1.], [xSc,xCc]])\n",
      "b = numpy.array([F, F*xFc])\n",
      "[So,C]= solve(a, b)\n",
      "\n",
      "H1 = F*(TF-Tc)*cp\n",
      "delHs = delHs/(MW+MWwh)\n",
      "delHc = -(delHs)\n",
      "Hc = delHc*C\n",
      "Q = - Hc - H1\n",
      "#Results\n",
      "print 'Mass of Hydrayred Crystal produced and Saturated solution are %5.2f & %5.2f kg'%(C,So)\n",
      "print \"Total heat Absorbed\", round(Q,2), \"kJ. Negative sign indicates heat must be removed\"\n",
      "print 'The results are checked by using tools like calculator and\\nother the results of this code are more correct than book'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mass of Hydrayred Crystal produced and Saturated solution are 633.65 & 1634.35 kg\n",
        "Total heat Absorbed -262814.27 kJ. Negative sign indicates heat must be removed\n",
        "The results are checked by using tools like calculator and\n",
        "other the results of this code are more correct than book\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}