{ "metadata": { "name": "", "signature": "sha256:c9327f5447c5ed20590fdd2b6e8f56cfc44897791f24134460ab88ebde554f57" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10: Stage and Contineous Gas-Liquid Seaparation Procesess" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2-1 Page Number 587 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Dissolved Oxygen Concentration in Water\n", "\n", "#Variable Declaration\n", "H = 4.38e4 #Henry's law constant atm/mol fraction\n", "yO2 = 0.21 #mol fraction\n", "\n", "#Calculations\n", " #y = Hx\n", "xO2 = yO2/H\n", "\n", "#Results\n", "print 'Mol fraction of oxygen in water, xA: %5.3e'%xO2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mol fraction of oxygen in water, xA: 4.795e-06\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3-1 Page Number 589 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Equilibrium Stage Contact for CO2-Air-Water\n", "from scipy.optimize import root\n", "\n", "#Variable Declaration\n", "P = 1. #Absolute pressure of gas mixture (atm)\n", "yA2 = 0.2 #Mole fraction of CO2\n", "Vm = 100. #Feed inlet \n", "Lm = 300. #Flowarte of liquid entering (kg mol water/hr)\n", "xC0 = 1.\n", "xB0 = 0.\n", "xA0 = 0\n", "H = 0.142e4 #Henry's law constant from appendix A.3 in atm/mol frac\n", "\n", "#Calculations\n", "Lmd = Lm\n", "Vmd = (1-yA2)*Vm\n", "Hd = H/P\n", "#Lmd*xA0/(1-xA0) + Vmd*yA2/(1-yA2) = Lmd*xA1/(1-xA1) + Vmd*yA1/(1-yA1)\n", "#yA1 = Hd* xA1 \n", "RHS = (Vmd*yA2)/(1-yA2)\n", "f = lambda xA1: Lmd*xA1/(1-xA1) + Vmd*Hd*xA1/(1-Hd*xA1)-Vmd*yA2/(1-yA2)\n", "sol = root(f, 0.0001)\n", "xA1 = sol.x[0]\n", "#Results\n", "yA1 = Hd*xA1\n", "L1 = Lmd/(1-xA1)\n", "V1 = Vmd/(1-yA1)\n", "\n", "print 'Outlet liquid and vapor phase compositions are xA1: %5.2e and yA1: %4.2f'%(xA1,yA1)\n", "print 'Liquid and vapor rates from colums are L1:%4.1f kgmol/h V1: %4.1f kgmol/h respectively'%(L1,V1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Outlet liquid and vapor phase compositions are xA1: 1.41e-04 and yA1: 0.20\n", "Liquid and vapor rates from colums are L1:300.0 V1: 100.0 respectively\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3-2 Page Number 591" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Absorption of Acetone in a Countercurrent Stage Tower\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "#Variable Declaration\n", "VN1 = 30. #Inlet Gas Flow Rate, kg mol/hr\n", "L0 = 90. #Inlet Liquid Flow Rate, kg mol/hr\n", "xA0 = 0.0 #Mole fraction of Acetone in entering Water\n", "yAN1 = 0.01 #Mole fraction of Acetone in entering Air\n", "AAAds = 90. #Percent of acetone absorbed\n", "H = 2.53\n", "\n", "\n", "#Calculations\n", " # moles of acetone entering\n", "\n", "AVi = yAN1*VN1\n", "Ai = (1-yAN1)*VN1\n", "AVo = (1-AAAds/100)*AVi\n", "ALo = AAAds*AVi/100\n", "V1 = AVo + Ai \n", "yA1 = AVo/Ai\n", "LN = L0 + ALo\n", "xAN = ALo/LN\n", "\n", "\n", "y = np.arange(0,0.012,0.0005)\n", "x = y/H\n", "\n", "plt.plot(x,y)\n", "plt.text(.0035, .007, r'Equilibrium Curve')\n", "plt.text(.001, .009, r'Operating Line')\n", "plt.plot(xAN,yAN1,'ro')\n", "plt.annotate('$(x_{AN},y_{AN+1})$', xy=(xAN,yAN1), xytext=(xAN,yAN1))\n", "plt.plot(xA0,yA1,'ro')\n", "plt.annotate('$(x_{A0},y_{A1})$', xy=(xA0,yA1), xytext=(xA0,yA1+0.001))\n", "\n", "m = (yAN1-yA1)/(xAN-xA0)\n", "\n", "def ypos(xop):\n", " return m*xop + yA1\n", "\n", "def xpos(yop):\n", " return yop/H\n", "\n", "yy = m*x + yA1\n", "plt.plot(x,yy,'r-')\n", "plt.xlabel('Mole fraction of acetone in water, $x_A$')\n", "plt.ylabel('Mole fraction of acetone in air, $y_A$')\n", "plt.plot([xAN,xAN],[0.0,yAN1],'b--')\n", "plt.plot([0.0,xAN],[yAN1,yAN1],'b--')\n", "x1 = xA0\n", "y1 = yA1\n", "n = 0\n", "while x1 <= xAN:\n", " x2 = xpos(y1)\n", " y2 = y1\n", " if x2 > xAN:\n", " plot([x1,x2], [y1,y2], 'k-', lw=1) #Draw Horizontal line to equilibrium curve\n", " dxt = x2-x1\n", " dx = xAN-x1\n", " dxbydxt = dx/dxt\n", " n = n + dxbydxt\n", " break\n", " plt.text(x2, y2-0.0007, str(n+1))\n", " plot([x1,x2], [y1,y2], 'k-', lw=1) #Draw Horizontal line to equilibrium curve\n", " x1 = x2\n", " y1 = y2\n", " y2 = ypos(x1) \n", " plot([x1, x2], [y1, y2], 'k-', lw=1) #Draw a vertical line to operating line\n", " n = n+1\n", " x1 = x2\n", " y1 = y2 \n", " \n", "print \"Acetone laden air rate from the absorber:\",V1, \"kgmol air/hr\"\n", "print \"Acetone concentration in leaving stream\", round(yA1,6)\n", "print \"Acetone + Water rate from the absorber:\", LN, \"kmol/hr\"\n", "print \"Acetone concentrqtion in liquid leaving absorber:\",round(xAN,5)\n", "print \"Amount of acetone etering with air\", round(AVi,4),\"kmol acetone/hr\"\n", "print \"Amount of air entering \", round(Ai,4), \" kgmol air/hr\"\n", "print \"Amount of acetone leaving with treated air\", round(AVo,4), \"kgmol/hr\"\n", "print \"Amount of acetone leaving with Water\", round(ALo,4), \"kgmol/hr\"\n", "print \"Number of Stages:\", round(n,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Acetone laden air rate from the absorber: 29.73 kgmol air/hr\n", "Acetone concentration in leaving stream 0.00101\n", "Acetone + Water rate from the absorber: 90.27 kmol/hr\n", "Acetone concentrqtion in liquid leaving absorber: 0.00299\n", "Amount of acetone etering with air 0.3 kmol acetone/hr\n", "Amount of air entering 29.7 kgmol air/hr\n", "Amount of acetone leaving with treated air 0.03 kgmol/hr\n", "Amount of acetone leaving with Water 0.27 kgmol/hr\n", "Number of Stages: 5.1\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEUCAYAAADwYOuyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtczvf7B/DXjcKwIcdVpLpT3HVLSArZkGbOc9psyZw1\nZphhThvmMHOcOWxO+zqNsUKaU82pROWQQilTESZJOtf1++PN/ZNO9133qbqej8f9sPu+P4frvlef\nq8/nc72vt4SICIwxxpgWVNF1AIwxxioPTjqMMca0hpMOY4wxreGkwxhjTGs46TDGGNMaTjqMMca0\nRutJx8/PD9bW1pBKpVi2bFmhy0yePBlSqRRyuRxhYWGK10eNGoXGjRvD1ta2wDrr1q2DjY0NZDIZ\nZs6cqbH4GWOMlZ5Wk05ubi68vLzg5+eHiIgI7NmzB5GRkfmW8fX1RXR0NKKiorB582ZMmDBB8Z6n\npyf8/PwKbNff3x8+Pj64du0awsPDMX36dI1/FsYYY6rTatIJDg6GpaUlzMzMYGBggGHDhsHb2zvf\nMj4+PvDw8AAAODo6Ijk5GYmJiQCAzp07o169egW2+8svv2DWrFkwMDAAADRs2FDDn4QxxlhpaDXp\nJCQkwNTUVPHcxMQECQkJKi/zpqioKJw5cwYdO3aEq6srLl++rN7AGWOMqUU1be5MIpEotdybnXlK\nWi8nJwdPnz5FUFAQLl26hCFDhiAmJqbUcTLGGNMMrSYdY2NjxMXFKZ7HxcXBxMSk2GXi4+NhbGxc\n7HZNTEwwcOBAAED79u1RpUoVPHnyBEZGRoplLC0tcefOHXV8DMYYqzQsLCwQHR2ttu1p9fJau3bt\nEBUVhbt37yIrKwv79u1D37598y3Tt29f7Ny5EwAQFBSEunXronHjxsVut3///jh9+jQA4Pbt28jK\nysqXcADgzp07ICJ+EGH+/Pk6j0FfHvxd8HfB30XxD3X/sa7VpFOtWjWsX78ebm5uaNWqFYYOHQob\nGxts2rQJmzZtAgB88MEHMDc3h6WlJcaNG4cNGzYo1h8+fDg6deqE27dvw9TUFNu2bQMgSqljYmJg\na2uL4cOHK5IWY4wx/aLVy2sA4O7uDnd393yvjRs3Lt/z9evXF7runj17Cn3dwMAAv//+u3oCZIwx\npjHckaAScnV11XUIeoO/i//H38X/4+9CcyREVCkmcZNIJKgkH5UxxtRG3cdOPtNhjDGmNZx0GGOM\naQ0nHcYYY1rDSYcxxpjWcNJhjDGmNZx0GGOMaQ0nHcYYY1rDSYcxxpjWcNJhjDGmNZx0GGOMaQ0n\nHcYYY1rDSYcxxvRdTo6uI1AbTjqMMaaviICDBwGpFEhI0HU0aqH1+XQYY4wp4d49wMsLiIoCduwA\njI11HZFa8JkOY4zpk5wcYNUqoG1boH174MoVoEsXXUelNnymwxhj+iIkBBg7FqhbF7hwAbCy0nVE\nasdnOowxpmvPnwNffgn07g1MmQKcPFkhEw6gg6Tj5+cHa2trSKVSLFu2rNBlJk+eDKlUCrlcjrCw\nMMXro0aNQuPGjWFra1voeitXrkSVKlWQlJSkkdgZY0ztvL2B1q2BZ8+A8HDgs88AiUTXUWmMVpNO\nbm4uvLy84Ofnh4iICOzZsweRkZH5lvH19UV0dDSioqKwefNmTJgwQfGep6cn/Pz8Ct12XFwcTpw4\ngebNm2v0MzDGmFrExQEDBgBffw3s3Als2wY0aKDrqDROq0knODgYlpaWMDMzg4GBAYYNGwZvb+98\ny/j4+MDDwwMA4OjoiOTkZCQmJgIAOnfujHr16hW67a+++grLly/X7AdgjLGyys0F1qwB7O2BNm2A\na9cAV1ddR6U1Wi0kSEhIgKmpqeK5iYkJLl68WOIyCQkJaNKkSZHb9fb2homJCezs7NQfNGOMqUto\nKDBuHFCrFnDuHGBtreuItE6rSUei5HVKIlJ6vbS0NCxZsgQnTpwocn3GGNOp1FRg3jxg1y5g6VJg\n5MgKfd+mOFpNOsbGxoiLi1M8j4uLg4mJSbHLxMfHw7iYQVF37tzB3bt3IZfLFcs7ODggODgYjRo1\nyrfsggULFP/t6uoK10p0SssY05HDh8Ugz27dRKFAw4a6jqhYAQEBCAgI0NwOSIuys7PJ3NycYmNj\nKTMzk+RyOUVERORb5ujRo+Tu7k5ERIGBgeTo6Jjv/djYWJLJZEXuw8zMjJ48eVLgdS1/VMZYZRcf\nTzRwIJFUSnTqlK6jKTV1HztLVUiQnp6O2NhYXLhwAQcPHsS0adOUWq9atWpYv3493Nzc0KpVKwwd\nOhQ2NjbYtGkTNm3aBAD44IMPYG5uDktLS4wbNw4bNmxQrD98+HB06tQJt2/fhqmpKbZt21ZgH8pe\nwmOMMY3IzQXWrxdFAjKZKBR47z1dR6U3JC8zmUq++uorJCYmwsXFBSkpKTAyMsKYMWM0EZ/aSCQS\nvtfDGNOsK1dER4GaNYGNGwEbG11HVGbqPnaWKukAQGRkJK5fv45atWqhd+/eagtIUzjpMMY05sUL\nYP58Md7mVaFAlYrR8EXdx85Sfys2NjYYMmQIqlatihUrVqgtIMYYK1eOHhUdBR4+FIUCo0ZVmISj\nCWWuXuvVqxfq1KmjjlgYY6z8uH9f9EkLCwN+/RXo3l3XEZULKl1eGzlyJBo2bAhnZ2c4OTmhcePG\nmoxNrfjyGmNMLXJzgU2bxOW0sWOBb78V93AqKJ3f04mMjERQUBCCgoIQEhKCIUOGYMaMGXpfNcZJ\nhzFWZlevio4C1aqJxNO6ta4j0jidJp2goCAQEZycnAAA+/fvh1wux5kzZzB69Gi1BaUJnHQYY6X2\n4gWwcCGwfTuwZEmlum+j7mOnSvd0Tp48CQMDA6xevRpvvfUWmjVrhgYNGpSry2yMMaaSY8eAiROB\nTp2A69cBPt6ViUpnOuHh4UhLS0OHDh0Ur/36668wNTWFm5ubRgJUFz7TYYyp5MEDMbHa5cvAL78A\nPXvqOiKd0Pk9nfKKkw5jTCl5ecDmzcDcucCYMeLfClwoUBKdXl5jjLEK7fp1USggkQD+/qKNDVOr\nynEnjDHGipOWBsyaBbz/vugmcPYsJxwNKXXSefDgATIzM9UZC2OMad/ff4sEExsrmnOOHVtpKtN0\nodTf7IgRI9CyZUtMnz5dnfEwxph2JCYCH38MTJgAbNgA7N0LFDNDMVOPUiedU6dOISYmBp6enuqM\nhzHGNOtVoYCdHdCsmeiX1quXrqOqNJSqXiMixMfHw9TUVBsxaQRXrzHGcOOGKBR41crGzk7XEek9\nnXWZdnd3V9tOGWNMq9LTgTlzAFdX4JNPgPPnOeHoiFJJRyKRwMHBAcHBwZqOhzHG1OvkScDWFoiK\nEr3TJkzgQgEdUnpwaMuWLREdHY3mzZujVq1aYmWJBNeuXdNogOrCl9cYq2QePQKmTRPlzz//DJSD\nySb1kc4Ghx4/flxtO2WMMY0hArZuFeNuPDzEfZyXfygz3SvxHNPZ2RkA0Lp1a8hksnwPW1tblXfo\n5+cHa2trSKVSLFu2rNBlJk+eDKlUCrlcjrCwMMXro0aNQuPGjQvsd8aMGbCxsYFcLsfAgQPx7Nkz\nleNijFUAkZHivs2mTcDx48CKFZxw9EyJSef8+fMAgNTUVDx//jzfIyUlRaWd5ebmwsvLC35+foiI\niMCePXsQGRmZbxlfX19ER0cjKioKmzdvxoQJExTveXp6ws/Pr8B2e/bsiRs3buDq1auwsrLCDz/8\noFJcjLFyLiMDmDcP6NIF+OgjIDAQaNNG11GxQqjUe+3p06eIiopCRkaG4rUuXboovX5wcDAsLS1h\nZmYGABg2bBi8vb1hY2OjWMbHxwceHh4AAEdHRyQnJyMxMRFNmjRB586dcffu3QLb7dGjh+K/HR0d\n8eeff6rysRhj5dnp08D48aIa7coVwNhY1xGxYiiddLZs2YK1a9ciLi4O9vb2CAoKgpOTE06fPq30\nzhISEvKN9TExMcHFixdLXCYhIQFNlBwpvHXrVgwfPlzpmBhj5dTjx8D06UBAALB+PdCnj64jYkpQ\num5wzZo1CA4OhpmZGfz9/REWFoZ33nlHpZ0pO6X1m5USyq63ePFiGBoa4uOPP1YpLsZYOUIkZvCU\nyYAGDUShACecckPpM50aNWqg5ss5JTIyMmBtbY1bt26ptDNjY2PExcUpnsfFxcHExKTYZeLj42Gs\nxOny9u3b4evri1OnThW5zIIFCxT/7erqCldXV+WDZ4zp3q1boqNAaqqY0bNtW11HVOEEBAQgICBA\nczsgJfXv35+SkpJo/vz55OLiQn369CF3d3dlVyciouzsbDI3N6fY2FjKzMwkuVxOERER+ZY5evSo\nYruBgYHk6OiY7/3Y2FiSyWT5Xjt27Bi1atWKHj9+XOS+VfiojDF9k5FBNH8+kZER0Zo1RDk5uo6o\n0lD3sbNUM4cGBAQgJSUFvXr1gqGhoUrrHjt2DF9++SVyc3Px+eefY9asWdi0aRMAYNy4cQCgqHCr\nVasWtm3bhrYv/5oZPnw4/vnnHzx58gSNGjXCd999B09PT0ilUmRlZaF+/foAACcnJ2zYsCHffnlw\nKGPlVECAOLtp1QpYuxYoxz0gyyOerrqUOOkwVs48eQLMmCHa2KxdC/Tvr+uIKiWdNfxkjDGtIAJ2\n7gRatwbq1BGFApxwKgyVxukwxphG3b4tGnImJwNHjgDt2uk6IqZmfKbDGNO9zEzg+++BTp1E+fPF\ni5xwXrpxQ8zGkJSk60jUQ+kznYyMDPz555+4e/cucnJyAIhrffPmzdNYcIyxSuDMGVEoIJUCoaFi\nNk+G2Fhg/nzAzw+YORN4OWKl3FM66fTr1w9169aFg4MDatSoocmYGGOVQVIS8PXX4qi6di0wYACg\n5EDwiiwxEVi0CNizB/DyAqKjgbff1nVU6qN00klISMDff/+tyVgYY5UBEbBrl2hhM2QIEBFRsY6q\npZScDCxfLhpkf/YZcPMm0LChrqNSP6WTTqdOnXDt2jXY8RSvjLHSiooShQJPngA+PkCHDrqOSOfS\n0sSJ3sqVQL9+QFhYxb7CqPQ4HRsbG0RHR6NFixaoXr26WJlnDmWMKSMrS8xts2qVmFxtyhSgWuUu\nns3KAn79VVxKc3ERdRQtW+o6qoJ0NnPosWPH1LZTxlglcu4cMHYsYG4OhIQAzZvrOiKdys0Fdu8W\nRQJWVsDhw4CDg66j0h7uSMAY04ynT0XZla8vsGYNMHBgpS4UIBJXFL/9Vox5/eEHoGtXXUdVMq2f\n6Tg7O+P8+fOoXbt2gSkGJBKJyrOHMsYqOCJg715g2jSRaG7cAFScBqWi8fcHZs8GXrwAliwBPvyw\n8uZfPtNhjKnPnTvAxImi7nfzZsDRUdcR6dTlyyLZ3LkDfPcdMHw4UKWcDcnn3muMMf2TnQ0sXSqS\nTPfu4mhbiRPOzZvARx+JarQBA4DISNFVoLwlHE2o3OUjjLGyCwwUhQKmpiLZmJnpOiKduXcPWLBA\ntI2bPl30LX3rLV1HpV847zLGCpWZmVn8AsnJYszNRx8B8+YBR4/qTcLJyMjQ6v4ePQK+/BKwtwfe\nfVf0Lf36a044hVE66eTl5eH333/Hd999BwC4d+8egoODNRYYY0x3jhw5gufPnxf+JhHwxx9i6gGJ\nRBQKDB6sV3fG4+PjcfLkSY3v59kzkW9tbIC8PNFcYdEioG5dje+63FI66UycOBGBgYHYvXs3AKB2\n7dqYOHGixgJjjOnGgwcPkJKSggYNGhR8MzYW6N1bjGQ8cADYsEEvj7CWlpaIiIhAenq6Rrafng78\n+KPoUXrvnhh+tHYt0LixRnZXoSiddC5evIgNGzag5stWp/Xr10d2drbGAmOM6ca2bdswYMCA/C9m\nZ4vGYO3bi8EloaGAk5NuAlRS7969sWfPHrVuMztbFOVJpcCFC2Im7e3b9eaqYrmgdNIxNDREbm6u\n4vnjx49RhUsxGKtwHj16hJo1ayI3Nxe7d+/GonHjsMPcHJPWr0fMgQNiwKeBgcrbDQ8Px6JFixAU\nFAQAGDlypJojz8/CwgLXr19Xy7by8sTQo1atxJXFgwfFo1UrtWy+UlE6a3zxxRcYMGAAHj16hNmz\nZ8PZ2RmzZs1SeYd+fn6wtraGVCrFsmXLCl1m8uTJkEqlkMvlCAsLU7w+atQoNG7cGLa2tvmWT0pK\nQo8ePWBlZYWePXsiOTlZ5bgYY8Krm/BXz53DoLNnYf7HH8jr3RuDd+xA0zKUQaelpcHAwABEhMjI\nSDTUQgvlV3N/lRaRaKjQtq1oG7dxI3DyJPcpLRNSQUREBK1fv57WrVtHERERqqxKREQ5OTlkYWFB\nsbGxlJWVRXK5vMB2jh49Su7u7kREFBQURI6Ojor3zpw5Q6GhoSSTyfKtM2PGDFq2bBkRES1dupRm\nzpxZYN8qflTGKq1Rnp5E+/cTGRsTjR1LXmPGUExMTKHLTp06ldLS0oiIKDw8nNq2bUtZWVkUHR1N\n33zzDaWnp+dbfsiQIUREtHXrVjp06FCZtvWmv/76ixISEvJ/llGjlP/gbzh7lsjFhahVK6KDB4ny\n8kq9qXJN3cdOpc90MjIyEBoaiuTkZDx58gR//PGHopJNWcHBwbC0tISZmRkMDAwwbNgweHt751vG\nx8cHHh4eAABHR0ckJycjMTERANC5c2fUq1evwHZfX8fDwwN//fWXSnExVpmdOXoU37q5YYGrK37s\n0gXZR44A8+fj0oIF+G/xYoRHRaFFixY4e/ZsvvUiIyORmJio+P3Mzs7GzJkzcejQIdSsWRMTJ05E\njRo1EBsbq1jnrZc1xEFBQXB67Z6Qstt6JSEhIV8siYmJ2LFjR4GR86W5BXDliqiVGDECGDMGuHaN\n55dTJ6X/j/Tr1w8+Pj4wMDBA7dq1Ubt2bdSqVUulnSUkJMDU1FTx3MTEpMAPjzLLvOnhw4do/LJs\npHHjxnj48KFKcTFWWZ05ehR/T5mCRcePY8E//2D62bN4npKCs4sXw+/BAxw8eBDOzs44dOhQgXWv\nX78OFxcXPHjwAADw4sULDB48GH///Tf+/fdfmJqaIiEhAd27d1es06xZM+zfvx8hISGK31llt/W6\nmzdv5nvepEkTyOXyfK8REerUqaP0dxEVJdrUuLuLx61bYjK1qlWV3gRTglZnDn2zYWhR3vxrRdn1\nXi2ryvKMVWbH167F4jt38r3mnJkJ73Xr8OOpU0Wu5+fnh1q1aiEmJkZxdvLqd8/c3BxRUVFwcnKC\nsbExfvvtNwDAr7/+CldXVxgbG2PIkCEqbwsAoqOjcefOHVy5cgU5OTmQSCTo0aNHob/z165dg6MS\n96ASEkRftIMHgalTxRw3Kv49zVSg9JnOq5lDy8LY2BhxcXGK53FxcTAxMSl2mfj4eBgbGxe73caN\nGyt+WB88eIBGjRoVupxEsuC1RwAkEtGyojALFojT6TcfvDwvX5GWTwx0K7DsGAC3XvsdfNP58+dx\n/fp19O7dG0ZGRjh37hyCgoJw/vx5AKLgJysrS7H8q84GpqamSE1NxZkzZzBjxoxSbcvS0hJubm5o\n164d3Nzc0LNnT0gkEjx69Ai3bt2Cv7+/YtlTp05h8ODBRX6OJ0+AGTMAOzugXj1xZjN7NiecgIAA\nLFiwQPFQO2Vv/lhbW1O1atVIKpWSTCYjmUxGtra2Kt1Ays7OJnNzc4qNjaXMzMwSCwkCAwPzFRIQ\nEcXGxhZaSLB06VIiIvrhhx+4kICx4uTlEf35J5GxMV0yNiYSRVo0H/MV//1Zhw7077//6jrSIvn7\n+xf7fnh4OF25cqXQ91JSiBYuJDIyIpowgeiN2gP2BnUfO5XeWmxsbKEPVfn6+pKVlRVZWFjQkiVL\niIho48aNtHHjRsUykyZNIgsLC7Kzs6OQkBDF68OGDaOmTZuSoaEhmZiY0NatW4mI6MmTJ/T++++T\nVCqlHj160NOnTwt+UE46jBH9+y9Rnz5E1tZE//xD/xw5QrMtLIgAenlhm2ZZWNA/R47oOlK1S08n\nWrWKqHFjok8+IYqO1nVE5YO6j508nw5jlUFODrBuHbB4MSRPnug6Gp26epVgZ6frKMoPrc8c+ror\nV67g7NmzkEgk6Ny5c4FqEcaYHrp8WUw9UK+e6N3SsmWhBxGJRFxbqyjy8oA//wTmzgWaNBEzdnbq\npOuomNKFBGvWrMGIESPw+PFjPHz4ECNGjMDatWs1GRtjrCyePwemTBFzI3/5pRhKb2Wl66g0jgj4\n+2/RJm7pUmDNGjFdNCccPaHsdTiZTEapqamK56mpqQVu6OszFT5qpRAXF0d9+/YlqVRKFhYWNGXK\nFMrKytL4frdv3073799XPB89enSpulsUplatWgVe27hxI+3cuVMt2y9XDh0iMjEh8vQkevw431tF\n/S5UhF+RCxeIunYlatmS6I8/iHJzdR1R+afuY6dKw3VfH93LzT7LLyLCwIEDMXDgQNy+fRu3b99G\namoq5syZo5bt5+XlFfne9u3bcf/+fcXzLVu2wMbGRi37LWysxrhx4/Dpp5+qZfvlQlycGD7/zTfA\n778DW7cChU1RUIj58zUcmwZdvw707QsMHQp8+ikQHi6m+OHDlB5SNjutXLmSbG1taf78+TRv3jyy\ns7Ojn376Sa0ZUJNU+KgV3smTJ6lLly75XktJSSEjIyNKS0ujbdu2Ud++fcnV1ZWkUiktXLhQsdzv\nv/9OHTp0oDZt2tC4ceMo9+WfkrVq1aJp06aRXC6nc+fO0XfffUft27cnmUxGY8eOJSKi/fv3U+3a\ntally5Zkb29P6enp1LVrV0WFYq1atWjOnDkkl8upY8eO9PDhQyIiio6OJkdHR7K1taU5c+ZQ7dq1\nC/1chb0+f/58+vHHH4mIqGvXrjRz5kzq0KEDWVlZ0dmzZ4lI9AScPn06tW/fnuzs7GjTpk1l+Xp1\nIyeHaPVqUQe8YAFRRkaRi1ak34XoaFGJ1rixqEwroT0bKwV1/7wo/XdAYmIitm3bhnr16sHIyAjb\ntm1TtKxg5cuNGzfg4OCQ77U6deqgWbNmiI6OBgBcunQJBw8exLVr1xRtSyIjI/HHH3/gwoULCAsL\nQ5UqVbBr1y4AooNwx44dceXKFTg7O8PLywvBwcG4fv060tPTceTIEXz00Udo164ddu/ejdDQUNSo\nUSPf2UlaWhqcnJxw5coVdOnSBVu2bAEATJkyBVOnTsW1a9cKtEMpyesdKiQSCXJzc3Hx4kWsXr0a\nCxcuBAD89ttvqFu3LoKDgxEcHIwtW7bg7t27pfpudSI0FHB0BP76Czh/XpyyVK+u66g06sEDYOJE\n8bGtrEQLmy+/BF5rz8b0lNLVaydOnMDy5cvzHaw8PDywfPlyjQTGNKe4NkGvDtI9e/ZUNFcdOHAg\nzp07h6pVqyIkJATt2rUDAKSnp6NJkyYAgKpVq2LQoEGK7Zw+fRorVqxAWloakpKSIJPJ8OGHHwIo\n2OboFUNDQ/Tu3RsA4ODggBMnTgAQzSF9fHwAAMOHD8f06dNL/dkHDhwIAGjbtq0isRw/fhzXr1/H\ngQMHAAApKSmIjo6Gmb7PzJWaKuZK3rVLTLD22WcVvitlUpL4qFu2AJ6ewM2bSl89ZHqixKTzyy+/\nYMOGDbhz506+eWyeP38OZ2dnjQbHNKNVq1aKA+wrKSkpuHfvHiwtLXH58uV87xGRIlF5eHhgyZIl\nBbb5+llLRkYGJk2ahJCQEBgbG2PhwoWKOVqAopOewWsTg1WpUqXMc6EUpvrLM4CqVavm2/769evR\no0cPte9PY3x8AC8v4L33gBs3KvyRNzVVVKGtWgUMHAhcvQq80UGLlRMlXl77+OOPcfjwYfTt2xdH\njhzB4cOHcfjwYYSEhCgurbDy5f3330daWhp+//13AEBubi6mTZsGT09PRfv4EydO4OnTp0hPT4e3\ntzdcXFzw/vvv48CBA3j8+DEAMXnevXv3Cmz/VYIxMjJCamoq9u/fr3ivTp06SElJUSnejh07KpLk\n3r17Vf68RZ1ZveLm5oYNGzYoktDt27eRlpam8n60IiEBGDQImD5dzJO8fXuFTjiZmWJMq1QqigUu\nXBDTRXPCKb9KTDrvvPMOzMzMsHfvXjRv3hxmZmYwMzODkZGRNuJjGnLo0CHs378fVlZWaNmyJd56\n6y3FGYxEIkGHDh0waNAgyOVyfPTRR2jbti1sbGywaNEi9OzZE3K5HD179szXFfiVunXrYsyYMZDJ\nZOjVq1e+Tr8jR47E+PHj0bZt23xnP29u4/V7MatXr8ZPP/2ENm3a4M6dO3jnnXcK/UxpaWkwNTVV\nPFatWlVgu4Xtb/To0WjVqhXatm0LW1tbTJgwQSNnWWWSmyuOvnI5IJOJSV7ee0+tu9BEb8fSys0F\nduwArK2BY8fE7J1791aKYUYVntJtcPLy8rBr1y7ExsZi3rx5uHfvHhITE9GhnMzbym1wlLd9+3aE\nhIRg3bp1ug4FgLh3VLNmTQDiTGffvn2Fzu9SYV25IjoK1Kwp5ksuY4l5Ub8L+tCRgEjUQ3z7rWig\n8MMPQOfOuo2pstNZG5yJEyeiSpUqOH36NObNm4fatWtj4sSJBa7/s/JP3+YkCgkJgZeXF4gI9erV\nw9atW3UdknakporTj507xdD6kSMr9MCTU6fE1AKZmcCKFWIiNT36MWRqovSZjr29PcLCwhT/AoBc\nLsfVq1c1GqC68JkOK1eOHBGFAl26AD/+CBQxR1Rp6NuZTnCwSDb//gt8/z0wZEiFzq3ljs7OdAwN\nDZGbm6t4/vjxY+5KwJi63b8v+qVduSKmsHxtqueK5sYNcRnt0iVR+e3pCbxWwMgqKKWzxhdffIEB\nAwbg0aNHmD17NpydnTFr1ixNxsZY5ZGbC2zYIAoFrK1FoUAFTTh37wIeHkC3boCzsxjYOXYsJ5zK\nQukznREjRsDBwQGnXs6b7u3trbaeWYxValevAuPGAdWqAf/8A7RqpZMwNN17LTERWLwY2L0bmDRJ\nJJsiChFZBab0mY6HhweaNGkCLy8veHl5oUmTJhg1apQmY2OsYnvxAvj6a6BHD2D0aODMGZ0lHEBz\nJdPJycDrC4aTAAAgAElEQVScOUDr1kDVqkBkJPDdd5xwKiulk87Vq1cVbVEAoF69eggNDdVIUIxV\neMeOifE2CQli1OPo0RXu7nlaGrBsmRjY+eCBaBG3erVaayJYOaT05TUiQlJSEurXrw9AjEZ/vbCA\nMaaExETRmfLSJTHmxs1N1xGpXVYW8NtvohKtUydxAsdX4tkrSv9pNW3aNDg5OWHu3Ln49ttv4eTk\nhBkzZqi8Qz8/P1hbW0MqlWLZsmWFLjN58mRIpVLI5XJFeXZx6wYHB6NDhw6wt7dH+/btcenSJZXj\nYkyj8vKATZsAOzvA3Fyc3VSwhJObC/zvfyLB/PWXaA934AAnHPYGVeZBCA8Pp7Vr19K6devoxo0b\nKs+jkJOTQxYWFhQbG0tZWVkkl8sLzBp59OhRcnd3JyKioKAgcnR0LHHdrl27kp+fHxER+fr6kqur\na4F9q/hRGVOf69eJnJzE49o1XUej9t+FvDwiHx8imYyoY0cif3+1bp7pmLp/XlS6iPzuu++iQ4cO\nsLW1xX///YczZ86olOCCg4NhaWkJMzMzGBgYYNiwYfD29s63jI+PDzw8PAAAjo6OSE5ORmJiYrHr\nNm3aFM+ePQMAJCcnw9jYWKW4GNOI9HQx6rFbNzHtwLlzwGud2vVNaQoJAgJE2fPs2aIy7cIFwNVV\nzYGxCkXpezpbtmzB2rVrER8fjzZt2iAoKAhOTk44ffq00jtLSEjINwmXiYkJLl68WOIyCQkJuH//\nfpHrLl26FC4uLpg+fTry8vIQGBiodEyMacTx48CECUD79mLMTdOmuo6oRAsXKp94QkJEoomKEpVo\nw4eLyjTGSqL0mc6aNWsQHByM5s2bw9/fH2FhYUV2+y2Ksv28SMWWC59//jnWrl2Le/fuYdWqVVzK\nzXTn4UPgk0/EuJv160Vr5HKQcJR186ZoU9O3L9C/v3g+YgQnHKY8pc90atSooej0m5GRAWtra9y6\ndUulnRkbGyMuLk7xPC4uDiZvTIzx5jLx8fEwMTFBdnZ2kesGBwfj5MmTAICPPvoIo0ePLnT/C177\nM87V1RWufB2AqUtenijZmjNH9HO5cQN46y1dR6U29+6JMyEfn/+fyqcCfTz2moCAAAQEBGhuB8re\n/Onfvz8lJSXR/PnzycXFhfr06aO44a+s7OxsMjc3p9jYWMrMzCyxkCAwMFBRSFDcuvb29hQQEEBE\nRCdPnqR27doV2LcKH5Ux1dy4QeTiQuToSHT1qq6jKVFRvwuFvfzoEdGXXxLVr080ezbR06caDo7p\nHXUfO0u1NX9/f/L29qbMzEyV1/X19SUrKyuysLCgJUuWEBHRxo0baePGjYplJk2aRBYWFmRnZ0ch\nISHFrktEdOnSJerQoQPJ5XLq2LEjhYaGFtgvJx2mdmlpRHPmEDVoQPTzz0Q5ObqOSCnKJJ1nz4jm\nzRPJxsuL6MEDLQXH9I66j51KT21Q3vHUBkytTp4Exo8H2rYVw+zffVfXESmtqN+FBQuAmTNF39Hl\ny4FevcRrLVpoPUSmR3Q2tQFjDMCjR8C0acDZs6JQ4MMPdR2RWuTkAMbGYjrodu2A06dFrzTG1K1i\nNXtiTFNeFQrIZECTJqJQoAIknLw8YN8+0Wd0717RQeDQIU44THNKTDqffvopAGD16tUaD4YxvRQZ\nKUY8btoE/P23mEu5Vi1dR1UmRKLnaLt2wMqV4pLaqVOAo6OuIxOqVq0Ke3t7xWP58uWl3pazszMA\n4O7du7B9OTj38uXLmDJlCgBR1bpy5UqVtqVuiYmJGDZsGCwtLdGuXTv07t0bUVFRGtmXrpV4eS0k\nJAT379/H1q1b8dlnnxV4/1UDUMYqnIwMYMkScUResEAM9qwgA1K6dgX++w9YtAgYMEBMVa1P3nrr\nrXx9F8vi/PnzBV5r164d2rVrB0C58YM5OTmoVq1aodsqKyLCgAED4Onpib179wIArl27hocPH0Iq\nlSq1jby8vHIzk3OJUY4fPx7vv/8+bt26BQcHh3yPV//TGKtwTp0SzTkjIsQka15e5T7hXLkC9O4t\n/vvzz0XP0YED9S/hFMfPzw82NjZwcHDA5MmT0adPHwAFz1ZkMhnu3bsHAKhdu3aB7QQEBCjWBcTU\nLZ06dYKVlRV+/fVXxTKdO3dGv379IJPJ8m3rzfW9vLywY8cOAICZmRlmz54Ne3t7tGvXDqGhoejZ\nsycsLS2xadOmArH4+/vD0NAQY8eOVbxmZ2cHFxeXEvfzzTffwMHBAStWrIDja6epd+/ehZ2dHQBx\n4uDq6op27dqhV69eSExMLPmL1qASz3QmT56MyZMnY/z48di4caM2YmJMdx4/FqMfAwIguXdP9Hn5\n809dR6V2L9sb5rNggeYmclNVeno67O3tFc9nz56NPn36YOzYsfD394eFhQWGDh2qOEt582zl9ecl\nnckQEa5du4aLFy8iNTUV9vb26P0yO4eFheHGjRto3rx5sduSSCT5YmnevDnCwsLw1VdfYeTIkQgM\nDER6ejpkMhnGjRuXb93w8HA4ODgo87UU2E+DBg0QEhICANi7dy/u3r0LMzMz7Nu3D8OGDUNOTg6+\n+OILHD58GEZGRti3bx/mzJmD3377Tan9aYLS52MbN27E1atXsW7dOqxfvx5Xr17VZFyMaRcRsG2b\nKBRo0EAUCkAckMrrIz6eMHYswciIsGgR4fnz/3+vMAsXavMLL17NmjURFhameAwePBg3b95EixYt\nYGFhAQAYMWKEWkp5JRIJ+vfvj+rVq8PIyAjdunVDcHAwJBIJOnTooEg4qujbty8AwNbWFk5OTqhV\nqxYaNGiA6tWrIyUlpcD+S2vo0KGK/x4yZAj27dsHAPjjjz8wdOhQ3Lx5Ezdu3ED37t1hb2+PxYsX\nIyEhodT7UwelS6bXrFmDLVu2YODAgSAijBgxAmPGjMHkyZM1GR9jmnfrluiV9uKFuLvetq2uIyqT\nJ0+ApUuBrVvFhKS3bgFGRvmXMTMzw9tvv42qVavCwMAAwcHBuglWBW8enF9PONWqVUNeXp7ieUZG\nRpn29er+SK0iCkbe3F96enq+96tXr67YjqGhYb7t5uTk5Fu2devWOHDgQKn283p8Q4cOxeDBgzFw\n4EBIJBJYWFjg+vXraN26NS5cuFDkZ9U2pc90fv31V1y8eBHfffcdvv/+ewQFBWHLli2ajI0xzcrM\nFNeTnJ3FzY2goHKdcJ4/Fx2frayA1FRxz2bZsoIJBxAH8ICAAISFhZWLhAMALVu2xN27dxETEwMA\n2LNnjyIRmZmZITQ0FAAQGhqK2NhYpbdLRPD29kZmZiaePHmCgIAAtG/fvtizqObNmyMiIgJZWVlI\nTk4ustu+Mmdi7733HjIzM/MdT69du4Zz587BzMxMqf0AgLm5OapWrYrvv/8ew4YNAyC+s8ePHyMo\nKAgAkJ2djYiIiBJj0iSVyh1er44oL5USjBUqIEAUCly7Ju6wT55cbgsFMjJEUwSpVJzVXLwI/PJL\nyU0S9LlDx6t7Oq8es2fPRo0aNbB582b07t0bDg4OaNy4seIzDBo0CElJSZDJZPj555/RsmVLxbaK\nur/z+r0ROzs7dOvWDU5OTpg3bx6aNGmS7/7Jm+uYmppiyJAhkMlkGDp0KNoW8cfKm9so6lLaoUOH\ncPLkSVhaWkImk2HOnDlo2rQpTExMlNrPK0OHDsWuXbswZMgQAIChoSEOHDiAmTNnok2bNrC3t9f5\n1C9Kt8H56aefsH37dsXltb/++gsjR47E1KlTNR2jWnAbHAZA1AnPmCGq09atA/r1K3JRff+ZyckB\ndu4U92Ls7ET5s1yu3Lrm5uZ45513ULVqVYwbNw5jxoyBRCJubZUX//zzD3788UccPnxY16FUaDpr\ng/PVV1+ha9euOHfuHCQSCbZv356vuoQxvUYkjtBffy1mHLtxA6hTR9dRlQqRKKibOxdo1AjYvVtc\nIVTF+fPn0bRpUzx+/Bg9evSAtbU15s/vrJmANagsN+GZbnDDT1bx3b4tmnM+eya6Cig5vkzffmaI\ngBMnxIydeXli3KqbW9nH2SxcuBC1a9fGtGnT1BMoq1DU/XvAN2ZYxZWZKe6sd+okprq8eFHphKNv\ngoKA994DvvhCnKxdviy6QJcm4aSlpeH58+cAgBcvXuD48eOK9jCMaRp3mWYV05kzogxaKgVCQ4Fm\nzXQdUamEh4vJSMPCgPnzxaDOamX8rX348CEGDBgAQLR3+eSTT9CzZ081RMtYyfjyGqtYkpLEqcDf\nfwNr1wL9+5f6+pMuf2ZiYkSSOX4c+OYb0fatRg2dhMIqOZ0VEmRkZODPP//E3bt3FYObJBIJ5s2b\np7ZgGCs1ImDXLlGZNmSIKBR4+21dR6WyBw9EFdq+feJS2s8/l8uPwViRlE46/fr1Q926deHg4IAa\n/CcX0ydRUeJU4MkTwMcHaN9e1xGp7OlTMVvn5s3AyJHAzZuiG4826VPvNVZxKX15TSaTITw8XNPx\naAxfXquAsrLE3DarVomSrsmTy37D4zXa+Jl58QJYs0Z8hP79gXnzAFNTje6ySOVtnA7TDp1Vr3Xq\n1AnXrl0r8w79/PxgbW0NqVSKZcuWFbrM5MmTIZVKIZfL882pUdy669atg42NDWQyGWbOnFnmOJme\nO3cOsLcHAgOBkBDgq6/UmnA0LStLzHYtlYqmCOfPA1u26C7hMKY1pCRra2uqVq0aSaVSkslkJJPJ\nyNbWVtnViYgoJyeHLCwsKDY2lrKyskgul1NERES+ZY4ePUru7u5ERBQUFESOjo4lrnv69Gnq3r07\nZWVlERHRo0ePCuxbhY/K9FlSEtGYMUTGxkQHDhDl5WlsV5r4mcnJIdqxg8jMjKhXL6LQULXvotT4\nV4QVRt2/B0r/aXjs2DEA/z8CmEpxuhUcHAxLS0uYmZkBAIYNGwZvb2/Y2NgolvHx8YHHy8k+HB0d\nkZycjMTERMTGxha57i+//IJZs2bBwMAAANCwYUOVY2N6jgjYuxeYNk0057xxA3jnHV1HpTQiwNsb\n+PZbEfaOHUCXLrqOijHtU/rympmZGZKTk+Hj44PDhw/j2bNnigSgrISEBJi+dv3AxMSkwNwORS1z\n//79IteNiorCmTNn0LFjR7i6uuLy5csqxcX03J07YiTk0qXAwYPiulQ5SjinTwNOTqIEetkycWWQ\nEw6rrJROOmvWrMGIESPw+PFjPHz4ECNGjMDatWtV2pmyfZJUPYvKycnB06dPERQUhBUrVig6rLJy\nLjtbJBpHR6B7dzEMv2NHXUeltEuXgB49gLFjgSlTxADP3r31d3ro+fN1HQGrDJS+vPZqPp1XkwZ9\n88036Nixo0qTuBkbGyMuLk7xPC4uDiYmJsUuEx8fDxMTE2RnZxe5romJCQYOHAgAaN++PapUqYIn\nT57A6I2JRBa8Vg/q6uoKV1dXpWNnWnbhgugoYGIijt4tWug6IqVFRIjLaMHBoinnqFHAyyu/eo3L\npRkABAQEICAgQHM7UPbmj0wmo7S0NMXztLQ0kslkKt1Ays7OJnNzc4qNjaXMzMwSCwkCAwMVhQTF\nrbtx40aaN28eERHdunWLTE1NC+xbhY/KdOnpU6Lx44maNiXat0+jhQIlUfVnJjaWyMODqGFDouXL\niV77dWGs3FL3sVPpMx1PT084Ojrmm09n1KhRKiW4atWqYf369XBzc0Nubi4+//xz2NjYYNOmTQCA\ncePG4YMPPoCvry8sLS1Rq1YtbNu2rdh1AWDUqFEYNWoUbG1tYWhoiJ07d6oUF9MDRMD+/cDUqaI5\nZ0QEULeurqNSysOHwOLFoiHCxIlirGo5uuXEmFap1HstNDQU586dAwB07ty5XM2nw4ND9VhsLDBp\nEhAXJ6Ye6NRJ1xEBKPln5tkzMTb1l1+AESNEY85GjbQYIGNaoPXea87Ozjh//jxq165d6NStKSkp\naguGVTLZ2WIo/vLlwPTpohy6HNz8SEsTBXQ//gh8+KFoYt28ua6jYqx8KDHpnD9/HgCQmpqq8WBY\nJRIUJAoFmjQRd9zNzXUdUYmys4HffgO+/16UQP/zD/DaELNyj3uvMW1QumS6sNYy3G6GqezZM3Ep\nbcAA0bPfz0/vE05enpgS2sZGDBPy9gYOHKhYCQcAFi7UdQSsMlA66Rw/frzAa76+vmoNhlVgROJI\n3aqVOGWIiACGD9ffQSsvHTkiWrytXSt6ox0/Xm4nH2VML5R4ee2XX37Bhg0bcOfOnXxT2j5//hzO\nzs4aDY5VEHfvAl5eomBg3z7AxUXXEZXozBnx7zffiMq0vn31Pj8yVi6UWL327NkzPH36FN988w2W\nLVumqGKoU6dOgcGX+oyr13QgJwdYvRpYuhSSJ090HU2p5OQQqlbVdRTawVMbsMKo+9jJ01UzzQgO\nFv1fGjYEfvkFEqlUr7//27dF94CzZ0Xp85gxgKGhrqPSLk46rDA6m0/Hw8MDT58+VTxPSkpSeXAo\nqwRSUsQ8y/36iTLo48cBS0tdR1WkuDiRYJydgTZtxMDOSZPyJ5zc3FzY29ujT58+ugtUC7j3GtMG\npZPO1atXUa9ePcXz+vXrIzQ0VCNBsXKISJR2tW4NZGSIqQdGjNDbGyH//SeGBbVpI6aFvn0bmDUL\neNlaMJ81a9agVatWSjesLa+4XJppg9JJh4iQlJSkeJ6UlITc3FyNBMXKmXv3xJnNnDmiF8yWLUD9\n+rqOqlDPn4vSYGtrkRvDw4EffgBe+3sqn/j4ePj6+mL06NF6fXmQsfJC6d5r06ZNg5OTE4YMGQIi\nwv79+zFnzhxNxsb0XU4OsG6dKO/68kvRO616dV1HVaiMDGDDBjGfjZub8uNRp06dihUrVnDnDcbU\nROmk89lnn8HBwQGnT5+GRCLBoUOH0KpVK03GxvTZ5cuiUKBePSAwEJBKdR1RoXJygO3bge++A9q2\nBU6dAmQy5dY9cuQIGjVqBHt7e822emesElGpeu3p06e4ffs2MjIyFNe3u5STKRC5ek1Nnj8Xk8Xs\n2ye6XSp530bb339enhiLOncuYGwMLFmi+vxvs2fPxu+//45q1aohIyMDKSkpGDRoEHcxZ5WK2n93\nlZ0DYfPmzSSTyahu3brk6upKNWrUoG7duqljegWtUOGjsqIcOkRkYkI0ahTRf/+ptKq2vv+8PCJf\nXyJ7eyIHB6Ljx9UzJU9AQAB9+OGHZd+QHps/X9cRMH2k7t9dlaarDg4ORvPmzeHv74+wsDC8w5OG\nVA5xcf/fK+1//xNdL/VwYPD580DXrsBXX4mahlfTRaur6KyiV69x7zWmDUonnRo1aqBmzZoAgIyM\nDFhbW+PWrVsaC4zpgdxcYM0a0XysTRvg6lVxVNczV68CffoAH38MeHoC168Dgwapt1q7a9eu8PHx\nUd8GGauklC4kMDU1xdOnT9G/f3/06NED9erVg5mZmQZDYzoVGioKBerUEacQLVvqOqICoqOBefOA\n06fFGJsDB/S2eI4x9pJShQREhLi4ODRr1gwAEBAQgJSUFPTq1QuG5aRXCBcSKCk1VRzJd+0Sk6t9\n9plaThnU+f0nJIg5bQ4cAKZMEdXadeqoZdOVGrfBYYXR+syhr3zwwQcIDw8HALi6uqotAKZHDh8W\n3aC7dRMdBRo00HVE+Tx5IsbZ/PYb8PnnwK1benlriTFWDKXu6UgkEjg4OCA4OLjMO/Tz84O1tTWk\nUimWLVtW6DKTJ0+GVCqFXC5HWFiY0uuuXLkSVapUydc5gSkhIUHcBJk2Ddi2TQxs0aOEk5oKLFok\nrvClpADXromTME446sW915hWKFvmZmVlRVWqVKEWLVqQTCYjmUxGtra2KpXK5eTkkIWFBcXGxlJW\nVhbJ5XKKiIjIt8zRo0fJ3d2diIiCgoLI0dFRqXXv3btHbm5uZGZmRk+ePCmwbxU+auWRk0O0bh1R\ngwZEc+cSpadrbFel+f4zMojWrCFq0oRo+HCiqCgNBMYYK5a6j51KX147fvx4ma/rBQcHw9LSUlGA\nMGzYMHh7e8PmtXl/fXx84OHhAQBwdHREcnIyEhMTERsbW+y6X331FZYvX45+/fqVKcZK48oVYNw4\ncef9zBm9mns5Nxf4/XfRgFImEzNay+W6jooxpg4lXl779NNPAQCHDh2CmZlZgYcqEhISYGpqqnhu\nYmKChIQEpZa5f/9+ket6e3vDxMQEdnZ2KsVTKb14AcyYAfTsKarTAgL0JuEQAX/+CdjaAlu3iiFB\nR45wwmGsIinxTCckJAT379/H1q1b8dlnnxV4v74K3YSVHVynyhlVeno6lixZghMnTpS4/oLXere7\nurpWvoIIX18xWYyzs2iv3KiRriMCIJLNyZPA7NmiV9rKlUCvXno7KwJjFVpAQIBGew2WmHTGjx+P\n999/HzExMXBwcMj3nkQiQUxMjNI7MzY2RlxcnOJ5XFwcTExMil0mPj4eJiYmyM7OLnTdO3fu4O7d\nu5C//HM4Pj5eUfTQ6I2D6oLKOmHI/fuirjg0FNi8WQzT1xMXL4oxNvHxogx68GCgitJDlhlj6vbm\nH+QL1d2qQtmbP+PGjSvzDaTs7GwyNzen2NhYyszMLLGQIDAwUFFIoMy6RMSFBK/LySH6+WdRKDBn\nDlFams5CefP7v36dqF8/0cpt82airCwdBcYUuPcaK4y6j51aPxL7+vqSlZUVWVhY0JIlS4iIaOPG\njbRx40bFMpMmTSILCwuys7OjkJCQYtd9U4sWLTjpEBFdvUrk6Ejk7EwUHq7raBTff0wM0aefEjVs\nSLRypUYL5piKKtuvCFOOuo+dKk1tUJ5Vmo4EL16IyWO2bROTq33+uV5cr5JIJJg0ibBnD/DFF6Ip\n59tv6zoq9jruSMAKo7OOBKwc8PMDJk4EnJxE18vGjXUdEZ4+FQM5AcDQELh5E2jYULcxMcZ0R+kz\nnby8POzatQuxsbGYN28e7t27h8TERHTo0EHTMapFhT7TSUwUhQKXLgEbNkDSq5euIypUhf3+Kwg+\n02GFUfexU+nrLhMnTkRgYCB2794NAKhduzYmTpyotkBYKeTlAZs2AXZ2gLm5OLtxcwMgDvC6eGRm\nEtavJzRtShg8mHDzpng9PT0djo6OaNOmDVq1aoVZs2bp+MtjjOmC0pfXLl68iLCwMNjb2wMQ43Oy\ns7M1FhgrQXi4GNwpkYje/jKZTsPJzQV27xb9u6ysRO/Q1yvsa9SoAX9/f7z11lvIycmBi4sLzp07\nBxcXF90FzfLh3mtMG5ROOoaGhsjNzVU8f/z4MarowQ3qSictTQxo+fVX8e/YsTotFCACfHzETJ1v\nvy3qF4qa5+2tt94CAGRlZSE3N1elgcVM8yrrMDamXUofrb744gsMGDAAjx49wuzZs+Hs7MyXSLTt\n779Fj5jYWHEpbfx4nSYcf3+gUycx/c7Spf8/XXRR8vLy0KZNGzRu3BjdunVDq1attBcsY0wvqFQy\nHRkZiVOnTgEA3nvvvXJ10CjXhQQPHwJTpwKBgcCGDYC7e7GLa/qzXr4sWtbExIjq7GHDVMt9z549\ng5ubG5YuXVr5WhExVs6o+3jC43T0WV6emLFszhzA01NcdH95iao4mvqskZHA3Lki982dK4YAGRiU\nblvff/89atasienTp6s3SMaYWml9nE7t2rWLbNQpkUiQkpKitmDYa27cEFMP5OSIbpg67KB97564\n3n/kCDB9OrBzp1K5L5///vsP1apVQ926dZGeno4TJ05gPt+5ZqzSKfGiSGpqKp4/f17ogxOOBqSn\nizMbV1fgk0/EjRIdJZxHj8TwH3t74N13gdu3ga+/Vj3hAMCDBw/w3nvvoU2bNnB0dESfPn3w/vvv\nqz9oVmpcSMC0QaXLa1evXsWZM2cgkUjQuXNnRWfn8qBcXF47cQKYMAFo2xZYvVoc6UuhrJ/12TPg\nxx/F7aMRI8T9Gz1obsA0jAeHssLobHDomjVr8Mknn+Dx48d4+PAhRowYgbVr16otkErt0SNxdB8z\nBlizBvjjj1InnLJITwdWrACkUjHVQGioCIcTDmNMXZQ+07G1tUVQUBBq1aoFAHjx4gU6duyI69ev\nazRAddHLM528PDGwZdYswMNDXN94+f2WhaqfNTtbzNT5/feAo6P4txwVJjI14TMdVhidNvx8fTAo\nDwwto8hIUSiQmQkcPw60aaP1EPLygH37xDgbMzPg0CGgfXuth8EYq0SUTjqenp5wdHTEwIEDQUT4\n66+/MGrUKE3GplGZmZmoXr269neckQEsWYKMn39GjYULxT2cqlW1GgKRmLl6zhygenXRvu2997Qa\nAmOsklI66Xz11VdwdXXFuXPnAADbt29X9GErb44cOYKOHTtqP+mcOiWSjJ0d4r29cTcjA921nHDO\nnhWFAUlJYrqdfv3EZRXGuIKdaUOJSadPnz6FXtM7ceIEJBIJfHx8NBacJjx48AApKSlo0KCB9nb6\n+LEY4BIQAKxfD/TpA0sAvmvXwtnZGTVr1tR4CGFh4swmMhJYuFBUY2s53zE9xyXTTBtKTDpBQUEw\nMTHB8OHD4ejoqHidiIocNKrPtm3bhqlTp2pnZ0TA9u3AN9+I6rQbN4DatRVv9+7dG3v27NHoZcrb\nt8U9m3/+EUnnr7/EZGqMMaYLJVYDPHjwAEuWLEF4eDi+/PJLnDhxAg0aNICrqyu6FtfdUU89evQI\nNWvWRG5uLnbv3o1FixZhx44dmDRpEmJiYlTeXnh4OBYtWoSgoCAAwMiRI8Ubt24B3bqJwS7HjgEr\nV+ZLOABgYWGhseq/+HhRge3sLMaWRkcDXl6ccBhjulVi0qlWrRrc3d2xc+dOBAUFwdLSEl27dsX6\n9etLtUM/Pz9YW1tDKpVi2bJlhS4zefJkSKVSyOVyhIWFlbjujBkzYGNjA7lcjoEDB+LZs2dF7j8j\nIwOAGOg6aNAgmJubIy8vD4MHD0bTpk1V/jxpaWkwMDAAESEyMhIN69cX1ymcnYGBA4GgIDHYswg5\nOUD3jBMAABUMSURBVDkq77M4//0n/pXLASMjkftmz1ZLJTZjjJUdKSE9PZ0OHDhAH330EbVr146+\n++47io+PV2bVfHJycsjCwoJiY2MpKyuL5HI5RURE5Fvm6NGj5O7uTkREQUFB5OjoWOK6x48fp9zc\nXCIimjlzJs2cObPAvl991FGjRuV73cvLi2JiYgqNd+rUqZSWlkZBQUF04sQJ2rhxY6HLDRkyhIiI\ntn79NR16910CoPPH/ftK/S9hjLFiKZkmlFbimc6nn36KTp06ISwsDPPmzcOlS5cwd+5cGBsbq5zg\ngoODYWlpCTMzMxgYGGDYsGHw9vbOt4yPjw88PDwAAI6OjkhOTkZiYmKx6/bo0UMxbsjR0RHx8fFF\nxlD15d3zS5cu4b///kN4eDhatGiBs2fP5lsuMjISiYmJSExMxP79+9G9e3dkZmbi3r17AIDY2FjF\nsm9VqQJ4eiLo55/htHgxAHHPKyIiAsOHD0dMTAwePHiAAQMGID4+Pt/0zqNHjy7T9NDp6YSffiI0\nakT45BNCdLR4vRQnbayS40ICpg0lJp1du3YhKioKa9asQadOnVCnTh3F4+2331ZpZwkJCTA1NVU8\nNzExQUJCglLL3L9/v8R1AWDr1q344IMPiozh1eyVfn5+OHjwIJydnXHo0KECy12/fh0uLi548OAB\n0tLSAIiO2w8fPkRCQgK6d+8uCgV27kSzw4ex/9EjhFhZofGrezpvbKNJkyYFetUREerUqVNkrMXJ\nyRGzHlhZiaK4kyeB//0PsLAA4uLi0K1bN7Ru3RoymYzbFTGlLFyo6whYZVBi9VpeXp7adqZstRuV\nsuXC4sWLYWhoiI8//rjQ9xcsWICIiAjMnDkT7u7uRU4g5ufnh1q1aiEmJgaJiYl45513AADJyclo\n0qQJjI2N8duCBUD37vg1OhquP/4I4/few5C//ipyG4W5du1avopAZeTlAX/+CXz7LdC0qego4OSU\nfxkDAwOsWrUKbdq0QWpqKhwcHNCjRw/Y2NiotC/GWOUTEBCAgIAAjW1fpTY4ZWVsbIy4uDjF87i4\nOJiYmBS7THx8PExMTJCdnV3sutu3b4evr69iZtPCLFiwAM+ePcO+ffuKTDjnz5/H9evXMWPGDNy/\nfx/nzp3DgAED4O/vjypVqsC0USPg+++RuWIFsHAhTFu2RGpuLs6cOYMZM2YotvP6Ns6fPw8XFxfc\nunUL/v7+GDFiBADg1KlT+PLLL5X67ojEbNVz5ojna9cCPXsWPrCzSZMmaNKkCQBxdmZjY4P79+9z\n0mGMlcjV1TXf8XGhuk+B1XqHqATZ2dlkbm5OsbGxlJmZWWIhQWBgoKKQoLh1jx07Rq1ataLHjx8X\nue/XP+qZM2fo33//Vf0DnDlDZG1N1KcPUTHrK/O1hoeH05UrV5Ta7fnzRF26ELVsSbR/P1FentIR\nU2xsLDVr1oyeP3+u/EqsUtLu0YCVF+pOE1r/MfP19SUrKyuysLCgJUuWEBHRxo0b81WGTZo0iSws\nLMjOzo5CQkKKXZeIyNLSkpo1a0Zt2rShNm3a0IQJEwrst0xf3JMnRJ9/TmRsTPTnnyUe9dX1P+nq\nVZHfmjUj+u03ouxs1dZ//vw5OTg40KFDh9QSD6vYOOmwwqg76ag0iVt5Vqr23ETA7t2ihc1HH4lm\nZUoUT5S1FfidO6KLwKlTopnB+PFAjRqqbSM7Oxsffvgh3N3dlb6Exyq3BQu4go0VpO6pDTjpFCU6\nWjTnfPwY2LwZ6NBBc/t66f59MZfN/v3AlCliqujSFLcRETw8PGBkZIRVq1apvgHGGHtJZzOHVhpZ\nWeKMpmNHwM0NuHxZpYRTGklJwMyZgK2t6JRz6xYwd27pEg4giiH+97//wd/fH/b29rC3t4efn596\ng2aMsVLQavWa3jt3TkysZmYmko2ZmUZ3l5oqpoNevVp0zLl6FXijmK9UXFxc1Frqzhhj6sJJBwCe\nPhU3T44cEVlg0CCNTjKTmSmu2C1ZAri6AhcuAFKpxnbHGGN6o3JfXiMC9uwBWrcGqlUDIiJEwYCG\nEk5uLrBjB2BtDfj5iebTe/ZwwmGMVR6V90wnJgaYOFHcvT94UNzD0RAi4NAh0UXAyAj4/XfAxUVj\nu2OsVLh6jWlDpapem9OzJ9wmTkTnyEjgxx+Br78Gpk4FDAzUvq9XX+vJk2JqgawscTnN3Z2nh2b6\nSSIRfyAx9joumS4liUQCApBoaAhDW1vU378faNFCY/sKCiLMng3cuyfKoIcMAapU7ouZTM9x0mGF\n4ZLpMmqSlYVVRkYaSzg3boh/Bw0Chg4Vt4mGDeOEwxhjQCU709GmtDRCzZpa3SVjZcJnOqwwfKZT\nBq+m1fzWza1ME6e9/njwgODlRahfnzBvHuHZM/E6JxzGGCuoUiUdAJhtYYEeX3xR5u0kJ4sCgVfV\n1pGRYhKst98GRo0ahcaNG8PW1lYNETOmHfPn6zoCVhlUqqQz180NvdasQZfevUu9jbQ0YOlSMbbm\n4UMgLAxYtQpo1Oj/l/H09OS2M6zc4XJppg2VapzO92VIBFlZwK+/AosWAc7OwNmzYpBnYTp37oy7\nd++Wel+MMVZRVaqkUxq5uaJrwPz54uzm8GHAwUHXUTHGWPnESacIRCLBzJkjuj1v3Qp07arrqBhj\nrHzjpFOIgABRJPD8uZjloE8f7iLAGGPqUKkKCUoSEiKm0Pn8c2DSJODKFaBvX044rHLgQgKmDVpP\nOn5+frC2toZUKsWyZcsKXWby5MmQSqWQy+UICwsrcd2kpCT06NEDVlZW6NmzJ5KTk1WK6eZNYPBg\nkWD69xflz5988n/t3W1QVPUXB/AvIAWpMxokKAux8SBPy7LIxCiQJmMgBhkmI44OjvQg1Rspgslp\nhqYgLHUSnaKaFBgdpuwBnRGdZlBKTSJIDdMCiRVQYFAUn8B4OL3gz5WFu8su7L27++98Xrm797f3\nnHMve7x7994f4OAwuRxTU1OxaNEiNDQ0wNPTE3v37p3cGzEmo3fftXQE7D+BZDQwMEA+Pj7U3NxM\n//zzD6nVarpw4YLOMocPH6bly5cTEVF1dTVFRkZOODYrK4u2bt1KREQFBQWUnZ09bt1iqV6+TLRx\nI5GrK1FBAdHdu2ZN12odP37c0iFYDa7FA8BxS4dgNXi/eMDcbULWI52amhr4+vrC29sbjo6OWLNm\nDQ4ePKizzKFDh5CWlgYAiIyMxM2bN9HR0WFw7OgxaWlpKC8vNxhHV9fwzaU1GsDdHWhsHJ4u+pFH\nJEjaClVVVVk6BKvBtRitytIBWA3eL6Qja9O5cuUKPD09hccKhQJXrlwxapmrV6/qHdvZ2Qk3NzcA\ngJubGzo7O0XX39Mz/NPngABgYGD45px5ecCsWWZLkTHGmAGy/nrN2JtukhE3lyMi0fezs7PTux4/\nv+H5bGprJbvJNGOMMQNkbToeHh5obW0VHre2tkKhUBhcpq2tDQqFAv39/eOe9/DwADB8dNPR0QF3\nd3e0t7djzuh70vyPj48PmprsUFoKlJaaOzPb8y6fNRZwLR6ws+NajOD9YpiPj49Z30/WphMREYHG\nxkZotVrMmzcPX331FcrKynSWSUpKwu7du7FmzRpUV1dj1qxZcHNzg4uLi96xSUlJKCkpQXZ2NkpK\nSrBy5cpx67506ZIsOTLGGNNP1qYzbdo07N69G3FxcRgcHER6ejoCAwPx2WefAQBeeeUVJCQkoKKi\nAr6+vpg+fbrwc2N9YwEgJycHKSkp+PLLL+Ht7Y2vv/5azrQYY4wZ6T8ziRtjjDHLs9k7EljjRaaW\nIkUtDhw4gODgYDg4OOC3336TPAdzkaIWWVlZCAwMhFqtRnJyMnp6eiTPwxykqMU777wDtVqNsLAw\nxMbG6pxntVZS1GHE9u3bYW9vj+7ubsniNycpapGbmwuFQgGNRgONRjPxtC5mvepHJpa8yNTaSFWL\nixcv0l9//UVLliyhuro6eZOaJKlq8cMPP9Dg4CAREWVnZ/+n94tbt24J4wsLCyk9PV2mjCZHqjoQ\nEbW0tFBcXBx5e3vT9evX5UtqkqSqRW5uLm3fvt3oOGzySMdaLjK1BlLVIiAgAP7+/rLnMxVS1WLZ\nsmWwt7cXxrS1tcmb2CRIVYuZM2cK4+/cuQNXV1f5kpoEqeoAAJmZmfjwww9lzWcqpKwFmXCWxiab\njqUvMrUmUtXCFslRiz179iAhIUGC6M1Lylps2bIFXl5eKCkpQU5OjoRZTJ1UdTh48CAUCgVCQ0Ml\nzsB8pNwndu3aBbVajfT09AlPS9hk07H0RabWxJy1sHVS1yIvLw8PPfQQ1q5dO6nxcpKyFnl5eWhp\nacGGDRuwefNmk8fLSYo69Pb2Ij8/X+c6Hlv4+5Jqn8jIyEBzczPOnj2LuXPn4o033jC4vE3Op2PJ\ni0ytjTlrITbWlkhZi+LiYlRUVKCyslLCDMxHjv1i7dq1Vn/UJ0UdmpqaoNVqoVarheUXLFiAmpoa\nq/7MkGqfGJ3ziy++iMTERMOBTO3UlGX09/fTE088Qc3NzXT//v0JT4idPn1aOCFmaGxWVhYVFBQQ\nEdEHH3xgEyeMparFiCVLllBtba08yUyRVLU4cuQIBQUFUVdXl7wJTYFUtWhoaBDGFxYW0rp162TK\naHKk/vsgIpv5IYFUtbh69aowfseOHZSammowDptsOkREFRUV5O/vTz4+PpSfn09EREVFRVRUVCQs\n89prr5GPjw+Fhobq/AJLbCwR0fXr1yk2Npb8/Pxo2bJldOPGDfkSmgIpavHdd9+RQqEgJycncnNz\no/j4ePkSmgIpauHr60teXl4UFhZGYWFhlJGRIV9CUyBFLVatWkUhISGkVqspOTmZOjs75UtokqSo\nw2hKpdImmg6RNLVYv349qVQqCg0Npeeee446OjoMxsAXhzLGGJONTf6QgDHGmG3ipsMYY0w23HQY\nY4zJhpsOY4wx2XDTYYwxJhtuOowxxmTDTYcxxphsuOkwxhiTDTcdppe9vT3Wr18vPB4YGMBjjz02\n4b2VZsyYYdJ6CgsLERQUpLOuyerp6cGnn36q81xUVNSU39cQc8YvRiwnKUhdpxFy5cOsE9+RgOk1\nc+ZM+Pn54eeff4aTkxOOHDmCt99+G56enjh06JDBcbdv3zZ6PYGBgaisrMS8efN0nh/ZNU2527dW\nq0ViYiLq6+uNHjNV+uI3F0vkJKXJ5DOZfYFZJz7SYQYlJCTg8OHDAICysjKkpqYKHwA7duyASqWC\nSqXCzp07Rcfv27cPkZGR0Gg02LRpE4aGhnRe37RpE/7++2/Ex8fj448/xuXLlzF//nykpaVBpVKh\ntbUVzz//PCIiIhASEoIvvvhCGFtaWipMnTwy8VROTg6ampqg0WiQnZ0N4MGRl1i8Wq0WgYGBePnl\nlxESEoK4uDj09fWJ5iI2fmz8Y5kSu75ajc7prbfe0lt3Q7lMtB1G18nYmnz00UfYtWsXAGDz5s2I\njY0FABw7dgzr1q0DAKxcuXJc/mLbSCw+rVarsy/YwuR5zAjmupEc+/8zY8YM+v333+mFF16gvr4+\nCgsLo6qqKnr22Weprq6OVCoV3bt3j+7cuUPBwcF09uxZYRwR0YULFygxMZEGBgaIiCgjI4NKS0vH\nrWf0XXqbm5vJ3t6efvnlF+H17u5uIiK6d+8ehYSEUHd3N50/f578/f2FcSPLaLVaCgkJGZeHWLxn\nzpyh5uZmmjZtGp07d46IiFJSUmjfvn3jYqytrdWbr6G7DBsbu6Fajc5JLI4zZ84ItRPLxdjtMLLd\njK1JdXU1rV69moiIoqOjKTIykvr7+yk3N5c+//xzvfmP3Ub64hPbF8QMDAzQ/v376b333qPi4mJ6\n9dVXqampyeAYZjk2OZ8Ok49KpYJWq0VZWRlWrFghPH/y5EkkJyfD2dkZAJCcnIyffvpJmGMEACor\nK1FXV4eIiAgAw5Nfubu7T7jOxx9/HE8++aTweOfOncLU4W1tbWhoaEBNTQ1SUlLw6KOPAgBmz54N\nQP8EVGLxnjhxAklJSVAqlcIMkAsWLIBWqzVq/Nh8xRgb+/79+/XWanRO+vIICwsDANFcbt68afJ2\nMKYm4eHhqKurw+3bt+Hk5ISIiAjU1tbi5MmTwhHQ2PwbGxvHzTmjbz956qmnxu0LYs6dO4dVq1bh\n22+/xf3797F69WrMnTvX4BhmOdx02ISSkpLw5ptv4scff8S1a9eE50d/GJKeGVjT0tKQn59v0vqm\nT58u/LuqqgqVlZWorq6Gk5MTnn76afT19cHOzs7kGQ71xfvwww8Lzzs4OKC3t3fc2LHr05fvaKbG\nbkytJopDLBciMnk7GFMTR0dHKJVKFBcXY9GiRQgNDcWxY8dw6dIlBAQE6M1fjFh8Wq1WZ1/QJzw8\nHABw+vRpZGZmQqlUjlsmMzMTeXl5QrNmlsPndNiENm7ciNzcXAQHBwsfeDExMSgvL0dvby/u3r2L\n8vJyxMTE6IxbunQpvvnmG3R1dQEAuru70dLSYtK6b926hdmzZ8PJyQl//vknqqurYWdnh6VLl+LA\ngQPo7u4W3hvQ/yMGffEa27iMyXeysd+4cQOxsbF6azU6p+joaJPjMPTeUxUTE4Nt27Zh8eLFiImJ\nQVFRkdAExPIfm4+p8cXGxqK9vV3nuV9//RXXrl3D+fPnoVQqceLECZ3XL168iI6ODnR0dJglZzY1\nfKTD9Br5H7SHhwdef/114Tk7OztoNBps2LBB+OrjpZdeEr5qGhkXFBSE999/H8888wyGhobg6OiI\nTz75BF5eXqLrEXscHx+PoqIiBAUFYf78+Vi4cKHw3lu2bMHixYvh4OCA8PBw7NmzBy4uLoiKioJK\npUJCQgK2bt1qMF6tVmtw/SOMyXcsU2PXV6vROS1fvlxvHPpqGRgYaPJ2MKYmwHDTyc/Px8KFC+Hs\n7AxnZ2ehCerLX2wbicU3Z84cnfUODQ2hqalJ+FpyxNGjR+Hm5oaoqCh8//33cHV11Xm9vr4e0dHR\naG9vFz0KYvLin0wzxmzCH3/8gb1792Lbtm1Gjzl69CgGBwdRX18Pf39/JCcnSxghMwZ/vcYYswnB\nwcEmNZxTp06hvr4eK1asgIuLC06dOiVhdMxYfKTDGGNMNnykwxhjTDbcdBhjjMmGmw5jjDHZcNNh\njDEmG246jDHGZMNNhzHGmGy46TDGGJMNNx3GGGOy4abDGGNMNv8CJDgja1SpmTYAAAAASUVORK5C\nYII=\n", "text": [ "" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3-3 Page Number 593" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Number of Stages by Analytical Equation\n", "\n", "import numpy as np\n", "\n", "#Variable Declaration\n", "VN1 = 30. #Inlet Gas Flow Rate, kg mol/hr\n", "L0 = 90. #Inlet Liquid Flow Rate, kg mol/hr\n", "xA0 = 0.0 #Mole fraction of Acetone in entering Water\n", "yAN1 = 0.01 #Mole fraction of Acetone in entering Air\n", "AAAds = 90. #Percent of acetone absorbed\n", "m = 2.53\n", "\n", "\n", "#Calculations\n", " # moles of acetone entering\n", "AVi = yAN1*VN1\n", "Ai = (1-yAN1)*VN1\n", "AVo = (1-AAAds/100)*AVi\n", "ALo = AAAds*AVi/100\n", "V1 = AVo + Ai \n", "yA1 = AVo/Ai\n", "LN = L0 + ALo\n", "xAN = ALo/LN\n", "\n", "A1 = L0/(m*V1)\n", "AN = LN/(m*VN1)\n", "Agm = sqrt(A1*AN)\n", "\n", "N = log((yAN1-m*xA0)/(yA1-m*xA0)*(1-1/Agm)+1/Agm)/log(Agm)\n", "\n", "#Results\n", "print \"Geometric mean Absorption Factor:\", round(Agm,3)\n", "print \"Number of stages required for separation:\", round(N,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Geometric mean Absorption Factor: 1.193\n", "Number of stages required for separation: 5.05\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4-1 Page Number 597" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Number of Stages by Analytical Equation\n", "\n", "import numpy as np\n", "from scipy.interpolate import interp1d\n", "from scipy.optimize import root\n", "\n", "#Variable Declaration\n", "yAG = 0.380 #Inlet Gas Flow Rate, kg mol/hr\n", "xAL = 0.100 #Inlet Liquid Flow Rate, kg mol/hr\n", "ky = 1.465e-3 #Gas phase mass transfer coefficient, kmol/(m2.s)\n", "kx = 1.967e-3 #Gas phase mass transfer coefficient, kmol/(m2.s)\n", "xA = np.array([0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35])\n", "yA = np.array([0.00,0.022,0.052,0.087,0.131,0.187,0.265,0.385])\n", "\n", "#Calculations\n", "f = interp1d(xA, yA, kind='cubic')\n", "y = f(xA)\n", "plot(xA,yA,'ro-')\n", "#(1-xA)iM = 1., (1-yA)iM = 1.\n", "#Slope of operating line -(kxd/(1-xA)iM )/(kyd/(1-yA)iM)\n", "m = -kx/ky\n", "c = yAG - m*xAL\n", "plot(xAL, yAG,'bo')\n", "xlabel('$mol\\ fraction\\ in\\ liquid\\ phase,\\ x_A$')\n", "ylabel('$mol\\ fraction\\ in\\ gas\\ phase,\\ y_A$')\n", "ff = lambda x: f(x) - (m*x+c)\n", "def lm(a,b):\n", " return ((1-a)-(1-b))/log((1-a)/(1-b))\n", "\n", "def flux(k,a,b):\n", " return k*(a-b)/lm(a,b)\n", "\n", "n = 4\n", "er = 1.0\n", "i=0\n", "while er>= 0.065:\n", " i+=1\n", " sol = root(ff, 0.002)\n", " xAi = sol.x[0]\n", " yAi = f(xAi)\n", " plot(xAi, yAi,'o-',label=str(i))\n", " plot([xAL,xAi], [yAG, yAi], lw=0.3)\n", " ylm = lm(yAi,yAG)\n", " xlm = lm(xAi,xAL)\n", " mc = -kx/xlm/(ky/ylm)\n", " NAy = flux(ky,yAG,yAi)\n", " NAx = flux(kx,xAi,xAL)\n", " #er = abs((NAx-NAy)/NAx)\n", " er = abs((m-mc)/m)\n", " m = (n*m + mc)/(n+1)\n", "legend(loc='lower right') \n", "#Results\n", "print \"Liquid phase Interphase concentration:\", round(xAi,3)\n", "print \"Gas phase Interphase concentration:\", round(yAi,3)\n", "print 'Flux in Gas phase: %4.2e'%(NAy)\n", "print 'Flux in Liquid phase: %4.2e'%(NAx)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Liquid phase Interphase concentration: 0.257\n", "Gas phase Interphase concentration: 0.196\n", "Flux in Gas phase: 3.80e-04\n", "Flux in Liquid phase: 3.78e-04\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEUCAYAAAAMdcB4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtcVHX++PHXCMhNFAS8ABoKimhqJmiaFzQRlSQ1Ne9d\nzNx2U/vtftu2q3Zx12rbLbSLmZZmknfRUERU8C5qeUUN8YYoCgIiCAMznN8fx1jJsWZkmBng/Xw8\neiycOedz3mep857PXaMoioIQQghRRfWsHYAQQojaQRKKEEIIs5CEIoQQwiwkoQghhDALSShCCCHM\nQhKKEEIIs7B4QomPj6ddu3a0adOGDz744J7nHThwAHt7e1avXm3ytUIIISxPY8l5KHq9nqCgIBIT\nE/H19SU0NJSYmBiCg4PvOi88PBwXFxeeffZZnnzySaOvFUIIYR0WraGkpKQQGBiIv78/Dg4OjBkz\nhtjY2LvOmzt3LiNHjsTb29vka4UQQliHRRNKZmYmLVq0qPjdz8+PzMzMu86JjY3lxRdfBECj0Rh9\nrRBCCOuxaEL5NTn8npdffpk5c+ag0WhQFIVfW+SMuVYIIYT12FvyZr6+vmRkZFT8npGRgZ+fX6Vz\nDh06xJgxYwDIyclh06ZNODg4GHUtQGBgIOnp6dX0BEIIUTsFBARw5syZqhWiWFBZWZnSunVr5dy5\nc4pWq1U6d+6spKam3vP8Z555Rlm9erVJ11r4kcxu5syZ1g7hvtXk2BVF4rc2id+6zPHutGgNxd7e\nnnnz5hEREYFer2fy5MkEBwczf/58AKZOnWrytUIIIWyDRRMKwODBgxk8eHClY/dKJN98880fXiuE\nEMI2yEx5GxMWFmbtEO5bTY4dJH5rk/hrPotObLSEX0eHCSGE+GM74uJIiI5mdkJCld+dklCEEKKO\n2hEXx+YZM5idno4GqvzulCYvIYSooxKio5ltxmkWFu+UF7VPXNwOoqMT0GrtcXTUMX36QCIj+1g7\nLCHEH7DXas1bnllLE3VOXNwOZszYTHr67Ipj6elvAEhSEcLG6RwczFqeNHmJKomOTqiUTADS02cz\nd+4WK0UkhDDWQFdX3nB1NVt5klBElWi1/6vkTnrkTR7vPBeAkhI7a4UkhDBGQgJ9Dh0iYsEC3oqI\nMEuRklBElTg66ip+XrLvfQpd4K9dZuBqb962WSGEGWVnw7PPwuLF9Bk7lvfi481SrCQUUSXTpw8k\nIOCNit+T9k5jg7OeXs7Z/Byz0YqRCSEMUhSYPBkmTID+/c1atMxDEVUWF7eDuXO3UFJih5OTnmnT\nwuk3MJR/v/dPOly1Y0T062gc61s7TCEEwBdfwNdfw969UP9//12a490pCUVUq/9u/RbX+ccY+qfx\nNO//sLXDEaJuS02FPn1g924ICqr0kSQUAySh2J6kSwfY9d9YHqvfjB7vvwh20mEvhMVptdC9O/zl\nLzBlyl0fS0IxQBKKbcouyuaj9Yvp9mMBEa9Mwu2hQGuHJETd8te/wvnzsHo1GNgBVxKKAZJQbJe+\nXM+/f1qK85IMwn38Cf77OKgn40KEqHYJCWpH/OHD4Olp8BRJKAZIQrF9G85s58DuY/TZUUyf18ZS\nP7CltUMSovbKzoaHHoLvvvvdUV2SUAyQhFIzpF1P49tTWwn64RZhDwbS8oWhBqvhQogqUBR44gkI\nDoYPPvjdUyWhGCAJpeYoLC3kv0dW43ZYS4/DxYS+8RT1fJpZOywhao97DBE2RBKKAZJQahZFUVh2\ncj0ZeXm0XVZE795BeI8ZYO2whKj5fmeIsCHmeHdavEc0Pj6edu3a0aZNGz4wUAWLjY2lc+fOdOnS\nha5du7Jt27aKz/z9/enUqRNdunShW7dulgxbVBONRsP49k/Q/4H2nHjBmx+vZXL0lQWQm2vt0ISo\nubRaGDcO/vUvo5KJuVi0hqLX6wkKCiIxMRFfX19CQ0OJiYkhODi44pyioiJcb69+eezYMYYPH86Z\nM2cAaNWqFYcOHaJx48b3vIfUUGquyzcvs+h0Mj7FGnyWF9IrMogGg3tbOywhap4/GCJsSI2roaSk\npBAYGIi/vz8ODg6MGTOG2NjYSue43rGUcmFhIV5eXpU+l2RRe/m4+fD3Lk+ib6iQ/ucmrD+WyZlZ\ni+HmTWuHJkTNkZAAK1fCggUWH+hi0YSSmZlJixYtKn738/MjMzPzrvPWrVtHcHAwgwcPJjo6uuK4\nRqNhwIABhISEsGDBAovELCyrvl19pnQeS5v6zlyJ8ubQo05se2MNpTv3Wzs0IWzfHasI32u+SXWy\naELRGJkthw0bxsmTJ9mwYQMTJ06sOL57925+/vlnNm3axGeffcbOnTurK1RhZQMDwxns2ZzMpk7k\nvdSI2OSrXPpwGRQXWzs0IWxTNa4ibCyLbgHs6+tLRkZGxe8ZGRn4+fnd8/zevXuj0+m4fv06np6e\nNG/eHABvb2+GDx9OSkoKvXvf3cY+a9asip/DwsIICwsz2zMIy2nv3R4fNx+Wpa6n/vhADhwrJ+PN\ntXQfF0y9rl2sHZ4QtuXLLyEzE1atMur0pKQkkpKSzBqCRTvldTodQUFBbN26FR8fH7p163ZXp3x6\nejqtW7dGo9Hw008/MWrUKNLT07l16xZ6vR43NzeKiooYOHAgM2fOZODAgZUfSDrla51ypZzVqWvI\ncWpNUEkaeSs96Oudi9eUEX84tl6IOsHEIcKGmOPdadEair29PfPmzSMiIgK9Xs/kyZMJDg5m/vz5\nAEydOpXVq1ezZMkSHBwcaNCgAT/88AMAWVlZjBgxAlAT0/jx4+9KJqJ2qqepx6gOI9l9cTepOm+a\nPAc793gRMGsVncZ3hg4drB2iENZjpSHChsjERlGjnM8/T+KFvdg17kLbaz+Tva45AwJyaDBhGNhb\n9PuRELbhPoYIGyIz5Q2QhFL7FZcVs/LEKjRePWijHOPCFl8ezjhDm3Gh0KaNtcMTwnKMWEXYWJJQ\nDJCEUjcoisLGtI0UOjTBsT54nb9MYYIH/TvkUn9klCyLL2o/I1cRNpYkFAMkodQth7MOczovg5JG\nnelWupufNz1EnxuH8BvbGx54wNrhCVE9TFhF2FiSUAyQhFL3XCu6xqa0eBo0fwy/8tMUptpjv7uc\nXg8VYTd0iCyLL2qfL76AhQthzx6zjXSUhGKAJJS6SVeuY1XqKho17kKxBjoWHuRg/KOE63fi9dQA\nuD2HSYgaLzUV+vaFXbvMOqpLEooBklDqtu3ntlOqsSfLMZDemn2kHgyi6dFMQkJAMzDc2uEJUTVa\nLXTvDn/5C0yZYtaiJaEYIAlF/HL9F36+chjnZv1oWn4Bl6uXSN3alcj622kwegj8ZsFRIWqMv/0N\nzp2r8hBhQyShGCAJRQDc1N5kzck1BLYI50qZjkeVnezZ3Z/2538iOLSB2mQgRE1ixiHChkhCMUAS\niviVoijEno6leaPWnNY0obd9KjnnHMjc04IhDXaqw4sbNbJ2mEL8MTMPETZEEooBklDEb+2/tJ/8\nkhvoPLriRS4+t/axa8dwelzfin9oE+jRw9ohCnFv1TBE2BBJKAZIQhGGXCq4RNL5JB70f5wzxSX0\nqbeXX063o+hnO8LdD1BvxDC4Y3M3IWxGNQwRNkQSigGSUMS9aHVaVqauJLRFX/ZrHejrmEl5/kX2\n7IgkvGg9Tbq3gq5drR2mEP9TTUOEDZGEYoAkFPFHNp/ZjLuTO9edA2lcT4u/divHjkXgdOYavdyP\noxkxHBwdrR2mqOuqcYiwIZJQDJCEIoxx/Npx0q6n0bZFOKm3btHP/ii5OU6k7OpGlH4tDR9pDx07\nWjtMUZdV4xBhQyShGCAJRRgrtziX9afXE9F2GFsKSujvWohd4T4OHBhJi+xUujRMh+HDZVl8YXnV\nPETYEEkoBkhCEaYoV8pZlbqKh5o+RLrGEw97Da2128jK6kTqQT+Ga9bh2LOr1TcuEnWIBYYIG2K1\nhFJcXExWVhZXrlwhKyuL3bt38/HHH1cpEHORhCLux84LO9GV62jWpBvHiooY6HSB4qLL7NoVxUMl\n+2nT4Io6dFOWxRfVyUJDhA2xWkL561//SlZWFr169aKgoABPT0+mWKDTyBiSUMT9Opt3lpTMFAYF\nDWf99Twec9Ngd3MzGRmRXEp1IIr12PV5FFq1snaooray0BBhQ6za5HXy5EmOHTuGq6srkZGRVQrC\nnCShiKq4VXaLVamrGBw4mEMl9WhkZ0db/T5KShqSlNSTfvY78XG9AZGRsiy+MC8LDhE2xBzvzvuu\nvwcHBzN69Gjs7Oz46KOPjL4uPj6edu3a0aZNGz4wUKWLjY2lc+fOdOnSha5du7Jt2zajrxWiqlwc\nXJjYaSL7Lu2jWVkG7g4ObNU/TCMPbwYMWEZas+5sKeqJ8t1SyMy0driittBqYdw4+Ne/anR/nVk6\n5Xfv3s2jjz76h+fp9XqCgoJITEzE19eX0NBQYmJiCA4OrjinqKgI19szlo8dO8bw4cM5c+aMUdeC\n1FCE+fx05Seu3LxC39YRrMnJYUAjV+wK4igpCSU5OYAol0Tc3fQwcKDUVkTVWHiIsCEWr6E888wz\nvPLKK6xbt46rV69WHDcmmQCkpKQQGBiIv78/Dg4OjBkzhtjY2ErnuN6x/EVhYSFet5caN+ZaIczp\n4eYPE+ITwpoTyxjl2Yijt0o56zQYd/drDBmykT0uj7GvuLM6Gic729rhipoqIQFWrIAFC2r8FxOT\nEsq3337Lc889R15eHm+//TYhISF8+OGHRme1zMxMWrRoUfG7n58fmQaaDdatW0dwcDCDBw8mOjra\npGuFMKemDZoy9sGxrD21lnZ2N2ns4EC8NgDXBl15+OHvaNzeie/rTaRk10HYvt3a4YqaJjsbnn0W\nFi+22HyT6mRSQtm3bx/5+fk8++yzzJ8/n1dffZVhw4axcOFCo67XGJl9hw0bxsmTJ9mwYQMTJ06U\nJixhVQ52DozrOI703HSuXz/MUE9PVuUr6N1H07jxDoZEHiSufDDHiwPU2kp+vrVDFjWBoqiTFydM\nsOh8k+pk0hTgxMREHBwc+OSTT3BxcaFly5Z4eXnRtGlTo6739fUlIyOj4veMjAz8/PzueX7v3r3R\n6XTk5ubi5+dn9LWzZs2q+DksLIywsDCj4hPi9zzW+jFO5Zxi4+m1jA8ewZa8fNwc+tLZPpPevZdz\n+fKTrCgYz5Pbf8SuiScY2RQs6qgvv4TLl2HVKqvcPikpiaSkJPMWqpjg2LFjyv79+ysdW7BggRIf\nH2/U9WVlZUrr1q2Vc+fOKVqtVuncubOSmppa6ZwzZ84o5eXliqIoyqFDh5TWrVsbfe3tAQamPJIQ\nJrtRckP55udvlLziPOVUUZHyw9WrSklpoZKV9b2Sk3Ne+f57RTmfmKYo332nKDdvWjtcYYtOnFAU\nLy9FOXXK2pFUMMe70+JLr2zatImXX34ZvV7P5MmTee2115g/fz4AU6dO5cMPP2TJkiU4ODjQoEED\n/vOf/xAaGnrPa39LRnkJS1AURe1X8WqHf+MgVmdn09/DA9fifZSXl3LyZDh5OXoiy9aheaAl3P53\nWIiKVYRfegmef97a0VSQtbwMkIQiLGnfpX3c1N4kPCCchNxcXO3sCHEqJC9vGxrNMBIS3Bj8QCpe\nmUfUhSadnKwdsrA2GxgibIgkFAMkoQhLu3jjIjsu7GB0h9Gc1+r46eZNnvTyJD93PY6Ordmz5yFc\n7Evpc30ttGsHnTtbO2RhLVZYRdhYklAMkIQirKFEV8LKEysZ0HoA7i5NWJWdTT93dxqVnaKkJJ3C\nwuHs3l2PEa0P45JxGkaMAAcHa4ctLMlKqwgby6oJ5dy5cwwYMICFCxei1WqJiIioUiDmIglFWNOm\ntE14u3oT4hPCltxcnOvV45EGduTkrKNhw/7Ex/vSqlkxXS6sU18uv1npQdRSVlxF2FhWr6FkZmbi\n6+tbpQDMTRKKsLajV49yLu8cUUFRnCku5tDNmzzp7c3N/K3Uq1efjIy+nDwJI/xSsM+6pL5o7Oys\nHbaoTlZcRdhYFk8oWVlZFBYWEhgYyLVr12jUqBGONrb3tiQUYQuu37rOj7/8yMj2I6ln58Tq7Gz6\nurvjpWRRULCbBg1GsH69M6HBhQSeiIVHHoGAAGuHLarDyZPQp4/VVhE2lsXX8lq9ejUXL15k+/bt\nNG7cmFVWmpAjhK3zdPFkQqcJxKXFkXnjHBOaNeP0rVsc1Lrj7f0URUUbiIpKJbu4ARsajke5fAXW\nr1ebRkTtodXC2LE1fhVhY5mUUEpLS+nfvz9FRUXY29vj7u5eXXEJUePZ1bNjdIfRXL55meTzyQxo\n3Jjm9euzPPs6Hl4j0esLadMmlp49Fb4714urbXvD0qVwx4oQooZ7/XW15jl5srUjsQiTEkq7du3o\n3bs3q1evZt26dRw6dKi64hKi1ujzQB98G/ryw/EfaOXkyHAvL5Zfu8aN+p1o1KgPZWXf8dRT2Ry5\n6MF2v4mQlgbx8VJbqel+XUX4q69sar5JdTKpD6WoqIicnBxiY2NxcnLiqaeeolGjRtUZn8mkD0XY\nqqLSIlalriKybSReLl5szcvDQaOhd6NG5OZuwt7egxs3epCcDMMfvUaDXfEQEQFGrpUnbIiNDxE2\nxOKd8vPnz8fR0ZE1a9bg5eXF6NGjGTRoUJUCMDdJKMKWKYrChl824O/uT6emnUgvLmZ/QQGjvL0p\nKznDzZuH8PR8kg0b6tPCTyHk+mZ1vspjj1k7dGGsGjBE2BCLd8o7OzvTvn17cnNzWbRoEQUFBVW6\nuRB1jUajISooilJ9KZvSNhHg7MwILy9WZGeTU68l3t4juH59NRERZ3B20bD8xiBKWwXBkiWQl2ft\n8IUxfl1F+L33rB2JxZlUQzl+/DiLFi1iwoQJHD16lPr16zNu3LjqjM9kUkMRNcWVm1dIPJvIqA6j\ncLJ3YlteHnYaDX3d3blxYzc6XQEuLoNYt07Dw10UgtJ+BHd36N3b2qGLe6khQ4QNserExi1bttCk\nSRM629i6RJJQRE1Spi9jZepKerXsRctGLTlbXMy+ggJGenuDLpvc3M14ekZx6JA7V69C1INn0ezd\nozapuLlZO3wB7IiLIyE6GvviYnQ//8zAZ5+lz+2dZmsSq8+Ut0WSUERNtCV9Cw3qN6BHix5oy8tZ\nlZ1Nr0aNaOlYn5yc9Tg5tUCv78qGDfBYmB6fg+vBx0ddBl1YzY64ODbPmMHs9PSKY28EBBDx6af0\niYy0YmSms3gfytdff82+ffvQarXs3r1bJjYKYSbhAeE0cmrE6tTV1NdoGN+0KenFxey4UYC39zA0\nGkdKS1cyfryO1NN2bGs0HBo1gmXLoLjY2uHXWQnR0ZWSCcDs9HS2zJ1rpYisy6SEcu3aNZKTk3n2\n2WeZM2cOu3btqq64hKhz2nu357HWj7H4yGIKtAX09/CgpaMjy65epb5Lezw9I7l27Qd69bpI27aw\nJKUdNwaOgg0b4OefrR1+nWSv1Ro8bldSYuFIbINJe8r7+fkxadIkQJ01HxsbWy1BCVFXuTu5M6nz\nJNaeXEuHJh1o59UOH0dHVmZn07NhQ1o1m0Be3nZcXdOYMOEx1q93wMd/NN3sjsLy5eomXja6+GBt\npLvHSFd9Hd1IzaQaioODA8888wxr1qwhLS2NS5cuVVdcQtRZ9TT1eLL9k+QW57L17FYc69VjfNOm\nnC8pYXteHh4e/XB2bsu1a98xdGgRbm4Qc6IT2kFPwJo1kJpq7UeoGxYvZuDZs7zxmxXXXw8IIHza\nNCsFZV0md8r/8ssvLF26lIMHDzJr1iy6detWXbHdF+mUF7XJhfwL7M7Yzaj2o3Cwc+BccTF7bo8C\nq69RyM5ei4tLWxwcOrF2rboZZHDRQTh/Xq2tyLL41eOjj+CzzyA+nh23+0zsSkrQOzkRPm1ajeuQ\nByuM8lq2bBkpKSl07tyZRx99lAMHDjB+/HiTbhgfH8/LL7+MXq/n+eef59VXX630+ffff8+HH36I\noii4ubnxxRdf0KlTJwD8/f1p2LAhdnZ2ODg4kJKScvcDSUIRtUyJroQVJ1YwMGAgzRo0o/T2KLAe\nDRvSytmZmzd/oqTkAl5eT3DgQD0uX4aox4qot34ddOsGbdpY+xFqj/Jy+Pvf1bXW4uPBz8/aEZmN\nxRPK8uXLCQ8PZ9++faxfvx5vb2/eM2E2qF6vJygoiMTERHx9fQkNDSUmJobgO3at27t3L+3bt6dR\no0bEx8cza9Ys9u3bB0CrVq04dOgQjRs3vvcDSUIRtZCiKGw6s4mmrk3p6tMVgKS8PBSgn4cHOt0N\ncnJi8fAYSElJM9avh379wO/iHrh2DaKioJ5JLdzit8rK1FWD09PVgRC/8x6qiSySUB599FG6detG\nSEgImZmZPPfcc3h5ed3Xzfbu3cs777xDfHw8AHPmzAHgH//4h8Hz8/Ly6NixY0VfTatWrTh48CCe\nnp73fiBJKKIWO5x1mIs3LjK07VA0Gg3ni4vZfbsJzLFePXJzN1Ovngvu7r3ZulVdVmpASL76Auzb\nF1q2tPYj1ExFRTB6tLpq8IoV4OJi7YjMziLzUF599VVeeOEFtFotZ86cYcSIEQwbNowPPvjAYJPT\n78nMzKRFixYVv/v5+ZGZmXnP8xcuXMiQIUMqftdoNAwYMICQkBAWLFhg0r2FqA0eavYQPfx6sOTI\nEm6V3cLf2ZlR3t6syc7mbHExjRtH4Ojoy9WrywgLK6F9e1iy3p38oRPh7FnYuFGWxTfV9eswYAB4\ne8PatbUymZjLHw4bjoqKAiA4OJjnnnsOUJexP3DgAIcOHTKpU15jwp4A27dvZ9GiRezevbvi2O7d\nu2nevDnZ2dmEh4dX7M8iRF3i7erN+E7jWZW6im6+3Wjt0ZqxTZuSnJ/P+ZIS+nu0xtGxBTk5a2jU\nqDMTJrRjwwZo2jSMRx7MUZdUDw+H5s2t/Si2LyND3UJg6FCYM6fO7Gtyv0yah/Lxxx+zceNGsrKy\neOKJJ5g1a5ZJN/P19SXjjt3oMjIy8DPQqXX06FGmTJlCfHw8Hh4eFceb3/4PwNvbm+HDh5OSkmIw\nodwZV1hYGGFhYSbFKYSts69nz5gHx5B0PonMgkx6P9Cbvu7uXCgpYWlWFiO9vWnS5Clu3NhHbu6P\nREVF8ssvGmK2eDFi9EQcd2yBEyfUb97CsJMnYdAgmD4d/vY3a0djdklJSSQlJZm3UMUEGzZsUBRF\nUcrLy5XExETlrbfeMuVypaysTGndurVy7tw5RavVKp07d1ZSU1MrnXPhwgUlICBA2bt3b6XjRUVF\nSkFBgaIoilJYWKj07NlT2bx58133MPGRhKjxfsn5RVl+fLmi0+sURVEUrV6vfJ+VpZy5dUtRFEUp\nLc1RrlxZrJSW5iharaL88IOinDihKEpmpqIsXqwoOTlWjN5G7dmjKE2bKsqSJdaOxGLM8e40aZTX\n119/jY+PD3369KFBgwZs2LCBoUOHmpTANm3aVDFsePLkybz22mvMnz8fgKlTp/L888+zdu1aWt7u\nPPx1ePDZs2cZMWIEADqdjvHjx/Paa6/dVb50you6qLC0kFWpq4gKiqKxszr6KDk/n7LycgY0boyi\nKFy/Hkf9+t40bNidgwfV1pwnohTqxW9UVy7u08fKT2EjNm2CSZPUPWgGD7Z2NBZj8WHDM2fOxM3N\njf3793P9+nV0Oh0vvPACmZmZd80nsRZJKKKuUhSFdafWEdg4kI5NOwJwsaSE5Px8Rnl742RnR1HR\nKYqKjuDlNYLCQgfWr1fzSMvy87Bzp7osfsOG1n0Qa/ruO3jlFVi3Dh55xNrRWJTFE8pPP/1EcXEx\njz76KADp6ens2bOHr7/+muTk5CoFYi6SUERdl5KZQm5xLoMC1e25y25PhAx1cyPQxQW9voScnDU0\nbPgIzs6t2b4dSkth4IByNOtj1c76OvYyBeDjjyE6Wp2weMfcuLrCZvZDuXLlSkWHubVJQhECMgsy\n2XZuG6M7jMbR3hGAnfn5aG83gQHk5++kvLyYxo0HcuUKbNmiDmbyyP4FDhxQl26pC0NkFQVefRV+\n/BE2b4Y7pjbUJTaTUGyJJBQhVKX6UlaeWElf/774NVRHU2aUlJCUn89Ib2+c7ezQaq+Ql7cFL69h\n2Nk15McfwcsLeoTq1DkXrVtD165WfpJqVFYGU6bA6dNqQvmdSdO1nSQUAyShCFFZQnoCjRwb0d1P\n3d2xrLyc1dnZhNxuAlOUcnJyYnFy8sfNrQtpaf+roDinH4fjx9VfHB2t/CRmduuWOvu9vBxWrgRX\nV2tHZFUWTyhFRUUUFhbStGnTKt20OklCEeJuJ66d4PT10wxvN7xigvGu/HyKy8sJv90EVlh4lFu3\nfsHbezg6nR1r10L79vBgG63aSd2hAzz4oDUfw3xyc9X2vYAAWLgQHBysHZHVWTyhzJ8/H0dHR9as\nWYOXlxejR49m0KBBVQrA3CShCGFYXnEesadjeTL4Sdwc3QC4VFLCttujwJzt7NDpCsnJWYe7exhO\nTn4cOqSuhD9sGNgdPqQu3zJ8ONibNCfatly6pE5YHDQIPvxQFs28zeJ7yjs7O9O+fXtyc3NZtGgR\nBffYrUwIYXs8nD2Y1HkS8WfiOZ1zGgA/JyfGNWlCbE4Ov9y6hb19A5o1m8CtW6fIy9tO167qyiMx\nMXDBqytERqo7Q54+beWnuU+nTkGvXvD00/Dvf0syMTOTaijHjx9n0aJFTJgwgaNHj1K/fn3GjRtX\nnfGZTGooQvyxXRd3UaovpX+r/v87lp/PrfJyBt5uAispuUB+/k68vUdgZ+dCcjIUF6sJRrNvL1y9\nWrOWxd+/X51n88EHakIRlVi1U37Lli00adKEzp07VykAc5OEIoRxzuWdY9+lfYzqMAr7emoTVqZW\ny9a8PEZ6e+NiZ0d5uY6cnDW4uLSnQYMHuXoVEhJgyBDwdCiA9evVb/z+/tZ9mD8SH6/Ofl+0CB5/\n3NrR2CSLJ5Svv/6aBx98kC5dunDw4EEuX77MqFGjqhSAuUlCEcJ4t8pusfLESga3GUwT1yYA6MrL\nWZ2TQ5f/vgBWAAAgAElEQVQGDWh7ex5KQcFBtNpLeHk9AWjYuBHc3eHRR4HkZLh5U20Os8XVeL//\nHv76V3UYdM+e1o7GZlk8ofzzn//Ezs6OI0eOcPPmTQICAvjkk0+qFIC5SUIRwjSKohCXFoevmy9d\nmnepOL7nxg0K9fqKJrCysnyuX19P48aDqF+/CWfOQErK7eHFt65DXJy6erGPj7Ue5W6ffKLOgI+P\nV0epiXuyeEJZsmQJkyZNAqC0tJTY2FipoQhRS/x85Wcyb2YS2SayYmjx5dtNYE/ebgJTFIXc3Hjs\n7RvSqNGj6G7PfwwKgk6dUKfbl5fDwIHWra0oCrz+ujrcefNm2anSCBYf5eXg4MAzzzzDmjVrSEtL\nq9iaVwhR83Vp3oVQn1C+O/odxWXFAPg4OjK2SRM2XL/OqaIiNBoNnp6DcXBoytWrMdSrp2XUKNDr\nYdUq0PcPh86d1UUWs7Ot8yA6HTz/PGzfri54KcnEYkzulP/ll19YunQpeXl5TJo0idDQ0OqK7b5I\nDUWIqtGV61hxYgU9/HrQyqNVxfE9N25QoNMx6PbyJOXlpWRnr8HN7WFcXNpSVKRWCHr2hFb+iroM\nvIsLWHKDu+JiGDMGtFpYvbrOz343hcWbvKZOnYqrqys9evSgZ8+e+Pr6Vunm1UESihDmse3cNhzt\nHHm05aMVxy5rtSTebgJztbMD4MaNPeh0eTRuPASNRsOOHVBYqG4lorl4Qe20j4pSe/GrU16eep+W\nLeGbb6B+/eq9Xy1j8YSyePFiwsPD2b9/P8nJyezfv5+OHTsya9YsfGykI04SihDmczrnNEeuHmFk\n+5HU06gt5HpFYXV2Nh1dXQm+XQMoLc0mN3cTnp5DcXDwIDtbraAMGQJejcthwwbw9q6+UVaZmerM\n9wED1E74mjI3xoZYPKG8//77vPzyyzRo0ACA1atXM2DAAL766iteeeWVKgViLpJQhDCvAm0Ba06u\n4YmgJ/Bw9qg4vvfGDfJ1OgbfbgJTd4XcQP36zWnYMBTldquXmxv07g2kpamTC4cPN29T1OnTajL5\n05/g73+3zaHLNYDFE8rly5d58cUXURSFoKAg7OzsmDNnDuvWrWPYsGFVCsRcJKEIYX6/7gbZ1rMt\nHZr8b/jtFa2WLb9pAisqSqWo6DheXiOoV8+es2dh797b26s46tWOlgcegJCQqgd24IDazDV7Njz3\nXNXLq8OsNlP+/Pnz5Ofn07FjR3JycvjHP/7BN998U6VAzEUSihDVZ9+lfRRoCxgYMLDimKEmML2+\n+PaukI/i7OyPTqfmkcBAeOgh4MQJOHpUzTJOTvcXTEICTJgAX3+tJhVRJWZ5dyoWtmnTJiUoKEgJ\nDAxU5syZc9fnS5cuVTp16qR07NhR6dmzp3LkyBGjr1UURbHCIwlRp1zMv6h8d+Q7RavTVjq+Nz9f\nicvJUcrLyyuO5eUlKdevb6n4/fBhRVmxQlHKyhRF0WoV5YcfFOWO/8aNtmyZojRpoig7d97vY4jf\nMMe706JvX51OpwQEBCjnzp1TSktLlc6dOyupqamVztmzZ4+Sn5+vKIqaQLp37270tYoiCUUISygp\nK1GWHF6iZBZkVjp+paREWXzlinKzrOx/55ZcUq5cWaKUlRUoiqIoRUWK8v33inLmzO0TfvpJUZYv\nV5TSUuNu/umniuLnpyhHj5rjUcRt5nh33vdQiL1795KRkWHSNSkpKQQGBuLv74+DgwNjxowhNja2\n0jk9evSgUaNGAHTv3r1i8qQx1wohLMPR3pGJnSdy9OpRUjJTKo43c3RkfNOmbMrNJbWoSD3X0Zem\nTceRl5dAYeERXFxg3Di4ckVdrUV5qIu62dXKlery8veiKPDGG/DZZ+qExY4dq/sxhYlMSijvv/8+\nTz/9NJMnT+bChQusWbPGpJtlZmbSokWLit/9/PzIzMy85/kLFy5kyJAh93WtEKL6DQochLO9M+tO\nratof7fTaBjVpAk39Xrirl9HURQ0Gju8vZ9EURSys9egKOX06gXdu6uT6q/ddFazzI0bsGaNOvX+\nTjodvPCCurTLrl22v7pxHWXStmsdOnTgzTff5MaNG2zcuJGAgACTbqYxYTjf9u3bWbRoEbt37zb5\nWiGE5XRs2hEfNx8WH1nMyPYjaVBfnVbQvWFDrpaWsuTqVUZ4eeFmb4+b20M4Owdw9er3eHg8hpeX\nDxMnqms3urpCnz7d1ZWLY2KgZ0/i0k8SvfQTtCd+xrFUYfr784n09rbyE4t7MXkfzwMHDhAaGsrY\nsWNNvpmvr2+lZrKMjAz8/PzuOu/o0aNMmTKF+Ph4PDw8TLoWYNasWRU/h4WFEWbJpR+EqIM8XTyZ\n2Gkiq0+upkuzLrTxbANA0/r1mdC0KWuys2nv6koHV1fs7d1o1mwiubkJFBen4e7el8GD4dw5WLoU\nhg1zI9nDgzWPD+JG6XkSJpRBa/U+6Yv+Ac7ORIZHWvFpa4ekpCSSkpLMWqZJw4ZffvllANLT03Fy\ncqJv37689NJLRt9Mp9MRFBTE1q1b8fHxoVu3bsTExBAcHFxxzsWLF+nfvz9Lly7lkUceMelakGHD\nQljbjgs7KFfKCfMPq3Q8paCAa6WlRHp6VrQ4FBefo6BgD15eI7Czc0avh7ffPsSSJe9wqXwDHhMg\n7Dysbf+/ciIuRBC/KN5yD1RHmOPdaVIN5cknn0Sj0dCrVy+Ki4s5ceKEaTezt2fevHlERESg1+uZ\nPHkywcHBzJ8/H1DXCnv33XfJy8vjxRdfBNQVjlNSUu55rRDCtvR5oA/puen8cPwHRrUfhV09dcJj\nt4YNufabJjBn51Y4OvqRk7MWV9eO7E+6wnfzn+HS9UbwgBd5LjmVkglASXmJFZ5KGOO+twC2VVJD\nEcI2FJUWsTJ1JZFtIvF2/V+/R7misDYnh3YuLnS4YwmWbZs+Z8fX61i35ipHOAo+Gnjh7v+WpYZS\nPSyyH8qdfSWrVq1i2bJlFBYWsmfPHrZv316lmwshai/X+q483flp9l7ay5GsIxXH62k0POntzS29\nnh9zcvhs1iye8vLi/aGfE7blJRw8CtUTcxRYWbnMgJ8CmDZ2mgWfQpjiDxPKkiVLKn6+fPkyiqLw\n3HPP8emnn5o8bFgIUbdoNBqigqLQleuI+yWu0mehDRtyYv58VqWksKC4mI56e7jZkBF5z+ODD5QC\nacBX4PSDEw8ffJhPX/pUOuRtmElNXmfPniUrK4uePXtSUFCAXq+vGIVlK6TJSwjblFWYxZb0LYzq\nMIqtm1OIjk7g1ravSNbnsLZ3b7bsuc4Y3TwA9rKXtayllFLyPPP4fPHnREZKIqlOVlsc0pZJQhHC\ndpXpy3j9+3dZ8XEeF4/Ooy9hJJEMwDaciaE745lZcf7SgKWM+3Qc/SP7WyvkCo0bNyYvL8/aYVSZ\nh4cHubm5dx23+CgvIYSoCgc7B45+r3CxcBi02ENRhmPFZ/0pBvazlqmctG9I8GM9GTfNNpIJQF5e\nXq34slqdk8QtupaXEEJoc4rh7AAobMoppvEU/1txoz/FlNifZdgbkXwa/6nNJBNhHJNqKO+//z5p\naWnY29sTHh5OSkoKM2bMqK7YhBC1SUkJvPcejsf2qb/nBVBIABvREMpcvOz208jdjj4vvcSf71jt\nQtQcJtVQOnTowOLFi/nPf/6Doigmr+UlhKij9u6FLl3g1CmmL3yFgIA3Kj4qJJK8gId5KTaWH3Jy\nJJnUYCZ1yq9duxY/Pz9CQ0OrM6YqkU55IWxIURG8+SYsXw7R0TByJABxcTuYO3cLJSV2ODnpmTYt\nnMjIPlYO9vfVlnfLvZ7D4qO8qrqWlyXUlj+6EDXetm0wZQr07AmffAKentaOqEps9d0yb948vv32\nW44fP87YsWP/cDv26kwoFl3LSwhRB9y4Aa+8oq5J/+WXcHtPo9oqLm4H0dEJaLX2ODrqmD59oMm1\nraqU4evry1tvvcXmzZspLi6+n0cwG5MSipeXF59//jkJCQlMnDiRkJCQ6opLCFET/fgjvPiimkSO\nHYPbu6/WVnFxO5gxYzPp6bMrjqWnq/1DxiaEqpYxfPhwAA4ePFixw621mNQpHxcXx4svvkiPHj2Y\nM2cOmzZtqq64hBA1SU4OTJgAM2bAkiUwf36tTyYA0dEJlRIBQHr6bObO3WLRMgCbaI4zKaF4e3vT\nvn17Bg8ezMKFC7l27Vp1xSWEqAkUBVasUPd3b9IEjh6Ffv2sHZXFaLWGG3k2b7ZDo8GofxISDJdR\nUmJnUiy2sKutSU1enp6ejBkzhvHjx9OyZUtJKELUZVeuwJ//DKdPq/vA9+hh7YgsztFRZ/B4RISe\neCNX2I+I0JGQcPdxJye9SbHUuBrK448/zjvvvMPevXv57rvviIqKqq64hBC2SlHg22+hc2fo0AF+\n/rlOJhOA6dMHVppTAxAQ8DrTpoVbtAyogTUUgKCgIP75z39WRyxCCFt38SK88AJcvQqbN6uTFeuw\nXzvN58596445NYNMGuVV1TL0ej1lZWXodDr0ej1arRZ7e3vs7ExrMjOHP5yHMnbsWGJiYgB1g63S\n0lKioqI4evQoWq2WfjbWXmqrY8WFqNHKy9UhwDNnwv/7f+qwYAcHa0dlUbb6bpk1axbvvvvuXcfe\nfvttg+dbdWJjWVkZDrf/xYmOjsbT05PY2Fg0Gg1NmjRh7ty5VQrA3Gz1jy5EjZWWBs8/D2VlsHAh\nBAdbOyKrqC3vlupMKH/Yh+Jwx7eQkJAQWrVqxYoVK1iwYMFdWdEY8fHxtGvXjjZt2vDBBx/c9fmp\nU6fo0aMHTk5OfPzxx5U+8/f3p1OnTnTp0oVu3bqZfG8hhAl0Ovj3v9X+keHDYefOOptMhHGM6kP5\n5z//SZcuXbh06RJTpkwB4PTp0xQWFprU5KXX63nppZdITEzE19eX0NBQoqKiCL7jX1JPT0/mzp3L\nunXr7rpeo9GQlJRE48aNjb6nEOI+HD8Ozz0Hbm6QkgKtW1s7IlEDGDXKa/jw4Zw7d44vv/ySoUOH\nMmXKFA4fPkxycrJJN0tJSSEwMBB/f38cHBwYM2YMsbGxlc7x9vYmJCSkUs3oTrWhyimEzSothXfe\nUeeSTJkCiYmSTITRjKqhBAcHExwcTKtWrRg8eDBZWVkcOHCAhx9+2KSbZWZm0qJFi4rf/fz82L9/\nv9HXazQaBgwYgJ2dHVOnTq2oLQkhzODgQbVW0rKlOhTYz8/aEYkaxqRhwx06dACgWbNmdO3aFR8f\nH5NuVtVx0rt376Z58+ZkZ2cTHh5Ou3bt6N27d5XKFKLOKy6GWbPUuSX/+Q+MG6dO4RbCRCYllFdf\nfZVvv/0WR0dH9Ho9mzZtYvDgwUZf7+vrW2nb4IyMDPxM+BbUvHlzQG0WGz58OCkpKQYTyqw7NugJ\nCwsjLCzM6HsIUafs2gWTJ6uTFI8ehaZNrR2RsJCkpCSSkpLMWqZJCWXgwIE4OjoC0KJFCw4fPmzS\nzUJCQkhLS+P8+fP4+PiwfPnyijkuv/XbvpJbt26h1+txc3OjqKiIhIQEZs6cafDaWbLjmxC/r7AQ\nXntNXTJl3jx1FJeoU377Zfudd96pcpkmJZQmTZrw1FNPMWHCBFq2bMnx48cZOnSo8Tezt2fevHlE\nRESg1+uZPHkywcHBzJ8/H4CpU6eSlZVFaGgoBQUF1KtXj08//ZTU1FSuXbvGiBEjANDpdIwfP56B\nAweaEr4QAmDLFrXDvV8/dTSXh4e1IxK1hEk7NgL88ssvfPvtt+h0Ov70pz/R2sZGgNSWyUdCmF1e\nHvztb7B1q7q8/KBB1o6oRqkt7xarTmy809dff01ubi4zZ87kiSee4KeffqrSzYUQFhIbqy4x7+ys\n1kokmdQapaWlTJ48GX9/fxo2bEiXLl2IN3apYzMzqcnr2rVrJCcnEx0dzc2bNwkICGDkyJHVFZsQ\noqqys2H6dHVI8PffQ9++1o6o1tkRF0dCdDT2Wi06R0cGTp9On8hIi5Wh0+lo2bIlO3bsoGXLlsTF\nxTF69GiOHTvGAw88cD+PdP8UEyxevLjiZ61Wq6xYscKUyy3CxEcSonYqL1eUZcsUpWlTRfm//1OU\noiJrR1TjGXq3JP/4o/J6QICiqIv6KwoorwcEKMk//mh0ueYo47c6deqkrFmzxujn+L3jpjCphuLg\n4MAzzzxDVFQUQUFBVt+/WAhh4NvtuHH0Wb0azp6F9etB1r2rNgnR0cxOT690bHZ6Om/NnWt0DcMc\nZdzp6tWr/PLLLxXzBi3JpITi5+fHa6+9xtKlS9m+fTuTJk2qrriEEEbYERfH5hkzKr2Q3khMhNGj\n6XPoENwe5i+qh71Wa/C43ebNRk8OvddL2K6kxOR4ysrKGD9+PM888wxt27Y1+fqqMqlT/rPPPsPf\n35/33nuPuXPnEhoaWl1xCSGMYPDbbXk5W/LyJJlYgO4e/x/rIyLuaMD6/X9095j+oHdyMimW8vJy\nJk6ciJOTE/PmzTP5WczBpITi7u5OcnIyZWVl1RWPEMIE9jduGDx+P99uhekGTp/OGwEBlY69HhBA\n+LRpFi1DURQmT55MdnY2q1evtspujWBik5e7uzsHDhzgiy++QKvV0rVrV957773qik0IcS+ZmTB7\nNrpDhwx+bOq3W3F/fu3jeGvuXOxKStA7OTFo2jST+j7MUcaLL77IqVOnSExMrFjNxBr+cGLjunXr\neOihh/D392fXrl14e3sTFBSEoihcvHjR8sPS/kBtmXwkhEFXr8KcObB4MUyezI4uXdj89tuVmr1e\nDwhg0Kef3leHrrg3W323XLhwgVatWuHk5FSpZvLVV18xduzYu86vzomNf1hDSU5Oxs/PD39/f65f\nv06vXr0qbm5ryUSIWuv6dfjoI1iwAMaPhxMnoHlz+gA0alSlb7eiZnvggQcoLy+3dhiAETWUbdu2\nMXfuXEpKSiguLiYyMpKOHTvSsWNHfH19LRWn0Wz1W4QQ9yU/H/77X/jsM3jySXjzTbhjTyFhObXl\n3VKdNRST1vL6+OOPCQkJ4cSJExw/fpzLly/j5+fHtGnTCAoKqlIg5lJb/uiijisshOhoNZk8/ji8\n9ZbsnGhlteXdYjMJxZAffviBjIwMXnnllSoFYi615Y8u6qhbt+CLL+DDD+Gxx2DmTLCRL2t1XW15\nt1i1D+WP1K9fn3bt2lW1GCHqNq0WvvoK/vUv6NFDXRH4wQetHZUQJqlyDcXW1JZvEaKOKCuDb76B\n99+HTp3g3Xfh4YetHZUwoLa8W2y6hiKEuA86nbr677vvqn0jK1bAI49YOyohqkQSihCWVF6uJo9Z\ns6BJE7V20qePtaMSwiz+cOmVt956i7i4OHJyciod3759O9evX6+2wISoVRQF1q6Fzp3hk09g7lxI\nTpZkImqVP6yhFBcXc/HiRVatWsW1a9fw8PCgW7duhISEsHDhQv7+979bIk4haiZFgU2b1GG/iqLO\nch8yxOiVaIWoUUzdQOXGjRtKYmKiMmfOHGXlypUmb8CyadMmJSgoSAkMDFTmzJlz1+cnT55UHnnk\nEcXR0VH597//bdK1iiIbbAkbUV6uKFu2KMojjyhKhw6Ksnq1ouj11o5KVIEtv1vGjx+vNGvWTHFz\nc1NatWqlvP/++/c8917PYY7nM2mU18mTJ/n8889xd3dn4sSJJq+3r9frCQoKIjExEV9fX0JDQ4mJ\niSE4OLjinOzsbC5cuMC6devw8PDgb3/7m9HXQu0ZiSFqsJ071RrJlStqX8no0WCl1V+F+dzr3bIt\nbhvroteh0WpQHBWGTR9G/8j+JpVd1TJOnDhBQEAATk5OnD59mr59+/Ltt98yaNAgo5/D4qO84uLi\nePHFF7lw4QIffPABI0eOZPDgwUZfn5KSQmBgIP7+/gCMGTOG2NjYSknB29sbb29v4uLiTL5WCKtK\nSVETSVoavP02TJgA9jLupTbbFreNmBkxjE8fX3Hs+/TvAYxOCOYo47e7M9rb29OkSROjrjUnk/ZD\n8fb2pn379gwePJiFCxdy7do1k26WmZlJizvWIfLz8yMzM7ParxWiWh0+DFFR6lpbI0bAqVPwzDOS\nTOqAddHrKiUCgPHp44mdG2vRMgD+/Oc/4+rqSocOHXjzzTd52ArzmUz6N97T05MxY8Ywfvx4WrZs\naXJC0VShI9KUa2fNmlXxc1hYGGFhYfd9XyHu6cQJdWmUPXvgH/9QhwPLPiR1ikZr+L10Y/MNkjRJ\nRpVRQIHhD0zcI+3zzz/ns88+Izk5mZEjR/Lwww/TrVu3e56flJREUpJxMRrLpITy+OOP07ZtWxYv\nXsw333zD7NmzTbqZr68vGRkZFb9nZGTg5+dn9mvvTChCmF1amto3kpgIr7wCS5aAi4u1oxJWoDga\n7nNoFNGIsPgwo8pYE7EGEgx8cB/fTTQaDWFhYYwaNYqYmJjfTSi//bL9zjvvmH7D3zCpyWvJkiV8\n/vnnBAYG8tFHH/Hzzz+bdLOQkBDS0tI4f/48paWlLF++nKioKIPn/rZzyJRrhagW58/Dc89Bz57Q\nvj2cOQP/93+STOqwYdOH8X3A95WOLQ1YyhPTnrBoGb9VVlaGq6vrfV9/v0xu5H377bfZt28fH330\nEc2bNzftZvb2zJs3j4iICPR6PZMnTyY4OJj58+cDMHXqVLKysggNDaWgoIB69erx6aefkpqaSoMG\nDQxeK0S1u3QJZs+GlSvhz39Wayju7taOStiAXzvN185dqzZROcG4aeNMGqFV1TKys7PZunUrQ4cO\nxcnJicTERFauXEliYqKpj1NlJg0b3rhxI3369KFBgwbVGVOVyLBhYTZZWepExO++gylT1OYtT09r\nRyWsxFbfLTk5OYwcOZIjR46gKApt27blzTffvGcLjs3shzJ9+nSOHj2Kp6cn3bp1o1+/fr/bRmcN\ntvpHF7ZrR1wcCdHR2Gu16BwdGfj00/Q5cgS+/homTVI73Js2tXaYwspqy7vFZuahhIWFER0dza1b\ntzh48CAHDx60uYQihCl2xMWxecYMZqenVxx7IzERBg1Sk4qRg0aEECZ2yms0Gg4cOICLiwt9+vTh\nz3/+c3XFJYRFJERHV0omALPLy9mi10syEcJEJtVQkpOTAXj33XdxcnKib9++vPTSS9USmBDVSqeD\nH3/EPiXF4Md2JSZOAhBCmJZQnnzySTQaDb169aK4uJgTJ05UV1xCVI/MTLVvZMEC8PdH5+cH+fl3\nnaaXCYpCmMykJq/evXvTq1cvAJydnQkJCamWoIQwq/JySEhQl0Xp2BGuXYONG2HXLgbOmcMbAQGV\nTn89IIDwadOsFKwQNZfsKS9qr5wcdUfE+fPBzQ1efBHGjlV/vsOOuDi2zJ2LXUkJeicnwqdNo09k\npJWCFraqtrxbbGbYcE1QW/7o4j4pirq21hdfQFwcPPGEmki6dZNNrUSV1JZ3iyQUE9SWP7owUUEB\nLF0KX34JWi386U/w9NPQuLG1IxO1RG15t9jMPBQhbM7PP6tJZMUKCA9X92vv109qI0JYgUmd8kLY\nhOJiWLwYHnkEhg2Dli0hNVVNKv37SzIRdVZaWhpOTk5MnDjRKveXhCJqjtOn4a9/hRYt1OTxxhtw\n9qz6vyYuVCqEucTFxREREUFYWBgRERF37TZrqTIA/vKXv9CtW7cq7T1VFdLkJWxbWRmsW6c2a504\noS4ff+AAtGpl7ciEIC4ujhkzZpB+x2oLv/4caeRIQXOUAfDDDz/g4eFB+/btOXPmjNHXmZPUUIRt\nungR3nxTbc767DN44QX12D//KclE2Izo6OhKiQDUZDB37lyLllFQUMDMmTP573//a9WBA1JDEbZD\nr4fNm9Uhv3v2wIQJsG0byL43wkZptVqDxzdv3lzlZqcSE5b/eeutt3j++efx8fGxWnMXSEIRtuDq\nVVi0CL76Cry91SG/y5fLTojC5jk6Oho8HhERQXx8vFFlREREkJBw9x7ATkYu/3P48GG2bt1asYOu\n1FBE3aMokJys9o1s3gwjR8KqVdC1q7UjE8Jo06dPJz09vVKTVUBAANNMWLqnqmUkJydz/vx5WrZs\nCUBhYSF6vZ6TJ09y8OBBo+MwB5nYKCwrP18d8vvll1CvnlobmThRttQVNu9e75a4uDjmzp1LSUkJ\nTk5OTJs2zaTO9KqWUVxczM2bNwG1dvLvf/+b8+fP8+WXX+JpYIdRmSlvAkkoNurAATWJrFkDgwer\niaR3b5kzImqMmvJueeedd0hPT2fJkiUGP69VCSU+Pp6XX34ZvV7P888/z6uvvnrXOdOnT2fTpk24\nuLjw7bff0qVLFwD8/f1p2LAhdnZ2ODg4kGJgL4ua8kevTe7aQnf6dHVxxaIiiIlRE0luLkydCs8+\nC02aWDtkIUxWW94t1ZlQUCxIp9MpAQEByrlz55TS0lKlc+fOSmpqaqVz4uLilMGDByuKoij79u1T\nunfvXvGZv7+/cv369d+9h4Ufqc5L/vFH5fWAAEVRe0UUBZTXW7RQkiMjFaVxY0WJilKUTZsURa+3\ndqhCVEltebfc6znM8XwW7ZRPSUkhMDAQf39/AMaMGUNsbCzBdwwLXb9+PU8//TQA3bt3Jz8/n6tX\nr9K0adNfE6AlQxZ/wOAWuhkZvFW/Pn0OH1ZntQsh6gSLTmzMzMykxR0vGD8/PzIzM40+R6PRMGDA\nAEJCQliwYIFlghb3VlaG/ZUrBj+y8/OTZCJEHWPRGoqxE27uVQvZtWsXPj4+ZGdnEx4eTrt27ejd\nu/dd582aNavi57CwMMLCwu4nXGFIeTns3QvLlsHKlehKSw2eJlvoCmHbkpKSSEpKMmuZFk0ovr6+\nZGRkVPyekZGBn5/f755z6dIlfH19AfDx8QHA29ub4cOHk5KS8ocJRZiBosDRo2oHe0wMNGgA48fD\nvn0MPHmSN2bMqNTs9XpAAINkC10hbNpvv2y/8847VS7TogklJCSEtLQ0zp8/j4+PD8uXLycmJqbS\nOQuzR/EAABJ5SURBVFFRUcybN48xY8awb98+3N3dadq0Kbdu3UKv1+Pm5kZRUREJCQnMnDnTkuHX\nPenp/0siRUXq9rkbNqj7st+ubfZp3RqAt+7YQneQbKErRJ1k0YRib2/PvHnziIiIQK/XM3nyZIKD\ng5k/fz4AU6dOZciQIWzcuJHAwEBcXV355ptvAMjKymLEiBEA6HQ6xo8fz8CBAy0Zft1w5Yq6NHxM\nDJw7B6NGwYIF0KPHPeeM9ImMlAQihJCJjQJ19vqaNWq/yKFDEBUF48bBY4+BvazOIwTUnndLrZrY\nWN1qyx+92hUXw48/qklk2zY1eYwbB5GR4Oxs7eiEsDm15d0iCcUEteWPXi3KymDrVjWJbNgAoaFq\nv8jw4bKWlhB/wJbfLWFhYezfvx/72y0Kfn5+nDx50uC51ZlQpD2jtisvV/cWiYmBlSshIEBNIh9+\nCM2aWTs6IWq8uC1xRC+LRqtocdQ4Mn3cdCLDTVwcsoplaDQaPvvsM5577jlTwzcrSSi10a/DfJct\ngx9+qDTMl9ujsoQQVRe3JY4Zn80gvcsd2/d+dnv7XiMTgjnKANtYRUSavGoTQ8N8x46tNMxXCHF/\nDL1bIp6NIMH/7s2xIi5EEL/IyA22zFBGv379OHHiBIqiEBQUxOzZs+nbt6/Bc6XJS9zbr8N8ly1T\nh/mOHq3ufNijh7rfiBCi2miVe2wBfHYzmneM/BJ3DvC/+3BJufFbAH/wwQd06NCB+vXrExMTw9Ch\nQzl8+DCtLdwiIQmlJjI0zPfdd2WYrxAW5qi5xxbArSOIn2lkDeV8BAkY2AK4nvHLF3Xr1q3i50mT\nJhETE8PGjRt56aWXjC7DHOQrbE1RXKx2qg8fDg88oA75/dOf4PJldQfEiAhJJkJY2PRx0wn4OaDS\nsYCfApg21oQtgM1Qhq2QN5CNMLhJ1cCBkJio9omsX68O8x03Dr75Rob5CmEDfu00nxszl5LyEpzq\nOTHtpWkmdaZXtYwbN26wb98++vbti729PcuXL2fnzp3MnTvX9AeqIumUtwE74uLY/JsFFt9o2JAI\noE/79mrH+ujRMsxXCCuy1XdLTk4OQ4YM4dSpU9jZ2REcHMx7773HY489ZvB8mdhoAlv9o/+eNwcM\n4P2tW+86/lbv3ry3Y4cVIhJC/FZNfLcYIqO8ahutVp0Tsn07bNuG/e7dBk+zk1FaQogaRN5YlqDT\nqQnkX/+C8HDw8oL/+z+1o/2NN9D162fwMtmkSghRk0gNpTqUl8ORI+qii9u3w86d4O8P/frBtGnq\naK07OtUH6nS8cf68bFIlhKjRpA/FHBQFTp78XwJJSgJvbzWB9O8PYWH/v737j2nqXv8A/iazIgEU\nrKB2YJDyMyoFrUNAmNzAdSpBRTfdBM3muHpjZuKPm3uTuWzJ3Ygk84/ryKLZdDh1hEUZRYrAMnBX\nsIUC2woMkF9j/EZgCFXkl5/vH72cLxWE0pbS455XchJrz3PO83mKfTznwzlH+3oa/5XL8f2Eh1RF\n0kOqCLEoNIeix7apoRiAMaChQdtAxpvIokXaCwvDw7XL/x5bTAh5MVBD0WPb1FD01NzMTaIjP197\nK/i//EW7hIcDq1ebfp+EEItBDWVmNIfyPJ2d2lNX40chf/zx/6ew/vUvwNubbrhIyJ+Io6MjrF6A\nf/OOjo5ztm2z/5ZXdnY2fHx84OnpicTExCnXOX78ODw9PSGRSPDTTz/NKtZgf/wBpKcDx48Da9dq\nG8b164CvL3DjBtDVpZ1M//vfAR8faiaE/Mn09vaCMcb7pbe3d+6KxMxodHSUicVi1tjYyIaHh5lE\nImG//vqrzjpyuZxt27aNMcaYUqlkgYGBescyxpjeQ+rvZ0wuZ+z0acbWr2fMzo6xv/6VsbNnGSsu\nZmxkxLjBGig/P39e9msKfM6dMcp/vlH+88sU7cCsRyjFxcXw8PCAm5sbBAIB9u/fD5lMprNORkYG\nDh06BAAIDAxEX18fOjo69Iodd2brVvxXLtf9y8FB7eNvz5wBgoOBlSu1Ty20twf+8x+gpwfIyQH+\n+U/tPbPm6UaLd+7cmZf9mgKfcwco//lG+fOfWb81W1tb4erqyr12cXFBUVHRjOu0traira1txthx\nH+fm4v26OqCyEmFDQ9o5EJUK8PPTzoP8+9/apmJjY+IREkLIn5dZG4q+E1rMBL9J8UlDAz74+GOE\n/e1vwD/+AYSGao9GCCGEzA3jz7zpT6FQsK1bt3KvExIS2NmzZ3XWOXLkCEtJSeFee3t7s46ODr1i\nGWNMDDDQQgsttNAyq0UsFhv9HW/WIxSpVIra2lr89ttvEIlESE1NRUpKis460dHRSEpKwv79+6FU\nKuHg4IDly5dDKBTOGAsAdS/A74kTQggfmbWhLFiwAElJSdi6dSvGxsZw+PBh+Pr64uLFiwCAI0eO\nYPv27cjKyoKHhwdsbW3x1VdfTRtLCCHEMrxwV8oTQgiZH7y5fb3FXhCpJ2Pyd3Nzg5+fHwICAvDK\nK6+YK2UdM+VfXV2NoKAgLFq0COfOnZtVrDkYkz8f6n/9+nVIJBL4+fkhJCQEarVa79i5ZkzufKi9\nTCaDRCJBQEAANmzYgLy8PL1jzcGY/Gddf6NnYczAHBdEWmr+jDHm5ubGenp6zJrzRPrk39XVxVQq\nFXv//ffZp59+OqtYS86fMX7U/969e6yvr48xxtjt27ct5uffmNwZ40ftNRoN92e1Ws1Nbs937Y3N\nn7HZ158XRyjmuiDS0vLv7Ozk3mfzeGZSn/ydnJwglUohEAhmHTvXjMl/nKXXPygoCEuWLAGg/flp\naWnRO9ZScx9n6bW3tbXl/qzRaLBs2TK9Yy05/3GzqT8vGsrzLnbUZ52pLoh8NnauGZM/oL1+JyIi\nAlKpFF988YV5ktYzt7mMNRVjc+Bb/S9duoTt27cbFGtqxuQO8Kf26enp8PX1xbZt23D+/PlZxc4l\nY/IHZl9/Xtxt2JwXRM4FY/MvKCiASCTCgwcPEBkZCR8fH4SGhpoyxWkZc4dVS7g7q7E5FBYWYuXK\nlbyof35+Pi5fvozCwsJZx84FY3IH+FP7Xbt2YdeuXbh79y7i4uJQXV09x5npx9D8a2pqAMy+/rw4\nQnn55ZfR3NzMvW5uboaLi8u067S0tMDFxUWv2LlmaP4v/+8hXSKRCID2tMzu3btRXFxshqyfn9ts\nasiX+k9n5cqVACy//mq1GvHx8cjIyOBuUT7f9Tcmd4A/tR8XGhqK0dFR9Pb2wsXFhXc/++P59/T0\nADCg/sZM+JjLyMgIc3d3Z42NjWxoaGjGSW2FQsFN7OkTa8n5P3r0iPX39zPGtJNnwcHBLCcnx+Ly\nH/fhhx/qTGrzpf7jns2fL/VvampiYrGYKRSKWcdaau58qX1dXR17+vQpY4yx0tJS5u7urnesJedv\nSP150VAYYywrK4t5eXkxsVjMEhISGGOMXbhwgV24cIFb59ixY0wsFjM/Pz9WWlo6bay5GZp/fX09\nk0gkTCKRsDVr1lhs/u3t7czFxYUtXryYOTg4MFdXVzYwMPDcWL7kz5f6Hz58mC1dupT5+/szf39/\ntnHjxmlj+ZA7X2qfmJjI1qxZw/z9/dnmzZtZcXHxtLF8yd+Q+tOFjYQQQkyCF3MohBBCLB81FEII\nISZBDYUQQohJUEMhhBBiEtRQCCGEmAQ1FEIIISZBDYUQQohJUEMhhBBiEtRQiMU4ffo0Pvjgg+e+\nn5eXhxMnTiA9Pd0k+xsZGcGbb75p1m1MHKOh+58qrra2FuvWrePuwTSdjIwMhISEzHq/hMyEGgqx\nGGKxGJs2bXru+5999hkOHDgAf39/g/dRVVWFhIQEAIBAIEBKSorB2zJkGxPHaOj+p4rz9PSEh4cH\nhELhjPGenp7z9vRD8mKjhkIsRnFxMQIDA5/7/pMnTyCVSuHm5mbwPvLz8xEQEGBwvLFmGqOhHj9+\njMWLF+u1rkKhgFQqNXkOhPDieSiEX+7evYubN2/i1VdfBWMMd+7cwWuvvYbu7m4AwMGDB5GZmYme\nnh48ePAAO3bsgK+vL7q6uiY9LW7cuXPnMDg4CJlMBqFQiMzMTPT19aGvrw/Hjh1DS0sLRkZG0NLS\nAmdnZ7z77ruQy+Xo6upCbm4uEhMTUVlZiUuXLuHo0aO4d+8eSkpKIBKJsHfvXgCYlFN3dzc3DgCo\nrKzEmTNnuJwaGhqQmZnJbWPiuKdaHwA3xvr6esjlcp39f/PNNxgZGcHQ0BCePHmC/v5+REREYNOm\nTYiLi8PVq1cnxY3H1NXVYePGjTr7Kisrg0wmg6urK1asWIGamhqcOnUKSqUSHh4eSE1NxdjYGN56\n6y0AQEpKyqQaVlRUoKysDIODg4iNjYWtrS1u376N6upqLFy4EHv27MGKFSsmfV5jY2NITU1FQ0MD\nXF1dUVxcjFOnTsHd3X3WP0+EP+gIhZjc+EN9XFxcEBMTA7VajbCwMERFRaGsrAz379/HtWvXcOjQ\nIWzfvh2ff/45+vv7dZ6D8SypVIodO3Zg586dcHJygr29PWJiYnDlyhU4OzsjJycHBw8exEsvvYS1\na9fi/v37+Prrr/H2228jOTkZq1atwrZt2yASiRAfHw8AEAqFGB4eBgDU1NRMymniOHbv3o3a2lqd\nnDo6OnS2MdP6Dx8+5MbY2dk5af+5ubk4dOgQuru7odFoIBAIwBhDY2Mj7OzsdOKGhoZ0Yuzs7CYd\n+QwODsLe3h4ikQhRUVHIysoCAFRXV+Odd95BZGQk93yLmpqaSTUEgMuXL8PHxwfW1tbQaDRoampC\nQkICTpw4AV9fX2g0mik/r19++QV79uyBu7s7nj59itdff517tgZ5cVFDISa3efNm1NfXY+PGjXj8\n+DGEQiHs7OygVCohkUhw5coVHDhwAADQ1NQEBwcHqFSqac/rV1ZWYt26dQAAb29vlJSUIDw8HNbW\n1rh27Rqio6MBaL/IAgICkJycjNjYWACAtbU1AG0DGP/fdHBwMGQyGRf3bE6Ojo4643j48CEWLNA9\noH92GzOtP3GMz8ZOHENZWRlOnDiBsrIyBAUF4d69ewgODp4UNzFGrVZPmlsKCQlBUVERwsLCwBhD\nR0cHHj16hKVLl2LZsmVQKpVczFQ1BIDY2FicPHkSaWlpWL58OdLT0+Hp6YnMzExYWVnBw8Njys9r\n/fr1sLa2hkKhwJYtW7BlyxbY2NjorHPy5EkMDg5OGU/4iRoKMbnBwUEsWrQIAFBSUsJ9iWZkZCAs\nLAxVVVVYtWoVAODGjRuIi4tDSUkJpFIp8vPzp9xmRUUF11AYYxgaGoJAIAAA9PX1wdvbG8PDwxgY\nGEBJSQlGR0e5fTQ3N6OtrY37QlepVOjv74eVlRXUajUAYHh4eFJOE8eRlZWFyMhIKBQKLqdntzHT\n+qWlpdwYBwYGdGInjuHx48ewsbHhvoAVCgXWr1+PoqIiLq68vFwnRqPRQKlUTqpbT08P7OzskJeX\nh507d0KlUiEoKIj7PIKDg1FWVjZlDb///nuo1WoUFBRwpyJtbGwQHR2NqKgohIaGoqurCwDQ2Nio\ns1+VSoXu7m5UVFRg9erVuHv3rs77VVVV6OjoQEdHx5SfN+EnaijE5CorK7l5hIqKCoSHhwPQPk60\nqKgIn3zyCXJzc3HlyhXs3bsXXl5eEIvFKCgogJ+f35TbbGtr4x6J/Pvvv2PDhg3cewcPHkRubi5k\nMhnEYjHa29tx9OhRZGVl4datW6ioqIBIJIJIJEJrays0Gg3Gxsbg7OyMoaEhAEB8fLxOTp6enjrj\nsLe3R2dnp87jU5/dxkzrj49RIpFgdHRUJzYuLg45OTk4f/48vLy8AACurq64efMmFixYgB9++AFr\n1qzRiZs4bnd3d+7LfVx9fT1GR0dx69Yt/Pjjj/joo49QVVXFfR5OTk5QqVTw8/ObVMO2tjY4Oztj\n4cKF+Pbbb/HGG28AAPbt2we1Wg25XI7U1FQsWbIEra2tiIiI0Nl3dnY20tLSEBISgu+++27S51le\nXo7Nmzejvb19ys+b8BM9YItYtLS0NAwPD6OgoABJSUnznc6cS05Oho2NDfbt22f0tq5evQorKyvu\n1N9cunPnDrZs2aLXutnZ2RgbG0N5eTm8vLwQExMzt8kRs6EjFGLRBAIBmpub8d577813KnPu559/\nxsWLF9HS0mL0ttrb2/Hll1+itbXVBJnNbPxIayaFhYUoLy/Hjh07IBQKUVhYOMeZEXOiIxRCCCEm\nQUcohBBCTIIaCiGEEJOghkIIIcQkqKEQQggxCWoohBBCTIIaCiGEEJOghkIIIcQkqKEQQggxCWoo\nhBBCTOL/AMYcuoSlk302AAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4-2 Page Number 601" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Overall Mass Transfer Coefficients from Film Coefficients\n", "import numpy as np\n", "from scipy.interpolate import interp1d\n", "from scipy.optimize import root\n", "\n", "#Variable Declarion\n", "yAG = 0.380 #Inlet Gas Flow Rate, kg mol/hr\n", "xAL = 0.100 #Inlet Liquid Flow Rate, kg mol/hr\n", "ky = 1.465e-3 #Gas phase mass transfer coefficient, kmol/(m2.s)\n", "kx = 1.967e-3 #Gas phase mass transfer coefficient, kmol/(m2.s)\n", "xA = np.array([0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35])\n", "yA = np.array([0.00,0.022,0.052,0.087,0.131,0.187,0.265,0.385])\n", "xAi = 0.2572\n", "yAi = 0.1964\n", "\n", "f = interp1d(xA, yA, bounds_error=False, fill_value=-10)\n", "\n", "def flux(k,a,b):\n", " return k*(a-b)/lm(a,b)\n", "\n", "def lm(a,b):\n", " return ((1-a)-(1-b))/log((1-a)/(1-b))\n", "\n", "#f2 = lambda x: f(x)- yAG #sol = root(f2, 0.3, method='hybr') xAs = sol.x[0] print xAs\n", "yAs = f(xAL)\n", "md = (yAi-yAs)/(xAi-xAL)\n", "yLMs = lm(yAs,yAG)\n", "yLM = lm(yAi,yAG)\n", "xLM = lm(xAi,xAL)\n", "InvKydby_yLMsGas = 1/(ky/yLM) \n", "InvKydby_yLMsLiquid = md/(kx/xLM)\n", "InvKydby_yLMs = InvKydby_yLMsGas + InvKydby_yLMsLiquid\n", "Kyd = (1/InvKydby_yLMs)*yLMs\n", "Rgasper = InvKydby_yLMsGas*100/InvKydby_yLMs \n", "Rliquidper = InvKydby_yLMsLiquid*100/InvKydby_yLMs\n", "NA = Kyd*(yAG-yAs)/yLMs\n", "#Results\n", "print \"Individual Film resistances for Gas and Liquid film are:\", round(InvKydby_yLMsGas,2),round(InvKydby_yLMsLiquid,2), \"respectively\"\n", "print 'Overall Mass Transfer Coefficient: %5.3e'%(Kyd), \"kgmol/(m2.s)\"\n", "print \"Percentage Resistance in Gas and Liquid film is:\", round(Rgasper,1),\"&\", round(Rliquidper,1),\"respectively\"\n", "print 'The Flux of A is: %5.3e'%(NA), \"kgmol/(m2.s)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Individual Film resistances for Gas and Liquid film are: 483.16 382.41 respectively\n", "Overall Mass Transfer Coefficient: 8.924e-04 kgmol/(m2.s)\n", "Percentage Resistance in Gas and Liquid film is: 55.8 & 44.2 respectively\n", "The Flux of A is: 3.789e-04 kgmol/(m2.s)\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5-1 Page Number 608" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Design of Water-Cooling Tower Using Film Coefficients\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.interpolate import interp1d\n", "from scipy.optimize import root\n", "import scipy.integrate as integrate\n", "\n", "#Variable Declarion\n", "P = 101325 #Atmospheric pressure\n", "G = 1.356 #Inlet Gas Flow Rate, kg mol/hr\n", "L = 1.356 #Inlet Liquid Flow Rate, kg mol/hr\n", "TL1 = 29.4 #Initial temperature of water in \u00b0C\n", "TL2 = 43.3 #Final temperature of water in \u00b0C\n", "TG1 = 29.4 #Inlet air temperature of air in \u00b0C\n", "Tw = 23.9 #Wet bulb temperature of air in \u00b0C\n", "kGa = 1.207e-7 #Mass Transfer Coefficient, kmol/(m2.s.Pa)\n", "K = 4.187e4 #J/(kg.K)\n", "cL = 4187. #J/(kg.K)\n", "T0 = 0.0\n", "H1 = 0.0165 #Humidity of entering air, kgWater/kgDryAir\n", "Mb = 29.\n", " \n", "\n", "#Calculation\n", "t = np.array([15.6,26.7,29.6,32.2,35.0,37.8,40.6,43.3,46.1])\n", "H = np.array([43.68e3,84.0e3,97.2e3,112.1e3,128.9e3,148.2e3,172.1e3,197.2e3,224.5e3])\n", "\n", "f = interp1d(t,H,kind='cubic',bounds_error=False)\n", "T = np.arange(28.,46.,1)\n", "Hy = f(T)\n", "\n", "Hy1 = (1.005+1.88*H1)*1e3*(TG1-0.0)+2.501e6*H1\n", "Hy2 = L*cL*(TL2-TL1)/G + Hy1\n", "plt.figure(1)\n", "plt.plot(t,H,'k-',T,Hy,'k-')\n", "plt.plot([TL1,TL2],[Hy1,Hy2],'ro-')\n", "plt.xlabel('$Liquid Temperature, C$')\n", "plt.ylabel('$Enthalpy Hy, J/kg$')\n", "\n", "m1=(Hy2-Hy1)/(TL2-TL1)\n", "c1=Hy1-m1*TL1\n", "m2 = K\n", "TT = linspace(TL1,TL2,11)\n", "plt.xlim(25,45)\n", "plt.ylim(40000,200000)\n", "Hyi = ()\n", "Hy = ()\n", "cnt = 0\n", "for i in TT:\n", " y1 = m1*i+c1\n", " c2 = y1-m2*i\n", " ff = lambda xx: f(xx)-y1+K*(xx-i)\n", " sol = root(ff,40)\n", " x2 = sol.x[0]\n", " y2 = f(x2)\n", " Hy = np.append(Hy,y1)\n", " Hyi = np.append(Hyi,y2) \n", " cnt = cnt + 1\n", " plt.plot([i,x2],[y1,y2],'o-')\n", "InvHyimHy = 1/(Hyi-Hy)\n", "\n", "z = (G/(Mb*kGa*P))*integrate.simps(InvHyimHy,Hy)\n", "plt.figure(2)\n", "plt.plot(Hy,InvHyimHy)\n", "plt.fill_between(Hy,InvHyimHy,0,color='0.6')\n", "plt.text(90000, 0.00002, 'Area = '+str(round(z,2))+' m')\n", "plt.xlabel('$Hy$')\n", "plt.ylabel('$1/(Hyi-Hy)$')\n", "plt.show()\n", "#Results\n", "print \"Height of packed cooling tower:\", round(z,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAETCAYAAABwaNKCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcjWn/B/BP2mztiM5Bdc4pTBhUypqlcmoYw5AYu8cy\nozIexjaMfrKMMTNkNBvZZcwgnlKiJDMqEWMPiXZLTkRaz/f3x9EZEdOpc7W53q+X16vnOvd9f6/O\n8zz3t/u6v9d1aRARgeM4juNqWKPa7gDHcRz3buIJiOM4jqsVPAFxHMdxtYInII7jOK5W8ATEcRzH\n1QqegDiO47haUeMJKC0tDQMGDMB7770HGxsb+Pv7AwAePXoEZ2dnWFlZwcXFBbm5ucpzVq9eDYlE\ngg4dOiAiIkLZfu7cOXTu3BkSiQQ+Pj7K9sLCQnh4eEAikcDBwQF3795VfrZ9+3ZYWVnBysoKO3bs\nqIHfmOM4jqsQ1bCsrCw6f/48ERHl5eWRlZUVXb16lebPn09ff/01ERGtWbOGFixYQEREV65coa5d\nu1JRURGlpKSQSCQiuVxORER2dnYUHx9PRERSqZTCwsKIiGjTpk00a9YsIiLau3cveXh4EBFRTk4O\nWVpakkwmI5lMpvyZ4ziOq3k1/gTUunVrvP/++wCA5s2bo2PHjsjIyMDhw4cxceJEAMDEiRMRHBwM\nADh06BA8PT2hra0Nc3NziMVixMfHIysrC3l5ebC3twcATJgwQXnOy9caOXIkIiMjAQBHjx6Fi4sL\nDA0NYWhoCGdnZ4SHh9fo789xHMcp1Oo7oDt37uD8+fPo2bMn7t27B1NTUwCAqakp7t27BwDIzMyE\nUChUniMUCpGRkfFau0AgQEZGBgAgIyMDbdu2BQBoaWnBwMAAOTk5b7wWx3EcV/NqLQE9ffoUI0eO\nxIYNG6Cnp1fuMw0NDWhoaNRSzziO47iaoFUbQYuLizFy5EiMHz8ew4cPB6B46snOzkbr1q2RlZWF\nVq1aAVA82aSlpSnPTU9Ph1AohEAgQHp6+mvtZeekpqbCzMwMJSUlePz4MUxMTCAQCBAdHa08Jy0t\nDQMHDnytf2KxGMnJySx+dY7juAZLJBLh1q1blT+hpl86yeVyGj9+PM2ZM6dc+/z582nNmjVERLR6\n9erXihAKCwvp9u3bZGlpqSxCsLe3p7i4OJLL5a8VIcycOZOIiIKCgsoVIVhYWJBMJqNHjx4pf35V\nLXwtDdpXX31V211oMPh3qV4N/fs8ePAgaWtrU7du3Sg/P595PFXvnTX+BPTXX39h165d6NKlC7p1\n6wZAUWa9cOFCjB49Glu2bIG5uTn27dsHAOjUqRNGjx6NTp06QUtLCwEBAcrhuYCAAEyaNAnPnz+H\nm5sbhgwZAgCYOnUqxo8fD4lEAhMTE+zduxcAYGxsjKVLl8LOzg4A8NVXX8HQ0LCmvwKO4zjm5s+f\nj2+//Rb/+c9/8PPPP9d2dypU4wmoT58+kMvlFX52/PjxCtsXL16MxYsXv9beo0cPXLp06bV2XV1d\nZQJ71eTJkzF58mQVesxxHFd/FBUVwcnJCWfOnMH27dsxfvz42u7SG9XKOyDu3eLk5FTbXWgw+Hep\nXg3t+7xx4wYcHR1BRLh48SI6depU2116K40X43bcSzQ0NMC/Fo7j6pOdO3di8uTJsLW1xcmTJ6Gr\nq1vjfVD13snXguM4jqvHiAiTJk3CxIkTMWfOHMTFxdVK8qkKPgTHcRxXT+Xm5sLBwQEpKSk4fPgw\nPvjgg9rukkr4ExDHcVw9dOrUKQgEAjx79gy3b9+ud8kH4AmI4ziu3vHz84OTkxMGDx6MO3fuQCAQ\n1HaXqoQPwXEcx9UTRUVFGDJkCE6ePInvv/8e3t7etd2lauEJiOM4rh5ITk6Go6MjCgsLkZCQgO7d\nu9d2l6qND8FxHMfVcbt370aHDh0gEAiQmZnZIJIPwBMQx3FcnUVEmDx5MsaPH49Zs2YhMTERzZo1\nq+1uqQ0fguM4jquDZDIZHB0dkZKSgoMHD+LDDz+s7S6pHU9AHMdxdcyff/4JV1dXGBoa4tatW8oN\nNhsaPgTHcRxXh/j5+aF///4YMGAA7t6922CTD8CfgDiO4+qEwsJCSKVSnDx5EuvWrcPnn39e211i\njicgjuO4WhAaFQX/4GAUamig5NkzXAoNBT17hri4OOWeZQ0dT0Acx3E1LDQqCj5BQUgeN07ZppOW\nhp1eXu9M8gH4OyCO47ga5x8cXC75AEDRokUIPHaslnpUO3gC4jiOq2FPS0oqbC+o4X7UNp6AOI7j\nalBUVBTioqMr/KxxzXal1tVKApoyZQpMTU3RuXNnZduZM2dgb2+Pbt26wc7ODgkJCcrPVq9eDYlE\ngg4dOiAiIkLZfu7cOXTu3BkSiQQ+Pj7K9sLCQnh4eEAikcDBwQF3795VfrZ9+3ZYWVnBysoKO3bs\nYPybchzH/ePLL7+Es7Mz7Fq3hmjXrnKfiXbtglcDnGz6VlQLYmJiKDExkWxsbJRt/fv3p/DwcCIi\nOnLkCDk5ORER0ZUrV6hr165UVFREKSkpJBKJSC6XExGRnZ0dxcfHExGRVCqlsLAwIiLatGkTzZo1\ni4iI9u7dSx4eHkRElJOTQ5aWliSTyUgmkyl/flUtfS0cxzVQ+fn55OjoSJqamvTDDz8QEVFIZCS5\nentTz9mzSWvCBDp0/Hgt97L6VL131soTUN++fWFkZFSurU2bNnj8+DEAxS5/ZftbHDp0CJ6entDW\n1oa5uTnEYjHi4+ORlZWFvLw82NvbAwAmTJiA4OBgAMDhw4cxceJEAMDIkSMRGRkJADh69ChcXFxg\naGgIQ0NDODs7Izw8vEZ+Z47j3k2XL1+GQCDAtWvXkJiYiM8++wwA4D5wIMI3bEDcxo3oMHs2Wtna\n1nJPa16dKcNes2YN+vTpg3nz5kEulyM2NhYAkJmZCQcHB+VxQqEQGRkZ0NbWhlAoVLYLBAJkZGQA\nADIyMpSzh7W0tGBgYICcnBxkZmaWO6fsWhzHcSz89NNPmD17Nuzs7BAVFYUmTZpUeJzU2Bhhjx7B\nwcCghntYu+pMEcLUqVPh7++P1NRUfP/995gyZUptd4njOK5KSktLMWLECHz22WdYsGABYmNj35h8\nAMDtRQJ619SZJ6AzZ87g+PHjAICPP/4Y06ZNA6B4sklLS1Mel56eDqFQCIFAgPT09Nfay85JTU2F\nmZkZSkpK8PjxY5iYmEAgECD6peqTtLQ0DBw4sML+LF++XPmzk5MTnJyc1PSbchzXkGVkZMDR0REP\nHz7EsWPH3niPeVlvAwPcyM/H/aIitNLRqYFeqkd0dHS5e6rKGL2L+lcpKSnlihC6detG0dHRRER0\n/PhxsrW1JaJ/ihAKCwvp9u3bZGlpqSxCsLe3p7i4OJLL5a8VIcycOZOIiIKCgsoVIVhYWJBMJqNH\njx4pf35VLX4tHMfVY4cOHSIdHR2SSCT08OFDlc796NIl2pGVxahnNUPVe2et3GnHjBlDbdq0IW1t\nbRIKhRQYGEgJCQlkb29PXbt2JQcHB0pMTFQev3LlShKJRGRtba2slCMiOnv2LNnY2JBIJCIvLy9l\ne0FBAY0aNYrEYjH17NmTUlJSlJ8FBgaSWCwmsVhM27Ztq7B/PAFxHKcKuVxOn332GWloaNDEiROV\nfySr4teMDPK8coVB72qOqvdOjRcncS/R0NAA/1o4jquMvLw89OnTB1evXsX27dsxduzYKl0nvaAA\nXc+exf3evaGpoaHmXtYMVe+ddaYIgeM4rr6Jj4+HmZkZ7t27h6SkpConHwAQNm4Moa4uzjx5osYe\n1m08AXEcx1XB6tWr0atXL/Tq1QtpaWmwtLSs9jWlxsY48g5Vw/EhuArwITiO414WExqKCH9/aBUW\nokhbGyeysnDm2jV88803mDt3rtrinMzNxX9v3cLZejopVdV7Z50pw+Y4jquLYkJDcdTHByuTk5Vt\nnhoamL5+PSZ7e6s1Vi99fSQXFOBeURFM61E5dlXxITiO47i3iPD3L5d8ACCICLePHFF7LO1GjTDI\n0BDh78gwHE9AHMdxb6FZUPEuPW9qry6piQnCcnKYXLuu4QmI4zjuDW7duoXjcXEVflbamM3uPVJj\nYxyTyVAilzO5fl3CExDHcVwFfvjhB3To0AFPhUIssrAo99likQjOXl5M4prp6qKtri7i8/KYXL8u\n4VVwFeBVcBz37iooKICbmxtOnjyJL7/8Er6+vogJDcWxjRuhmZuL0sREOO/fj35DhzLrw6Lbt6EJ\nwE8Npd01SdV7J09AFeAJiOPeTXFxcRgyZAg0NDRw/Phx9OjR4/WDOnUCtm8H7OyY9eNUbi58bt1C\nYj0rx+YrIXAcx6mIiLBo0SL07t0b3bt3R1ZWVsXJBwCkUiAsjGl/HPX1kVJQgOzCQqZxahtPQBzH\nvdPu37+PLl26YN26dfjuu+8QFRWFxm8rMHBzY56AtBo1grORUYMvx+YJiOO4d9aBAwfQvn17PHjw\nABcvXoSPj8+/n9SnD3D1KvDwIdO+vQvL8vAExHHcO6egoADjxo2Dh4cHXF1dcefOHXTs2LFyJ+vq\nAgMGABERTPs4xNgYxxt4OTZPQBzHvVMuXrwIS0tL7N+/Hz/99BOCg4PfPuRWEakUYLASwsva6OrC\nvHFjxDXg1bF5AuI47p1ARFi1ahVsbW3RtGlTXL16FVOnTq3axaRS4OhRgPHTSUMfhuMJiOO4Bi87\nOxv29vZYvnw5pk2bhmvXrlVv+4R27QBTU+DsWfV1sgJSY2OE8QTEcRxXPwUHB0MsFiMpKQn/+9//\nEBAQAG1t7epfuAaG4Rz09XG3oACZDbQcmycgjuMalNBjoXCd7Iq+4/vCzNYMH4/7GF26dEFycjJc\nXV3VF6gG5gM19HLsWklAU6ZMgampKTp37lyufePGjejYsSNsbGywYMECZfvq1ashkUjQoUMHRLxU\neXLu3Dl07twZEomkXPlkYWEhPDw8IJFI4ODggLt37yo/2759O6ysrGBlZYUdO3Yw/C05jqtpocdC\n4bPJBxHmEfhT/CeyhmbBwNYAi5cvRsuWLdUbrE8fICkJePBAvdd9hZuJScMdhqNaEBMTQ4mJiWRj\nY6Nsi4qKosGDB1NRUREREd2/f5+IiK5cuUJdu3aloqIiSklJIZFIRHK5nIiI7OzsKD4+noiIpFIp\nhYWFERHRpk2baNasWUREtHfvXvLw8CAiopycHLK0tCSZTEYymUz586tq6WvhOK6aXCa5EJbjtX+u\nk13ZBBw+nGjnTjbXfiG7sJAMT52iotJSpnHUQdV7Z608AfXt2xdGRkbl2n788UcsWrRIOTZb9tfK\noUOH4OnpCW1tbZibm0MsFiM+Ph5ZWVnIy8uDvb09AGDChAkIDg4GABw+fBgTJ04EAIwcORKRkZEA\ngKNHj8LFxQWGhoYwNDSEs7MzwsPDa+R35jiOrczMTJw+d7rCzwrkbPbuqYlhOFMdHVg2bozYBliO\nXWfeAd28eRMxMTFwcHCAk5MTzr6oLsnMzIRQKFQeJxQKkZGR8Vq7QCBARkYGACAjIwNt27YFAGhp\nacHAwAA5OTlvvBbHcfXb/v37YW1tjfzc/Ao/b9yIzd49ynLs0lI213+hoQ7DadV2B8qUlJRAJpMh\nLi4OCQkJGD16NG7fvl1r/Vm+fLnyZycnJzg5OdVaXziOq9izZ88wc+ZM7N+/H5aWlvh8wedYvX81\nkrv9s4W2KFEEr9ls9u5B27ZAmzZAQgLg4MAmBhTl2LNu3MDqOrY9Q3R0NKKjo6t8fp1JQEKhECNG\njAAA2NnZoVGjRnj48CEEAgHS0tKUx6Wnp0MoFEIgECA9Pf21dkDxNJSamgozMzOUlJTg8ePHMDEx\ngUAgKPdlpaWlYeDAgRX25+UExHFc3XP27FkMHz4cjx49wqefforVq1dDW1sbrVu3xsagjZAVynAh\n6wK+X/g93J3d2XWkbHFShgmop74+0gsLkVFYCIGuLrM4qnr1j3NfX1+Vzq8zQ3DDhw9HVFQUAODG\njRsoKipCixYtMGzYMOzduxdFRUVISUnBzZs3YW9vj9atW0NfXx/x8fEgIuzcuRMffvghAGDYsGHY\nvn07AOCPP/7AoEGDAAAuLi6IiIhAbm4uZDIZjh07pt6yTI7jmCstLYWfnx/69euH58+fIyQkBOvW\nrVO+P3Z3dkd4YDjid8fDYoQFzGzM2HaoBuYDaWpowMXYuOGVY7OphXi7MWPGUJs2bUhHR4eEQiEF\nBgZSUVERffLJJ2RjY0Pdu3enEydOKI9fuXIliUQisra2pvDwcGX72bNnycbGhkQiEXl5eSnbCwoK\naNSoUSQWi6lnz56UkpKi/CwwMJDEYjGJxWLatm1bhf2rpa+F47h/kZqaSra2ttSsWTMaPHgwPXjw\n4K3HzwmbQytOrmDbqaIiIgMDonv3mIbZnpVFIy5dYhqjulS9d/IdUSvAd0TluLrnt99+U67dtn79\nekydOhUaGhpvPSciOQK+J33x15S/2HZu5Ehg+HBg/HhmIe4VFcE6Ph4PeveGdqM6M3hVDt8RleO4\nBiUvLw8jR47EpEmT0KFDB1y+fBnTpk371+QDAP3a98Ole5fw6DnjoasaGIYz1dGBpGlT/PX4MdM4\nNYknII7j6qzY2FhYWloiNDQUvr6+OHPmDMzNzSt9fmOtxuhv3h8RyWz37sGQIYr9gRiXYze0xUl5\nAuI4rs4pKSnBvHnz4OTkBENDQ1y4cAFffPEFGlVh6EkqliLsFtvJohAKFf/i45mGceMJiOM4jp2U\nlBR06tQJ/v7+8Pb2xrVr19ChQ4cqX08qliL8VjjkxHhn0RpYFcFOXx+ZhYVIK2C0skMNqzPzgDiO\ne/eEhsbA3z8ChYVa0NUtgUhUjC1b1sPIyAinT5+Gra1ttWNYGFnAuIkxErMSYWtW/eu9kZsbMHcu\nsGIFsxAvl2P/x4xxeXkN4AmI47haERoaAx+fo0hOXvlSqwcGDBiCI0d+U32b7LeQiqU4cvMI2wTk\n6AgkJwPZ2UDr1szCuBkb48DDhw0iAfEhOI7jaoW/f8QryQcAfoOOThe1Jh8AcJO4sX8PpK0NDBqk\nWBuOIVdjY0TJZChivB14TeAJiOO4WvH8ecW3n4ICTbXH6tuuL64+uIqH+Q/Vfu1yypblYailjg6s\nGkg5Nk9AHMfVuMuXLyM+PrLCzxo3Vn8ps66WLpzMnWquHLukhGmYhlINxxMQx3E1hoiwcOFCvP/+\n+xAKn8HcfGG5z0WixfDycmYSu0bKsc3MgHbtmJdjS01McCQnh2mMmsATEMdxNSI5ORmWlpb49ttv\n8e233yI5+QJ++MENrq5LYWS0HF27LsWGDUPg7t6PSfwaK8d2c2O+KoKtnh7uFRcjtZ6XY/MExHEc\nU3K5HHPnzoWVlRUMDQ2RmZkJHx8fAIC7ez+Eh6+Ar+9y9OixglnyAYD2hu3RqlkrnM08yywGgBqZ\nD6SpoQFXI6N6PwzHExDHccyEhYWhZcuWCAgIgL+/P86fP4+WLVu+dlzZPZv1GsBSsRRhNxkPwzk6\nAikpQFYW0zBSExOE1fNhOJ6AOI5Tu6ysLDg4OMDd3R39+vWDTCbDZ5999sbjxWKgWTPg77/Z9ksq\nluLILbbDY9DSApydgfBwpmFcjYxwIjcXhfW4HFvlBDRjxgzMnTsXv//+OzIzM1n0ieO4eqq4uBg+\nPj5o27YtsrOzkZiYiIMHD6JJkyb/em4NVDCjT7s+uP7wOh48e8A2UA0Mw7XQ0UHHpk3xZz0ux1Y5\nAfXq1Qvz5s2DlpYW1q5dC0dHR0yfPp0nI457x/3+++9o1aoVfv75Z6xduxYpKSl4//33K31+Dexo\nAF0tXQwwH1Az5djHjzMvx67vw3AqJ6C0tDTo6+vjo48+wvr16zFv3jx888032L17N4v+cRxXx12/\nfh3dunWDp6cnHB0dkZ2djblz51Zqv56X9e+vGIKTyRh19IUaGYZr0wYwNwdiY5mGqe/zgVROQFOm\nTMG4ceMwbNgwzJ8/HwkJCTAwMIBEImHRP47j6iiZTIYpU6agS5cuuHfvHqKionDkyBEYGhpW6XpN\nmgB9+wLHjqm5o6+QSqQ4eusoSuVs9+6piWG4Hnp6eFBcjLv1tBy7ylty37lzB7m5uejcuTMePnyI\nhQsXYuvWreruX63gW3JzXHmhoaHw9/dHYWEhdHR0YGlpiV27dqG0tBTz5s3DsmXLoK2tXe04P/wA\nnDsHsL6V2ATYYPOwzXAQOrAL8tdfwGefARcusIsBYPy1a+itr4+ZAgHTOJWh8r2TasHkyZOpVatW\nZGNj89pn69atIw0NDcrJyVG2rVq1isRiMVlbW9PRo0eV7WfPniUbGxsSi8Xk7e2tbC8oKKDRo0eT\nWCymnj170p07d5Sfbdu2jSQSCUkkEtq+fXuF/aulr4Xj6qSQkBASiUQEQPlPQ0ODOnToQMnJyWqN\nlZxM1Lo1UWmpWi/7mvkR82lZ1DK2QYqLiYyMiDIymIbZk51NQy9eZBqjslS9d6p8p+3evTvl5+cT\nEVFoaCj9+eefql6CYmJiKDEx8bUElJqaSq6urmRubq5MQFeuXKGuXbtSUVERpaSkkEgkIrlcTkRE\ndnZ2FB8fT0REUqmUwsLCiIho06ZNNGvWLCIi2rt3L3l4eBARUU5ODllaWpJMJiOZTKb8+VU8AXHc\nP1xcXMoln7J/rq6uTOJZWRGdO8fk0kpRt6PI7hc7tkGIiEaPJtqyhWmIh0VFpB8TQwWss3YlqHrv\nVPkd0JIlS9CkSRMcPHgQsbGxOHjwoKqXQN++fWFkZPRa+9y5c7F27dpybYcOHYKnpye0tbVhbm4O\nsViM+Ph4ZGVlIS8vD/b29gCACRMmIDg4GABw+PBhTJw4EQAwcuRIREYqFj08evQoXFxcYGhoCEND\nQzg7OyOcca0+x9VnT548wZUrVyr8rIDRe4caeHWC3u16IyknCfef3WcbqAaW5THR1sZ7zZrhVG4u\n0zgsVCoB9evXDwsWLMChQ4dga2uL/fv3Y//+/Rg1ahQWL16slo4cOnQIQqEQXbp0KdeemZkJoVCo\n/M9CoRAZGRmvtQsEAmRkZAAAMjIy0LZtWwCAlpYWDAwMkJOT88ZrcRxXXmlpKX799Ve0a9cOWW+Y\n0a/uPXvK1MR8IB1NHQyyGISjt9ju3YMhQ4DISKC4mGkYqbExjtTDarhK7Yg6b948SCQSxMbGYtWq\nVbh69SoAIDw8HAMGDICxsXG1OpGfn49Vq1bh2EvlL1TLRQDLly9X/uzk5AQnJ6da6wvH1aSYmBhM\nnz4dWVlZaN26NRYuXIjNmzcjOTlZeYxIJIKXlxeT+P36ARcvAo8eAdW8tbxVWTn2+K7j2QUxNQVE\nIkU5dj9269xJjY0x/vp1fMcsQsWio6MRHR1d5fMrlYCGDRsGAOjYsSOmTJkCAHj69CkSEhJw9uxZ\n2NnZVbkDgGKV3Dt37qBr164AgPT0dPTo0QPx8fEQCARIS0tTHpueng6hUAiBQID09PTX2gHF01Bq\nairMzMxQUlKCx48fw8TEBAKBoNyXlZaWhoEDB1bYp5cTEMe9C+7cuQMvLy+cOHECWlpa+OabbzB1\n6lRoamqic+fO2LhxI9LT05GZmYkNGzbA3d2dST8aN1bMCTp2DPDwYBICgKIce2HkQpTKS6HZSP2b\n4P0T6MUMW4YJqLueHh4VFyPl+XNYVGLVCXV59Y9zX19f1S7wby+Jrl+/Tjdu3KjqO6k3SklJqbAK\njogqLEIoLCyk27dvk6WlpbIIwd7enuLi4kgul79WhDBz5kwiIgoKCipXhGBhYUEymYwePXqk/PlV\nlfhaOK7ByMvLoy+++IKaNGlCTZs2pTlz5lBubm6Fxz59+pSaN29Ojx8/ZtqnTZuIJkxgGoKIiDoH\ndKbTqafZBvnrL6IuXdjGIKIJV6/SpvR05nHeRtV7578eXVxcTMeOHaMffviBAgICKCEhocqdKzNm\nzBhq06YN6ejokFAopMDAwHKfW1hYlCvDXrlyJYlEIrK2tqbw8HBle1kZtkgkIi8vL2V7QUEBjRo1\nSlmGnZKSovwsMDCQxGIxicVi2rZtW4X94wmIexeUlpbS1q1bycjIiJo3b06DBw+u1B+bzs7OtH//\nfqZ9u32bqFUr9uXYX0R8QV9Gfsk2SEkJkbExUVoa0zBB2dn0QS2XY6t671R5IuqZM2dw7tw5yOVy\nWFtbw8nJCVpalRrJqzf4RFSuoTt9+jSmT5+OtLQ0mJiY4Oeff4azc+V2Il2/fj2uXLmCX3/9lWkf\nO3YEdu0CevRgF+PknZP4b8R/cXY64z2CPD2BQYOAadOYhXhUXAzzuDjc79ULjTUZDim+har3zkol\noJSUFFhYWLzWnpSUhOjoaBQVFUEgEMDV1RXNmjVTrcd1EE9AXEOVlpaGOXPm4OjRo2jUqBFWrVqF\nmTNnqvRHZFJSEgYNGoS0tDSV13tTxdy5gJERsHQpsxAoLi1Gy29aIml2Ekybm7ILtGMHcOgQsH8/\nuxgAeicm4itzc7iwrN54C1XvnZUqw546dSoOHjyI7Ozscu3W1taYMWMGvLy84ODggJCQENV6y3Fc\njcjPz8eXX34Ja2trhIeHY/z48bhz5w5mz56t8giGlZUVdHR0cOnSJUa9VaiJ+UDamtoYZDkI4bcY\nzwcsK8cuKmIaxs3EpF4tTlqpBNSmTRucOXMGnp6eeO+99zBmzBj4+/vj9u3bymPMzMzgwbJkheM4\nlRERdu/eDaFQiO+//x59+vRBQkICfvzxxypPn9DQ0ICbmxvCGGeHfv2AK1cA1rsNuIndEHaLcaZr\n1QqQSIDTp5mGkRob40g92p6hUkNwZ86cUa44UFpaiosXLyI2NhbHjh3DRx99hAkTJjDvaE3iQ3Bc\nfRUVFYrgYH9oaBQiN7cAsbEZSEt7CCsrK/z444/o1auXWuKEhoZi7dq1OHnypFqu9ybDhilen3h6\nsouR8SQDnX/sjPvz70OrEcP32cuWAYWFwNdfMwshJ4LZ6dM43b07LGuwHLsMkyG4suQDAJqamujW\nrRs+/fR6pYcjAAAgAElEQVRTHDx4EEWMHyk5jqucqKhQBAX5YMSICHz00UlMnhyP9u2zsGzZPFy4\ncEFtyQcABgwYgMTERDxmvBtnTayKINAXoK1BW8Snx7MNVAPL8jTS0FBsUldPhuFUXgvuZU5OTnjy\n5Im6+sJxXDUcOLAe48Yll2tbsqQU2dkJai8WaNq0KXr37l1u9RIWpFIgPByQy5mGqZlhODs7ICsL\neGliPQv1aRiuWgkoMDAQkydPVldfOI6rAiLCjz/+iNjYqDccwWrRUCnz90Dt2wMtWij2CGJJKpHi\nyE3Gu6RqagKuroqMytDVrVsRtmYN2g8YAMvevfE1wyG/6qpWArK0tKxwVWuO42rGiRMn0LZtW3h5\neUFf/01lxKwWDVUUIrB+X1oTw3COQkek5KYg+2n2vx9cHWXL8jDy9ddfY0NkJGj6dKR+9RVSVq7E\nmsjIOpuEqpWAUlJSIBKJEB0djaNHGa8qy3Gc0u3bt2Fra4tBgwZBJBLhzp07WLr0V+zeLSp33K5d\nInz4IZtFQyUSCZo2bYq///6byfXLML5nA1CUYw+2HMy+HNvVFYiKYlaO/fPhw8h9ZYeC3MWL8cvh\nw0ziVVe1Sj4sLCwQExMDQR3YCpbj3gVPnz5V7n0lkUiQkJCAHi+WCihbjPfgwY2Qy3OQl3cZ48ev\nx8CBbBYNBf4Zhnv//feZxejTB7h2DXj4UDEcx4pUrBiGm/T+JHZBWrYEOnQA/vwTeMNCyFVGBPkb\n3vWVqmG7dBZUfgKaNGkS5s+fj+DgYNy7d48nH46rAUVFRZg9ezaMjY1x6tQp/P7770hKSlImnzID\nB7pjw4Zw+PufwYwZLeHgIHrDFdWjJuYD6eoCAwYAERFMw2CIeAiO3T6GEnkJ20DqnmF77ZqixNvK\nCo3eUP2myXg/oqpSOQFt27YNU6ZMgUwmw7Jly2Bra4u1a9dCzrpMhePeQcXFxfDx8YGenh62b98O\nPz8/PHjwACNHjnzreRoaGjA2dsOjR2zHrpycnHD+/HnkMt6NsyaG4cz0zGBuaI7YtFi2gdSRgFJT\ngbVrgW7dFGvM5eUBe/ZgxoQJMFy1qtyhhitXYvqLLXXqHFVXO42NjaXTp/9Zvnzfvn2UlJREv/76\nq6qXqrOq8LVwnFoVFxfT3LlzSVdXl5o1a0Z+fn5UquLS0A8eBNP584MY9fAfQ4YMoX379jGNcfcu\nUYsWioWlWVp0fBEtOr6IbZCSEsUvc/euaufdv6/Yp6JPH8Xq2tOmEUVFvfalrFmzhix79aL2/fuT\nZa9etGbNGjV2/u1UvXeqvBq2n58ftLW1kZiYiKZNm6Jdu3ZwcnLC06dPMXToUDZZsobxlRC42lJS\nUoLFixdj48aNaNSoEb744gssXboUjRqpXi9UUpKH2FgzODpmQUurOYPeKmzcuBHnz59HYGAgsxgA\nYGMDbNkC9OzJLsafqX/CK8wL52ecZxcEAD75BOjbF5gx4+3HPXkCBAcDQUGKZXzc3ICxYxXFDDo6\nbPtYBareO1UuQhg+fDjy8/OxYMECZdvmzZvRtm1bVS/Fce+sqNAoBPsHQ6NQA6RLGPbZMETFReH7\n77+HhoYG5s2bh+XLl0OzGsvqa2npQU+vJ3JzI9GixYdq7H15UqkUq1atglwur1KirHwcxcgVywTk\nIHTA3dy7yMzLhJmeGbM4MW3aIGLpUmgFBaFEVxcu3t7oV7bDbEGBYrwxKEjx4qt/f2DCBOCPP4AG\nsNtAOZV5TDp48KDKj2L1WSW/Fo6rksiQSJommkYncEL5bwAGkIG2AS1cuJCKi4vVFis1dR1dvz5D\nbdd7E4lEQomJiUxjREUR2dszDUFERKP2jaItiVuYXf9kSAgtNjcnApT/FotEdPL//o9o0iQiIyOi\nAQOIfvmF6KWNOesDVe+dlRqC69ixIzw8PGBvbw97e3u0eKkW8vHjxzAwMGCYImseH4LjWPJ29caI\niBGvtR9wOQD/o/5qjfXs2TVcvDgEDg53mO7d4+PjA1NTUyx+ZQ6KOhUVKRaVvnlTUc3MyrYL2xBy\nIwR/jP6DyfW/dHWFXwUlfUv19bFi+XJg9GignlYXM1mM9IMPPkC7du2wb98+dO7cGZaWlhgzZgy+\n/fZbLFq0qMqd5bh3TWlpKdJuVLwWmEah+hNE06YdAGggP/+q2q/9MqlUiiOMy9R0dBTl2KznvA8R\nD0FkSiSKSxmULhNB6w3rtGl26wZ8/nm9TT5VUakE5OfnhylTpmDbtm1Ys2YNzp07h+nTp4OIEB/P\neAVZjmsASktLsWbNGhgaGuL63esVH8RgxRwNDQ2YmEiRk8N2rk7//v1x8eJFyGQypnFqYlme1s1b\nw8LQArHpaizHvn0bWLkSsLFByZUrFR5S2pjNkkl1WaUS0L59+8r9ZyMjIwwcOBDz5s2Dn5+fykGn\nTJkCU1NTdO7cWdk2f/58dOzYEV27dsWIESPKLfO+evVqSCQSdOjQAREvPbqeO3cOnTt3hkQigY+P\nj7K9sLAQHh4ekEgkcHBwwN27d5Wfbd++HVZWVrCyssKOHTtU7jvHqaK0tBSrVq2CoaEhli1bhk8+\n+QTf/f4ddot2lztul2gXPvRiUyhQE/OBmjRpgr59+5b7/ycLUqniCai0lGkYuEncqr84aVYWsGGD\nomrCwQHIzAR+/hku+/Zhiaj8BOHFIhGcvdgsmVSnVeZFUZs2bWj69Om0fft2Wrt2bbnP0tPTVXrp\nREQUExNDiYmJZGNjo2yLiIhQznNYsGABLViwgIiIrly5Ql27dqWioiJKSUkhkUhEcrmciIjs7Owo\nPj6eiIikUimFhYUREdGmTZto1qxZRES0d+9e8vDwICKinJwcsrS0JJlMRjKZTPnzqyr5tXDcG5WU\nlNDKlSupefPmpK2tTTNnzqSnT58qP48MiSRvV2+a1noaTe8wnSJDIhn25SnFxDSn4uInzGIQEf3w\nww80ceJEpjGIiDp3JoqNZRvjz7t/Upcfu6h+4qNHRJs3Ew0cSGRoSDRhAlFYGFFRUbnDToaE0Jeu\nrvRV//70pasrnQwJUVPPa5eq985KHf3NN9/QiRMnaM2aNTRixAjq2rUrDR48mObPn09jxoypUkdT\nUlLKJaCXHThwgMaNG0dERKtWrSo3kcrV1ZViY2MpMzOTOnTooGwPCgqiGTNmKI+Ji4sjIsWEvhYt\nWhAR0Z49e2jmzJnKc2bMmEFBQUGvxecJiKuqkpIS8vPzo2bNmpGOjg7NmjWLnj179sbj7++/Txdc\nLjDv14ULg+n+fbbVrMnJyWRqaqryhFlVffEF0dKlTENQcWkxGX9tTOmPK/EH9rNnRHv3Eg0bRqSv\nTzRiBNHvvxPl57PtZB2k6r2zUkNw8+bNg5OTExYsWID9+/fjwoUL2LlzJ3r37o1HDHbeCwwMhJub\nGwAgMzNTucgioFhwMSMj47V2gUCAjIwMAEBGRoZyXpKWlhYMDAyQk5PzxmtxXHWVlpZixYoVMDAw\nwP/93/9h0qRJkMlkCAgIQNOmTd94ntFgIzw5/QSl+WzHlGpiGM7S0hIGBgY4f57tJE51L6VWEa1G\nWnC2dH7zJnVFRUBoKDBuHGBmBgQGAiNGKJbI2b8f+PhjoBa2xK5vVJ6IOmnSJLRq1Qq9evWCg4MD\nWqq5HnLlypXQ0dHB2LFj1XpdVS1fvlz5s5OTE5ycnGqtL1zdVVpaipUrV2Lt2rUoLi7G9OnTsXbt\nWjSp5M1HS18LzXs0R+6JXJi4mzDrp7GxFOnp34GImJZjly1O+uoiqerUu7eiFPvePcD0TVsgqUGb\nnDZYsmUJdpnugq6GLrzHzIa7rp5iguj+/YC1NeDpCXz3HduO1GHR0dGIjo6u8vkqJ6CtW7fi+vXr\niIuLw1dffYVz585h9OjRmDdvXrVnQW/btg1HjhxBZGSksk0gECDtpS1s09PTIRQKIRAIkJ6e/lp7\n2TmpqakwMzNDSUkJHj9+DBMTEwgEgnJfVlpaGga+YUn0lxMQx72qtLQUfn5+WLt2LUpKSjBz5kx8\n/fXXaFyFSiYTNxPkHMlhmoCaNrWGhoY2nj27gubNbZjFkUql8PX1xZdffskshra2Yv3No0cVCwSw\nEHosFMGhwbjvcB/3cR8AkPxFJFAghPuUWcDZs4C5OZvg9cirf5z7+vqqdgFVx/jUtRjpq++AwsLC\nqFOnTvTgwYNyx5UVIRQWFtLt27fJ0tJSWYRgb29PcXFxJJfLXytCKHvXExQUVK4IwcLCgmQyGT16\n9Ej586uq8LVwDVRIZCS5eHlRf29vcvHyokPHjtGyZcuoadOmpKurSz4+PvT8+fNqxci7mEexFrHK\n/12zkpT0Kd29+zXTGM+fPyc9PT3KYTyD/9dfiar4+rlSXEb1JizHa/9cJ7uyC9oAqHrvVPkJ6Pjx\n49DW1sb69euVi5G2aNECpio8gnp6euLkyZN4+PAh2rZtC19fX6xevRpFRUVwdnYGADg6OiIgIACd\nOnXC6NGj0alTJ2hpaSEgIEA5hBAQEIBJkybh+fPncHNzw5AhQwAAU6dOxfjx4yGRSGBiYoK9e/cC\nAIyNjbF06VLY2dkBAL766isYGhqq+hVw74jQqCj4BAUhedw4ZVvEihXQOnsWXjNmYPXq1dDV1a12\nnGY2zSAvkuP5jedoav3m90XVpRiG+xbt2n3BLEbjxo3Rv39/REREYMyYMcziSKXAggWKcuxqLJdX\nXloasHcvEBSEwqeXgfdeP6RAXqCmYBwAqLwa9pUrV/Ds2TPY29sr28oWI3V1dVV7B2sDX4qHAwBX\nb29EjHh9yRznAwcQ4a/eJXOSpiehacemaPs5u0V9S0uf4fTp1nB0zICWlj6zOAEBAYiPj8f27duZ\nxQCArl2BH38EevWqxkUePgR+/13xXufKFUUhgacnXHeuQYT5sdcOd73rivBAxtt212NMluJ5WXh4\nOBYtWoT33nsPixcvRnFxMaZNm9Zgkg/HAYptEa7duVPhZ0UMXuIbS43xKEz9FaUv09RsBn39XpDJ\njjONI5VKER4eznyTyiqvipCXB+zcqbiASATExADz5ikmiv76KzBwILzH+kB0vvxkUVGiCF6e7+Bk\nUYZUTkDW1taIjIzE5cuXMWjQIKxYsYJFvziuVpSUlGDBggXQ09NDxq1bFR7DYsEUo0FGeBL7BKXP\nWJdjS/HoEdsaZgsLCxgbGyMxMZFpHJV2SS0oAA4eVCz0KRQC+/Yp9uTJyFA8/Qwbptj7+wV3Z3ds\n+GwDXO+6on9Kf7jedcWG2Rvg7uzO5pd5R6n8Dig7OxtHjhxBv379MGjQIOTn57PoF8fVqJKSEixc\nuBCbNm2ChoYG/vvf/8LeyQlzd+8u9w5ItGsXvBhMEdDS14KenR5kUTK0GNri30+oIhMTN6SlrWNe\njl22OKmtrS2zGI6OiiXWsrOB1q0rOKCkBDhxAtizBzh0SDFm5+mpGLcz+feKQ3dnd55wGFM5AaWl\npSE3Nxdbt25FTk6Ossw5IyOj3CZ1HFcfFBcX44svvsCPP/4ITU1NfPHFF1i2bJlyIzjNRo3w3YED\niH7yBIMMDOAzdizc31C6X11lw3AsE1CTJhI0aqSLZ88uoXnzLsziuLm5YenSpVi2bBmzGBERMdDV\njYCTkxbaty+Bt7cL3N36AnFxiqeaffuAtm0VScfP751aZbreULXM7ty5c/Tnn38q//OtW7dox44d\n1K9fP1UvVWdV4Wvh6pmioiLy9vYmHR0datasGfn6+lJJSckbj+917hyFMy4tzruUR7Hm7Muxb9yY\nTXfvrvn3A6uhoKCA9PX1X5tWoS4hISdJJFr88p5uJDKcQSEtLYk6dCDy9SW6cYNJbO7NVL13Vuro\nL7/8kkJCQl77H1NUVJSy3j8zM1OlwHUZT0ANV0FBAX366aeko6NDzZs3Jz8/v0qtXeZ35w55M76h\nyeVyOt32ND29+vTfD66Ghw9DKTGR/R+MQ4cOpd27dzO5tovLknLJp+yfq6M3EeMEzr2ZqvfOShUh\nPH/+HKmpqZg/fz7c3d3xySefwN/fH7q6uti8eTMAoE2bNsye0jiuup49e4YpU6ZAT08PO3fuhK+v\nLx4/fowlS5ZUagUPqbExwhise/gyDQ2NGqmGMzR0wtOniSgpefzvB1dD2bI8apWdDfj7ozD2YoUf\nF+gYAQzfbXHqVal3QOvWrQMAzJo1C4BiG+6EhAScOnUKolf2teC4ukQmk2HWrFn4448/oK+vj7Vr\n18LHx0flF/DvN2+OvNJS3MrPh/gti4tWl7HUGJmbMtF2Lrv5QJqaTWFg0Acy2XG0bDmSWRypVIpl\ny5ZBLpdXb5kumQw4cEDxXufcOWDoUOhK2gAVFNk1bsx4oyBOvRg9idVr/GupX06GhNASFxf6qn9/\nWuLiQidDQig7O5uGDh1KjRo1olatWqm8VFRFJl27Rv5paWro8ZsVPymmmOYxVJxXzDROWtoGunZt\nCtMYRESdOnVS7tmlkrItDj78ULHFwUcfldvioMJ3QKJFFBJyUs2/AacKVe+dKlfBbd68GTY2Nuje\nvTsSEhKQlZWFjz/+WP2ZkeMqISY0FEd9fLAyOVnZNunUKRx4/hz6AgF27doFT09PtcSSGhtjW3Y2\nvF7a0kPdtPS0oGevh9yoXLQYxq4azthYitTUNTVSjh0WFlZu5ZQ3Ki4GIiIUTzohIYC9PTB2LLB9\nO2BgUO5Qd/d+AICNG5eioEATjRuXwstriLKdqx9UXopn1apV0NTUxN9//428vDyIRCKsX7+eVf9q\nBV+Kp/740tUVfhVsAz29Wzf8ouaJkLLiYrSLi8P9Xr3QRG0LkL0udV0qCpILYPWjFbMYABAfL0Gn\nTr9DT+99ZjEiIyOxZMkSxMXFVXyAXA6cOvXPFgcSiSLpjBr1zm5xUJ+peu9U+QlIKBRiwos10IuK\ninDo0CFVL8FxavP84cMK28301b/WmZG2Nt5v3hzRubmQVmIiY1WZuJngovQi86eTslURWCagJ0+e\n4OzZs+jVqxf09PTg7e0Ndzc3IDFRkXR++w0wNlbM1UlI4FscvGNUTkDa2tqYNGkShg0bBmtr63J7\n8nBcTTl16hRmzZqFJleuVPh5aRX25akMtxfVcCwTUNOOiiKH/Gv5aNapGbM4xsZuSE1dhfbtFzG5\nfmhoKObPn4/S0lLExsYCAJITEoAmTeCuq6t40gkPB96rYNlp7p2gcmmKp6cnFi1ahPPnz+Onn35C\nnz59WPSL4yoUFhYGiUQCJycnNGnSBLPWr8eSVyoxF4tEcPZis2ik1NgYR3JymFy7jIaGhnKTOpYM\nDfvj6dMLKC7OZXJ9f39/JL/0bg4AkmUybGzXDkhOVqxOwJPPO03lJyBAsSDpihUrkJiYiC5d2C3n\nwXEAQET4/fffMW/ePGRkZMDR0RGHDh1Cp06dAAAxYjGWbtwIzevXUaqhgSEbNqCfO5s1vLo2b458\nuRw38/MhYVyOnb4hHe3mtWMWQ1OzyYty7GNo1WqU+i788CHwxx8ofMN7nwJdXT5XhwNQhSegPXv2\nYM6cOdi2bRuaN2+O3377jUW/OA5yuRxbtmxBmzZt4OnpCSsrKyQlJeHPP/9UJh8A6OfujhXh4Vi+\nbx9WNGnCLPkAiqeTmpiUajjQEHln8lCSV8I0jrGxm3pWx87LA3bt+meLg+ho6FpaVnhoVbYt5xom\nlROQpqYmli1bhlatWuG7777D9evXWfSLe4cVFxdj3bp1MDExwYwZM2Bra4uUlBQcP34cYrH4zSfa\n2ir++r57l2n/amIYTqu5FvQd9CGLlDGNY2KiKEQgqsLePYWFQHAw4OGh2OJg715g3DjFFgd798Lb\nz++1ieoikQhejIZHufqnUkNwvXv3hr29PWxtbZGRkQG5XA43Nze4ubmx7h/3DikoKMCKFSuwYcMG\nFBYWwsPDA9999x1atWpVuQs0agS4uip2KZs5k1k/nY2NMTkpCfmlpWjKsBy7bFmelsNbMovRpIkI\nmpp6ePr0b+jpdfv3E0pLFVscBAUp9tfp0kVRwRYQ8NoWB+4vnkQ3btyIgoICNG7cGF5eXsp2jqvU\nPKDDhw9DIpEgNjYW8fHxuHbtGoyNjeHo6IgBAwZUbpJZPcLnAdWsvLw8LFy4EFu2bAEATJ06FatX\nr4Z+VUqp9+xR/CV++LCae1le//PnsaBdO7gxrIZ7du0ZLrpehMNdB6bl2DdvzoGOTku0b7+k4gOI\ngPh4xXe7b5/iacfT858nH457QeV7p6pLLWRlZRERUV5eHoWEhFBAQICql6DJkydTq1atyMbGRtmW\nk5NDgwcPJolEQs7OziSTyZSfrVq1isRiMVlbW9PRo0eV7WfPniUbGxsSi8Xk7e2tbC8oKKDRo0eT\nWCymnj170p07d5Sfbdu2jSQSCUkkEtq+fXuF/avC18JVQkhECLlMcqH+E/uTyyQX2vPHHho7dixp\naWlRs2bNaMmSJfT8+fPqBXn4kEhPj6igQD2dfoPVd+7QZ0lJTGPI5XKKNY+lvEt5TOMEB/vSpEkG\n5O3dn7y8XCgyMkTxwaVLRIsWEVlYEFlbK7Y4YPw7c/WbqvfOSh+9cuVKOnLkCP3yyy/KtjNnzlBk\nZKRKAYmIYmJiKDExsVwCmj9/Pn399ddERLRmzRpasGABERFduXKFunbtSkVFRZSSkkIikUi5X4qd\nnZ1ynSmpVEphYWFERLRp0yaaNWsWERHt3buXPDw8iEiR5CwtLUkmk5FMJlP+/CqegNQvJCKERB+K\nCMvxz7/3QM2Mm9G6deuouFiNa585OBBFRKjvehX4Oy+PLGPZ792TNCuJ7q69y+z6kZEhNHWqJZ04\nAeW/aSONKbJDeyKhkGj+fKLERL7FAVcpqt47K12E8NFHHyElJQU//fQThg4div/85z+4cOECYmJi\nVH1KQ9++fWFkZFSu7fDhw5g4cSIAYOLEiQgODgYAHDp0CJ6entDW1oa5uTnEYjHi4+ORlZWFvLw8\n5fDfhAkTlOe8fK2RI0ciMjISAHD06FG4uLjA0NAQhoaGcHZ2Rnh4uMr951Tnv8cfyd3KzwnBKKDP\nh33w3//+F1paVZoRUDE3N8V7IIY6N2uGQrkcN58/ZxqH9fYMwcH++OST2+Xaxs1+hEN2popijrVr\ngW7deNk0x0Sl/1/fsWNHdOzYERYWFpBKpcjOzkZCQgK6d++ulo7cu3cPpi/WfjI1NcW9e/cAAJmZ\nmXBwcFAeJxQKkZGRAW1tbQhfGn8WCATIyMgAAGRkZKBtW8Vy9lpaWjAwMEBOTg4yMzPLnVN2LY6t\nhIQEnD57GjB//bMCeYH6A0qlwPjxwHffqf/aL2hoaEBqYoIjOTmwYjgfyGigEa6NvYaSJyXQ0ldj\nks7NBQ4cgMalM8CIigI3URR1cBxDKv8vWiqVAgBat26NFi1aVL5CSQUaGhpMX7pWxvLly5U/Ozk5\nwcnJqdb6Ul9FRETAx8cHSUlJaCapeEmZxo0YzAnp3h149AhISQEsLNR//Rekxsb4OTMTc9oy3Lun\nmSb0HRXl2C0/qmY1XH6+YpXpoCAgKgoYNAjUqh2AilZC4HN1uH8XHR2N6OjoKp+vcgLy8/PDzZs3\noaWlBWdnZ5w5cwY+Pj5V7kAZU1NTZGdno3Xr1sjKylImNoFAgLS0NOVx6enpEAqFEAgE5dahK2sv\nOyc1NRVmZmYoKSnB48ePYWJiAoFAUO7LSktLw8CBAyvsz8sJiKs8IkJgYCCWLVuGrKwsODo64sKF\nC0i7lwafTT7lhuFEiSJ4zWYwJ6RRI2DIEMUw3Kefqv/6Lww2MsLE69fxrLQUzWqiHLsqCai4GDh2\nTJF0/vc/xRYHnp7A1q2AoSGGR4Vi924fjBv3z38vu3aJMHYsn6vD/btX/zj39fVV7QKqvmQ6cOAA\nERHl5ubSnj176H//+5+qlyAiopSUlNeKENasWUNERKtXr36tCKGwsJBu375NlpaWyhe/9vb2FBcX\nR3K5/LUihJkzZxIRUVBQULkiBAsLC5LJZPTo0SPlz6+qwtfyzisuLqalS5eSvr4+aWpq0ogRIygz\nM7PcMSERIeQy2YU0B2hS/wn9KSQihF2HgoKIPviA3fVfcDp/nv734AHTGM+uP6O/BH9VvuChtJTo\n5EmimTOJWrQgcnQk8vcnelHB+qrIyBDy9nYlb+/+5O3t+k8VHMepSNV7Z5US0JkzZ1Q9rZwxY8ZQ\nmzZtSFtbm4RCIQUGBlJOTg4NGjSowjLslStXkkgkImtrawoPD1e2l5Vhi0Qi8vLyUrYXFBTQqFGj\nlGXYKSkpys8CAwNJLBaTWCymbdu2Vdg/noAqLzs7m8aPH086OjrUpEkTmj179r+WUo/5Ywz9eq76\nO5S+VU6Oohy7umXd/+Lru3fp05oox7aIpbyLbynHlsuJzp0jmjdPUb3WuTPRqlVEt28z7RvHvUzV\ne6fKG9LNmTMHAJCcnIzGjRujf//+mD17tmqPXXUcn4j6dkSEgwcPYvny5bh8+TJMTU3x+eefY968\neWhUiRfXO/7egUNJh7B/9H62He3dG/jqK8DFhVmIy0+fYujly7jdsyfT95Y73Xfi1M1TaGLWBKRL\nGO49HAPdBwI3biiG1/bsUQy3eXoq/tnYMOsLx70Jkw3ppk6diqFDh6Jnz54YOXIkiAiOjo4oLS3F\n5cuXq9xZrn7JzMzEihUrsHv3bjx79gy9e/dGbGwsevbsqdJ1XEWu8A7zRnFpMbQ1tRn1FopquLAw\npgnovWbNUEKEpPx8dGjGZu+eqNAonEg8gQnZE4Cbirbd5zYBBj4YmP8QGD1asW11z568XJqrVyqV\ngFq3bo3hw4cDANq0aYPCwkJERkbi5s2bb18ckqt3QkNj4O8fgcJCLejqlmDWrAEoLHyINWvW4NKl\nS2jatCmmTp0KX1/fqi2VA8C0uSkkJhL8lfYXnMyd1PsLvMzNTfE08P33zEK8vDo2qwQU7B+sSD4v\nGaEoZJQAAB6hSURBVJfzGQ5abMbAG9sBhgUQHMdSpRKQxYtS1tDQUFy9ehX29vYYPHgwXFxcMHDg\nQGVpNle/hYbGwMfnKJKTVyrbIiLGQFPzKKys2iAoKAgjRoyAphpueFKxFGE3w9gmoPffBx4/Vmx+\n9sqqzOrkZmyMTZmZ+Fzd5dhPnwKHDkEj4TIqnKzTzIQnH65eq9RMs7IxPXd3d9y7dw/W1tYgIjRq\n1Agff/wx0w5yNefbb0PKJR+FvejZcwKuXr2KUaNGqSX5AICbxA1Hbh1Ry7Xe6OVybIYGGRkh7skT\nPC1Rw949hYXAoUOKhT4FAmDPHpDgDQue8qk6XD1XqQS0ePFijBs3DgEBATAwMECrVq2gra0Yu2/S\npAnTDnJslZSUIDQ0FB988AGio89WeIy2tlGF7dVhZ2aHrLwspD1O+/eDq6MGluXR09KCnZ4eTuRW\ncWvr0lIgMhKYOhUwM1Os4DBwoOLJLTQUw9fMwm7R7nKn7BLtwodeH6qh9xxXeyo1BOfn54eePXsi\nLi4Od+7cQc+ePaGpqYmuXbvi0aNHmDp1Kut+cmqWlJSEwMBAbN68GQDw/PlztG49GFlZrx/buHGp\n2uNrNtKEi8gF4bfC8Z8e/1H79ZWcnYFp04DnzwGGfyy5GRvjyKNHGNqiReVOKNviIChIscWBmRkw\ndizg6/vaFgcD3RWTpQ9uPAgUAGgMjPUaq2znuHqrqvXeT548ocjISBo2bFhVL1FnVeNrqdMeP35M\nv/zyC/Xo0YOaN29OBgYG1KFDBwoICKDc3FwKCTlJItFiUtwdFf9EokUUEnKSSX92/r2Thu8dzuTa\n5fTpQ/RikjIrl58+pfanT//7ZNHLl4kWLyaytCSysiJavpxvccA1GKreO1WeB/SqhIQE2NnZqScb\n1hENaR6QXC5HdHQ0tmzZguDgYBgYGODJkycYM2YMZs6ciR49epSbvxIaGoONG4/h3DlNtG5dijVr\nnOHu3o9J3x48ewDJRgnuz78PHU0dJjEAAKtWAffuARs2MAsREhmJUTt2wEZfH8YaGvAePhzuZcs8\npaQoNskLClKsUVc2V4evMs01MKreO6udgBqihpCA7ty5g23btmHLli0oLi5GYWEhLCws8Omnn8LD\nwwN6enpvPT8wEDh6FPjtN7b97Lm5J9YMWoMBFgPYBTl/XvFS/8YNJpcPjYqCT1AQkseNU7aJtm/H\nBkNDuMfHAzdvAh9/rEg6ffrwVaa5BosnIDWorwkoPz8fBw4cwNatW3Hu3DkYGhpCJpNh3LhxmD59\nOt5///1KXyszUzGZ/v59QJ1b9bxqefRyPCt6hm9cvmEXhEhRURYTAzCYt+bq7Y2IEa+XSbv6+iJ8\n/nzFeyhthhNuOa6OUPXeyf8Uq+eICLGxsZg+fTqEQiH27NmDmTNn4q+//sLy5cuRmZmJgIAAlZIP\noHgn3r49EBfHqOMvSMVShN1iW6UGDQ125djPn6Pw4cMKPyro0kVRhceTD8dViOHfthxLmZmZ2Llz\nJ7Zt24bS0lJMnjwZly5dgkAgUB7z3nvvVStG2Uo2ffpUt7dvZmtmi3vP7iH1cSraGbRjF8jNTTGu\n6KWGbQaKi4Hjx5VbHOh26lThYXyaDse9HX8CqkcKCwvxxx9/wN3dHe+99x5u3ryJzZs3IykpCYsW\nLSqXfNShLAGxpNlIE64iV4TdZBxo8GDg1ClFOXZVyOWK8z/9VPF4+H//B9jaAteuwXvFCoh2l5+n\nI9q1C14f8nk6HPc2/AmoHrhw4QK2bt2KPf/f3r3HRVnmDx//jGFqaSqjgDC6KA4gySIUSJanEAFR\n8iUuZI+CpmW6u5LrL21rD9SzKW399rXqk+XzkszFR9FtXyKCGXkgaxVESK3IJENhJgZ/SCgsZ7ie\nPyZHCagwxhnl+/6n8ea+DvfF3f3luuc67NjB2LFjWbRoEbt37+ZeK609ds1DD8GFC1BWBsOGWa+c\niNER/LPwnyx9cKn1Chk0yDzqLDvbHFl/CqXg1ClzTyc1FQYONA8kyM2FUaMsp0W6uACwcc+ea9N0\n+O0TT1wfBSeE6JAMQuiAPQxCqKioYMeOHWzdupXKykri4+NZuHAho2548N0KMTHm5/WiRdYro6K2\nAo8NHlz6r0v0cehjvYKSksyjKzZs+OHzioqub3HQ0HB92LSvr/XqJsQdwCrbMYhbo7m5mffff5+t\nW7dy8OBBIiMjee2113j00Ud/0j471jBjBuzfb90ANOSeIYwZMoaPSz4mZFSI1co5eu+9ZG3ZgsOZ\nMzT36cP0FSuYFBlp/qHBYB5zvnOn+XNMDLzzjmxxIIQVSQ+oA7e6B3T27Fm2bt1KSkoKI0aMYNGi\nRcTGxjJo0KBbVofOmEwwZgz8z/9Ydzj2yx++zJX6K/x32H9bJf+jmZm8n5DAK+fPW4696O5OWGQk\nkz77DM6cgdmzzcvhTJli3YsV4g4l84C6gbUDUEtLC7m5uaSnp7Nv3z4qKyuZP38+ixYtwqeTEVW2\nFBBgXkRg4kTrlZFnzCM+LZ7CXxdaJf8/hIXxl6ysdsf/6OzM/37rLfN7xj5WfP0nRA8gr+DsVE1N\nDVlZWezbt4/MzEycnZ2Jiori7bffJjAw0Gav2H6Ka6/hrBmAHnB9gIraCi5UXcB9kHv3Zt7QgIPR\n2OGP7vL2Nvd8hBC3nF099datW8f999+Pr68vTzzxBA0NDVRWVhIaGoqnpyfTp0+n6oYl79etW4de\nr8fb25usG/66zc/Px9fXF71eT0JCguV4Q0MDsbGx6PV6goODuXjxolWvx2Aw8OabbxIREcGwYcN4\n88038ff3Jzc3l08//ZRXXnmF8ePH23XwgVszHLuXphfho8O7bzj2tS0OliwBV1eaOwlALX1lto4Q\nNvPz1j7tPsXFxWrkyJGqvr5eKaVUTEyMeuedd9Rzzz2nXn31VaWUUklJSWrNmjVKKaU+//xz5efn\npxobG1VxcbHy8PCwrEQcGBiocnNzlVJKRUREqPe+Wwn5jTfeUMuWLVNKKZWamqpiY2M7rMvNNktr\na6s6efKk+tOf/qT8/f2Vo6Ojmj9/vtq1a5eqqqq6qTztQVOTUoMHK2UwWLecHWd2qFk7Zt18Bq2t\nSuXkKJWQoNSwYUoFBCj12mtKlZSoDzMy1AseHurGpb5/7+GhPszI6L4LEKKH6+qz024C0OXLl5Wn\np6eqrKxUTU1NaubMmSorK0t5eXkpk8mklFKqrKxMeXl5KaWUWrt2rUpKSrKkDwsLU8ePH1fffPON\n8vb2thzfuXOnWrp0qeWcnJwcpZRSTU1NasiQIR3WpSuNWFtbqzIyMtTSpUuVq6ur0uv1atWqVerD\nDz9UTU1NXWsEOxYbq9SWLdYto+I/FWrA2gGqvqm+awk/+0ypF1+8vsXBn/+s1Nmz7U77MCND/SEs\nTP158mT1h7AwCT5CdLOuBiC7+Q7I0dGRVatWMWLECPr160dYWBihoaGUl5fj7OwMgLOzM+Xl5YB5\nKZrg4GBLep1Oh9FopHfv3uhu2NDLzc0N43evX4xGI8OHDwfAwcGBgQMHUllZiaOjY5fqWl5eTmZm\nJunp6Rw5cgQ/Pz+ioqI4fPgwXl5eP6sd7FVEBOzbZ96001q092gZ6zSWoxePEuoR+sMnX7hwfYuD\ny5fh8cfNG7sFBHQ6bHpSZOT1YddCCJuzmwB0/vx5/v73v3PhwgUGDhzIr371K7Zv397mHI1G02bv\nGmtKTEy0fJ48eTJDhw61jFr74osvmD59OtHR0SQnJ6PVam9JnWwpPByefda8DJo119YcdWUUS1Yu\nYaTjSPpo+rDiiRVEhn4XNMrL4Z//NAedc+cgOto8qXTiRNniQAgbyM7OJjs7+6bT200AOnnyJBMm\nTLA8zOfMmcPx48dxcXHBZDLh4uJCWVkZTk5OgLlnU1paaklvMBjQ6XS4ublhMBjaHb+WpqSkBFdX\nV5qbm7ly5UqnvZ8XXniBo0ePsm/fPp588kmUUsyaNYuXX36ZyZMnc/fdVtxAzQ45O4OHBxw7BpMn\nW6eMzA8y+fDwhxgCDZRQAsD5DUVw8CCRpwrNS+DMnAkvvGDe4qCH/Q6EsDdTpkxhypQpln+/9NJL\nXUpvN382ent7k5OTQ11dHUopDh48iI+PD7NmzWLbtm0AbNu2jdnfDZmNiooiNTWVxsZGiouLKSoq\nIigoCBcXF+677z5yc3NRSpGSksJj3y0KGRUVZcnr3XffJSSk81n3zs7OvPjiizg5ObF3716Ki4vZ\nuHEjoaGhPS74XGPt0XAbdmzAEGhoc+z8g8VszPp/8OST5mV0tm+HyEgJPkLcAeymB+Tn50dcXBwP\nPvggvXr1IiAggKeffprq6mpiYmJITk7G3d2d3bt3A+Dj40NMTAw+Pj44ODiwadMmy+u5TZs2sXDh\nQurq6pgxYwbh4eEALF68mAULFqDX69FqtaSmpnZan8LCQoZZcwXO29CMGbB0qXlJtW7X1ETD5TJw\nb/+jej8f846mQog7iqyE0AF7WIzUHrW0gJMTnD4NN4zzuHmtreZ3ejt2wLvvEjakgazYq+1OC7sY\nxoG3D3RDgUIIa5IdUYXV3HUXTJ8OB35OLLi2xcHq1eDuDs88Y45mOTmsWL8Dj0882pzuUeDBb+d1\nwyZyQgi7Yzev4MTtYcYM2LPHvMBAl1zb4mDnTqivN29vkJnZZouDyO+2mti4cyP1rfX07dWX3/7m\nt9dHwQkh7ijyCq4D8gquc5cugaen+b8/Og7AaLy+xUFpqXmLg3nzIDhYtjgQ4g4ki5EKq3JyMgeg\nY8fMuxa0U1kJ775rDjqnT5sX+ly7FqZOlS0OhBBtyBNBdNmAfjuYHXGYQX0q6OVQz9KnJrHG190c\ndI4ehbAwWLHCPG5bFvsUQnRCXsF1QF7Bde7VxNf5y18KqWl523JsELE873GONX/+HTz2GNx3nw1r\nKISwFdmQrhtIAOrcqCHhFF9uPwxulDaC8xVW3rNBCGHXZBi2sKrW5o5fqbU0y26iQoiukQAkuqSX\nQ32Hx+9yaLjFNRFC3O4kAIkuWfqbaQxymN/m2CCH/8XTv+l8XT0hhOiIfAfUAfkO6Ie9mvg6//f/\nHKKluQ93OTTw9G9CWJP4X7aulhDCxmQQQjeQACSEEF0ngxCEEELcFiQACSGEsAkJQEIIIWxCApAQ\nQgibkAAkhBDCJiQACSGEsAm7C0BVVVXMnTuXMWPG4OPjQ25uLpWVlYSGhuLp6cn06dOpqqqynL9u\n3Tr0ej3e3t5kZWVZjufn5+Pr64terychIcFyvKGhgdjYWPR6PcHBwVy8ePGWXp8QQggzuwtACQkJ\nzJgxgy+++IIzZ87g7e1NUlISoaGhnDt3jpCQEJKSkgAoLCxk165dFBYWcuDAAZYvX24Zg75s2TKS\nk5MpKiqiqKiIA9/tI52cnIxWq6WoqIiVK1eyZs0am12rEEL0ZHYVgK5cucJHH33Ek08+CYCDgwMD\nBw4kPT2d+Ph4AOLj40lLSwNg7969zJs3j969e+Pu7s7o0aPJzc2lrKyM6upqgoKCAIiLi7OkuTGv\n6OhoDh06dKsvUwghBHYWgIqLixk6dCiLFi0iICCAp556iv/85z+Ul5fj7OwMgLOzM+Xl5QB88803\n6HQ6S3qdTofRaGx33M3NDaPRCIDRaGT48OHA9QBXWVl5qy5RCCHEd+wqADU3N1NQUMDy5cspKCjg\n3nvvtbxuu0aj0aDRaGxUQyGEEN3Frrbk1ul06HQ6AgMDAZg7dy7r1q3DxcUFk8mEi4sLZWVlODk5\nAeaeTWlpqSW9wWBAp9Ph5uaGwWBod/xampKSElxdXWlububKlSs4Ojq2q0tiYqLl85QpU5gyZYoV\nrlgIIW5f2dnZZGdn33R6u1uMdNKkSWzZsgVPT08SExOpra0FQKvVsmbNGpKSkqiqqiIpKYnCwkKe\neOIJTpw4gdFoZNq0aXz11VdoNBrGjx/Phg0bCAoKIjIykhUrVhAeHs6mTZv49NNPefPNN0lNTSUt\nLY3U1NQ2dZDFSIUQoutu+9WwT58+zZIlS2hsbMTDw4OtW7fS0tJCTEwMJSUluLu7s3v3bgYNGgTA\n2rVrefvtt3FwcGD9+vWEhYUB5mHYCxcupK6ujhkzZrBhwwbAPAx7wYIFfPLJJ2i1WlJTU3F3d29T\nBwlAQgjRdbd9ALIHEoCEEKLrZDsGIYQQtwUJQEIIIWxCApAQQgibkAAkhBDCJiQACSGEsAkJQEII\nIWxCApAQQgibkAAkhBDCJiQACSGEsAkJQEIIIWxCApAQQgibkAAkhBDCJiQACSGEsAkJQEIIIWxC\nApAQQgibkAAkhBDCJiQACSGEsAkJQEIIIWxCApAQQgibsLsA1NLSgr+/P7NmzQKgsrKS0NBQPD09\nmT59OlVVVZZz161bh16vx9vbm6ysLMvx/Px8fH190ev1JCQkWI43NDQQGxuLXq8nODiYixcv3roL\nE0II0YbdBaD169fj4+ODRqMBICkpidDQUM6dO0dISAhJSUkAFBYWsmvXLgoLCzlw4ADLly9HKQXA\nsmXLSE5OpqioiKKiIg4cOABAcnIyWq2WoqIiVq5cyZo1a2xzkT1Mdna2ratwx5C27F7SnrZlVwHI\nYDCwf/9+lixZYgkm6enpxMfHAxAfH09aWhoAe/fuZd68efTu3Rt3d3dGjx5Nbm4uZWVlVFdXExQU\nBEBcXJwlzY15RUdHc+jQoVt9iT2S/E/efaQtu5e0p23ZVQBauXIlr732Gr16Xa9WeXk5zs7OADg7\nO1NeXg7AN998g06ns5yn0+kwGo3tjru5uWE0GgEwGo0MHz4cAAcHBwYOHEhlZaXVr0sIIUR7dhOA\nMjIycHJywt/f39L7+T6NRmN5NSeEEOL25mDrClxz7Ngx0tPT2b9/P/X19Vy9epUFCxbg7OyMyWTC\nxcWFsrIynJycAHPPprS01JLeYDCg0+lwc3PDYDC0O34tTUlJCa6urjQ3N3PlyhUcHR3b1cXDw0MC\nXTd76aWXbF2FO4a0ZfeS9uw+Hh4eXUug7FB2draaOXOmUkqp5557TiUlJSmllFq3bp1as2aNUkqp\nzz//XPn5+amGhgb19ddfq1GjRqnW1lallFJBQUEqJydHtba2qoiICPXee+8ppZR644031DPPPKOU\nUmrnzp0qNjb2Vl+aEEKI79hND+j7rvVAnn/+eWJiYkhOTsbd3Z3du3cD4OPjQ0xMDD4+Pjg4OLBp\n0yZLmk2bNrFw4ULq6uqYMWMG4eHhACxevJgFCxag1+vRarWkpqba5uKEEEKgUaqTL1yEEEIIK7Kb\nQQi2UFpaytSpU7n//vsZO3YsGzZsACAxMRGdToe/vz/+/v6WeUTih9XX1zN+/HjGjRuHj48Pv//9\n74EfnkwsOtdZe8r9efO6MtFd/Ljvt2dX780e3QMymUyYTCbGjRtHTU0NDzzwAGlpaezevZsBAwbw\nu9/9ztZVvO3U1tZyzz330NzczCOPPMLrr79Oeno6Q4YMYfXq1bz66qt8++23lgnF4od11J6HDh2S\n+/Mm/e1vfyM/P5/q6mrS09NZvXq13Js/w/fb86WXXurSvdmje0AuLi6MGzcOgP79+zNmzBjLnKEe\nHJd/lnvuuQeAxsZGWlpaGDx4cKeTicWP66g9Qe7Pm9GVie7ix3XUnkqpLt2bPToA3ejChQt88skn\nBAcHA7Bx40b8/PxYvHixdMu7oLW1lXHjxuHs7Gx5vdnZZGLx4zpqT5D782Z0ZaK7+HEdtadGo+nS\nvSkBCKipqWHu3LmsX7+e/v37s2zZMoqLizl16hTDhg1j1apVtq7ibaNXr16cOnUKg8HA0aNHOXLk\nSJufy2Tirvl+e2ZnZ8v9eRNkonv36qw9u3pv9vgA1NTURHR0NPPnz2f27NkAODk5WW7GJUuWcOLE\nCRvX8vYzcOBAIiMjyc/Pt0wmBtpMJhY/3bX2PHnypNyfN+HaRPeRI0cyb948Dh8+3GaiO8i92RUd\ntWdcXFyX780eHYCUUixevBgfHx+effZZy/GysjLL5z179uDr62uL6t12KioqLF3uuro6PvjgA/z9\n/YmKimLbtm0AbNu2zRLoxQ/rrD2vPTBB7s+fau3atZSWllJcXExqaiqPPvooKSkpcm/epI7a8x//\n+EeXn512OxH1Vvj3v//N9u3b+eUvf4m/vz9gbtidO3dy6tQpNBoNI0eOZPPmzTau6e2hrKyM+Ph4\nWltbaW1tZcGCBYSEhODv79/hZGLxwzprz7i4OLk/f6Yfm+gufjqllKU9V69ezenTp3/yvdmjh2EL\nIYSwnR79Ck4IIYTtSAASQghhExKAhBBC2IQEICGEEDYhAUgIIYRNSAASQghhExKAhBBC2IQEICGE\nEDYhAUj0SG+99RZarZZNmzZRUVEBmNcFnDdvXpfz6ihdUVERvr6+XL58mXPnzhEREcHmzZuZNm0a\nixcvZvPmzTzwwAO0trZ2y/XYo7KyMv74xz+yYcMGtm3bxp49eyzL3ggBgBKiB8rLy1PR0dFWLWP2\n7NlKKaV27dqlGhsblVJKhYWFqbNnzyqllNq5c6dVy/8pCgsL1SuvvNLt+Z4/f15NmzZNXb582XJs\n+fLl6uDBg91elrh9SQ9I9Ei5ubkEBQVZLf/a2lruu+8+APR6Pb179wbg3LlzeHl5AeDt7W218n+q\nI0eOWNZB7E7z58/n+eefx9HR0XLM39+fBx98sNvLErevHr0Yqei58vLyWLhwoeXfX3/9NRkZGbi6\nujJ37lwAduzYQVNTEw0NDdTX13P16lWmTZtGcHAwCxYsICUlhfPnz5OZmWlJdy3NV199RWBgIIDl\nAV9UVISHh4elzLKyMo4cOcLdd99NdHQ0RUVF/Otf/2Ly5MkopcjOziY8PNzyijAuLo6CggL27t3L\n8OHDcXFx4csvv2TVqlW89957nD171pLXV199RUZGBlVVVVRVVfHrX/8ag8FAU1MTBoMBJycndDod\nycnJPPPMM5hMJi5dukR6enq7a/zoo4/IzMxsk1dNTU2b8lxcXCzXdezYMaqrqwkJCWnT5o8//jj9\n+/e3yu9T3J6kByR6pPz8/DZ/jZtMJrRaLY2NjQB8+eWXZGVlER8fT0VFBTU1NfTu3RulFMXFxZYH\naXl5OVqtloaGhjZp+vfvz/jx49uUeeLECUuv6+LFi6xdu5aVK1cyZswYampqLCsK63Q65syZw5kz\nZ5g0aRIzZ86koKAAMG/LMGDAAFxdXZk5cyb79++npKSkXV5Dhw5lwIABzJkzh23btuHk5MT7779P\nXFwcd911F2PHjiU8PBxXV1eeeuopXFxcOr1GJyenNnmNGDGiXXk3On78OFOmTGnX5hJ8xPdJABI9\nztWrV4HrD8TGxkauXr3K3r17iYqKAmD79u2WzwUFBaxcuZKCggIeeughjh07xoQJEwCYMGGCJd2N\nac6cOcO4cePalJuXl2fZ8j0tLQ29Xk9GRgYajYbRo0fzyCOPcP78eQIDA6mtrUWr1dK/f39ycnIs\neT388MPk5uYyadIklFKYTCbS0tIYPXp0m7y8vLw4efIkU6dOpU+fPm3qdvr0aQICAjCZTG16LhMm\nTOjwGr+fV0d1v5GDgwP9+vVrc6yxsZEPPvjg5/zaxB1IApDocfLy8tr0flJSUrj//vvRaDScOXMG\ngKqqKry8vGhsbKS2tpZ+/fpZHqrHjx8nICCA3Nxcqqur0Wg0fPrpp23S1NTUkJOT067ca6/l+vXr\nR1RUFDNnzmTixIlcunSJuro6+vbtC8DJkyctvaX09HQmTpxoqdvly5fp378/hw8fJioqir59+/LY\nY4+1yUspRUNDg+W7pxvrVl1dTV5eHnl5eQQFBZGXl0dtba2lXt+/xu/n1VHdAYqLiwGIjIwkJyen\nzVbNu3btYurUqd3y+xN3jrsSExMTbV0JIW6VvLw8/vrXv9LS0sLVq1dJSUnh448/5vHHH+fEiRN4\nenoycuRIhgwZwpEjR8jJyaF3796Eh4eTn5/Pt99+i8FgoKqqirCwMJqbmy3pAgMDOXLkCGVlZdTU\n1KDVavHx8eH06dOkpKSwe/duhg8fzi9+8Qv8/PxIT0+npqaG/Px8AgIC+Oyzz3BwcCAoKIjMzEwe\nfvhh3NzcyM/Pp66ujpCQEL7++mv27NnDkCFDOHbsGImJiXh5ebXLy2g0YjKZePTRRwEYOnRom7oN\nHjyYESNGcPLkSYYNG4anpydAh9doMpna5DV69Oh25ZWXlzN16lQSEhJwdHRk8ODBbNmyhdLSUj7/\n/HMiIiLkFZxoRzakE+IHvPPOO/Tr14/Y2FhbVwUw99Y0Gg3z58+3dVXayc7O7vC7HyE6I6/ghOjE\nqVOn2Lx5MwaDwdZVAcyj5rZs2YLRaLR1VTrU0NBg6yqI24z0gIQQQtiE9ICEEELYhAQgIYQQNiEB\nSAghhE1IABJCCGETEoCEEELYhAQgIYQQNiEBSAghhE1IABJCCGET/x9ZKWP0pRA//gAAAABJRU5E\nrkJggg==\n", "text": [ "" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAAETCAYAAABXxlNqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVNe9P/73AOMFVEBQ0BkQZYarBkkENDGRRBG1EY0a\nRE2CiooYY1KPt6TNqW2TgN+2Ty619mhr1OakRM0vFdoSNLHHS5QZEDVeUATFCAODys0Lt2Fm/f7w\nOEeKChqYmT28X8+T52H27DX7szD6nrX32mvLhBACREREEuNg7QKIiIgeBwOMiIgkiQFGRESSxAAj\nIiJJYoAREZEkMcCIiEiSrBJg2dnZCAoKglqtxoYNG+67z4oVK6BWqxEWFoYTJ06027a6uhoxMTEI\nCAjAxIkTUVtba34vNTUVarUaQUFB2Ldvn3l7dHQ0goKCEB4ejvDwcFy/fr0LektERF1CWFhLS4vw\n9/cXJSUlorm5WYSFhYmCgoJW+/zzn/8UkydPFkIIodFoRFRUVLttV69eLTZs2CCEECItLU2sXbtW\nCCHE2bNnRVhYmGhubhYlJSXC399fmEwmIYQQ0dHRIj8/3yL9JiKizmXxEVhubi5UKhX8/Pwgl8uR\nkJCAjIyMVvtkZmYiMTERABAVFYXa2lro9fqHtr23TWJiIvbs2QMAyMjIwJw5cyCXy+Hn5weVSgWt\nVms+luB93EREkmTxANPpdPDx8TG/ViqV0Ol0HdqnvLz8gW0rKyvh5eUFAPDy8kJlZSUAoLy8HEql\nslWb8vJy8+vExESEh4fjvffe68ReEhFRV7N4gMlksg7t15GRkRDivp8nk8k6dJzPP/8cZ86cweHD\nh3H48GF89tlnHaqNiIisz8nSB1QoFCgtLTW/Li0tbTVCut8+ZWVlUCqVMBgMbbYrFAoAd0Zder0e\n3t7eqKiowMCBAx/4WXfbDB48GADQp08fzJ07F7m5uXj11Vdb1aJSqXDx4sXO6DoRUbfh7++P4uLi\nrj2IpS+6GQwGMWzYMFFSUiKamprancSRk5NjnsTxsLarV68WaWlpQgghUlNT20ziaGpqEpcuXRLD\nhg0TJpNJtLS0iGvXrgkhhGhubhYzZ84UmzdvblOvFX5FFvWLX/zC2iV0KfZP2uy5f/bcNyEs82+n\nxUdgTk5O2LhxI2JjY2E0GpGUlITg4GBs3rwZAJCcnIwpU6YgKysLKpUKLi4u2LZt20PbAsC6desQ\nHx+PrVu3ws/PD7t27QIAhISEID4+HiEhIXBycsKmTZsgk8nQ2NiISZMmwWAwwGg0IiYmBosXL7b0\nr4OIiB6TxQMMACZPnozJkye32pacnNzq9caNGzvcFgD69++Pb7/99r5t3nnnHbzzzjuttrm4uODY\nsWOPUjYREdkQrsTRzUVHR1u7hC7F/kmbPffPnvtmKbL/PVdJDyCTyXivGBHRI7LEv50cgRERkSQx\nwIiISJIYYEREJEkMMCIikiQGGBERSRIDjIiIJIkBRkREksQAIyIiSWKAERGRJDHAiIhIkhhgREQk\nSQywTrB5cw1efLEcmZlVMJm4biIRkSUwwDqBSqVHjx5lSE52hEJxEykpOpw7d9vaZRER2TWuRt+O\njqyofPr0aWi1WhiNJly+PAAaTSDy8oZh2LAbeOUVI5Ys8YSbm9xCFRMRWZ8lVqNngLXjUQLMZDKZ\ntxkMjjh1yhc5OUG4eHEgnn22CosX98D06R5wdJR1ddlERFbFALMBjxtg96qr643cXBVycoLQ1OSE\n6dNvYPnyfggL69sVJRMRWR0DzAZ0RoDdJQRQWuqBnJwg5OYOg6/vLcyd24KlSz3g4dGjM8smIrIq\nBpgN6MwAu1dLiwPOnPFBTk4QCgu98fTTVUhKkmPWLA/I5ZxbQ0TSxgCzAV0VYPe6ebMX8vL8kZMT\nhFu3emLq1DosX94Xo0b1e6zPIyKyNgaYDbBEgN2rrKw/NJpAaLX+8Paux5w5zUhJ8YCXV88f/dlE\nRJbCALMBlg6wu4xGGQoKlMjJCUJBwWBERFRj0SInJCTwFCMR2T4GmA2wVoDd6/btnsjL84dGE4ia\nGhdMmVKD11/vg6efdu2S4xER/VgMMBtgCwF2r4oKN2g0AdBq1XB3b0JCQiOWLesPhaJXlx+biKij\nGGA2wNYC7C6TSYbz5wdDownCqVNKPPlkNVav7oGpU/vDwYE3ShORdVkiwJy69NOpyzg4CISE6BAS\nokNDgxy5uSosWfIE3Nyq8NOfGrF48UCu+EFEdo0jsHbY6gjsfkwmGU6e9MO+fSPR0NATKSm3sXLl\nAPTpw+8pRGRZPIVoA6QUYHcJARQVDcI334Thhx88MW9eDd591xPe3pyKT0SWwVOI9FhkMiAgoAIB\nARXQ6dzx7bdhUKk88JOf6LB+vRuCg12sXSIR0Y/GG4rsnEJRg8TEA3j33f8PtbVViIhwxIQJ5Th0\nqNbapRER/SgMsG7C3f02Zs7U4P330+HqWopp0+R48slK7Np1jU+RJiJJ4jWwdkjxGlhHGAwOyM1V\n45tvwtC7twkrVjQjJWUgevTgdxoi+vE4icMG2GuA3WUyAadP++Kbb0aittYFixffxNq1A9GvHy+P\nEtHjs0SA8et2N+fgAISFXcGqVZlYsGA/srOboVQasHixDleuNFi7PCKiB+LXbDLz978Kf/990Otd\nsX9/GIKDPTFxog7r1/Pp0URke6wyAsvOzkZQUBDUajU2bNhw331WrFgBtVqNsLAwnDhxot221dXV\niImJQUBAACZOnIja2v+bZZeamgq1Wo2goCDs27evzbHi4uIwYsSITuyhtHl712HevENYv34Xmpqu\nYuxYOcaNq8A339RYuzQiIjOLB5jRaMTy5cuRnZ2NgoICpKen49y5c632ycrKQnFxMYqKirBlyxak\npKS02zYtLQ0xMTG4cOECxo8fj7S0NABAQUEBdu7ciYKCAmRnZ2PZsmWtrlV99dVX6Nu3L2QyLrv0\n71xdGzB9eh7efz8dXl6XkZAgx4gR1/DZZ5y5SETWZ/EAy83NhUqlgp+fH+RyORISEpCRkdFqn8zM\nTCQmJgIAoqKiUFtbC71e/9C297ZJTEzEnj17AAAZGRmYM2cO5HI5/Pz8oFKpkJubCwC4desWPvzw\nQ/z85z/v8ouNUtarlwETJpzGe++lIyLiNN55xxF+fnX4f/+vAk1N0pu4QkT2weIBptPp4OPjY36t\nVCqh0+k6tE95efkD21ZWVsLLywsA4OXlhcrKSgBAeXk5lEplqzbl5eUAgHfffRerVq2Cs7NzJ/fS\nPjk6CoweXYyf//xLvPTSUWzbJjB4cD1WrdKhqqrZ2uURUTdj8UkcHT1V15ERkRDivp8nk8keehwh\nBE6ePIlLly7hww8/xOXLlx96nPXr15t/jo6ORnR0dLu12TOZDAgNLUNoaBl++MET33wzEps3mzBt\nmg7r1rli+PA+1i6RiCzswIEDOHDggEWPafEAUygUKC0tNb8uLS1tNUK63z5lZWVQKpUwGAxttisU\nCgB3Rl16vR7e3t6oqKjAwIEDH/pZGo0Gx44dw9ChQ9HS0oKrV6/ihRdewL/+9a82Nd8bYNTakCHX\nsWjRt7h2rS8OHhyOMWM8EBqqx4oVjkhI8OSzyYi6iX//cv/LX/6yy49p8VOIo0aNQlFRES5fvozm\n5mbs3LkTcXFxrfaJi4vDX/7yFwCARqOBm5sbvLy8Hto2Li4OO3bsAADs2LED06dPN2//4osv0Nzc\njJKSEhQVFSEyMhJLly6FTqdDSUkJvvvuOwQEBNw3vKhjBgy4iVmzcvDBB3+FWn0Ba9c6Qqm8gbff\nLsf16zy9SESdz+IjMCcnJ2zcuBGxsbEwGo1ISkpCcHAwNm/eDABITk7GlClTkJWVBZVKBRcXF2zb\ntu2hbQFg3bp1iI+Px9atW+Hn54ddu3YBAEJCQhAfH4+QkBA4OTlh06ZNbU4vPuhUJD26nj1b8Oyz\n5zF27HlcvOiF/ftH4JNPBCZM0GHt2j54+mlXa5dIRHaCS0m1w96XkrKE2lpnHD4cjMOHg+HjcwvL\nlgkkJQ3guotEdoxrIdoABljnaWlxwIkTQ3HgwHBUV7sgIaEOa9b0x5Ahva1dGhF1Mj7QkuyKk5MJ\nEREXERFxEaWlHjh4cDhCQjwxZkw5Vq3qhUmT+lu7RCKSEI7A2sERWNe6fbsnjh4NwIEDw9GvnwGL\nFzdh+fIB6NOH362IpIynEG0AA8wyTCYZzp5V4sCBEfjhBw9Mn16NtWtdERrKe8qIpIinEKnbcHAQ\nGDGiFCNGlKKysh8OHQpFVJQHRoy4c0/Z7Nm8p4yIWuMIrB0cgVlPU5MTtFoVDh4cDpPJEYmJt7Fy\npSc8PXtYuzQiagdPIdoABpj1CQEUFXnj4MERKCgYjIkTr2Pt2j4YPZr3lBHZKp5CJMKdtRcDAvQI\nCNCjpsYZhw+HIDbWHX5+V5GSIrBwIe8pI+qOOAJrB0dgtqmlxQHHjw/FwYN37imbM+fOPWW+vryn\njMgWcARG9ABOTiZERl5EZORFXLly556yoCBPPPlkBRYudMQrr3hyVEZk5zgCawdHYNJRX98Dx44N\ng0YThGvX+mDKlBq8/nofjB3La2VElsZJHDaAASZNer0rNJoAaDRquLk1Y/bsRrz+en8olb2sXRpR\nt8AAswEMMGkzmWQoLByMnJxAnDrlg5Eja7BggQyvvTYAPXvyFCNRV2GA2QAGmP1oaJAjP38YNJpA\nVFa6Ija2Gikpznj+eXdrl0ZkdxhgNoABZp+uXu0HjSYAOTkB6NvXgPj4Brz+ujtXxifqJAwwG8AA\ns28mE1BUNAg5OUE4edIXTzxRg/nzZUhM9ETv3o7WLo9IshhgNoAB1n00Nspx/PhQaDSB0OncMHFi\nNZYtc8bzz7txHUaiR8QAswEMsO7p2rW+0GrvnGLs1cuIl1++jeXL3TFsmLO1SyOSBAaYDWCAdW8m\nE1BcPAgaTSBOnBiCkJA7pxgXLPCEszNPMRI9CAPMBjDA6K7GRiecODEUWm0gSkv7Y8KEKixd2hsx\nMe48xUj0bxhgNoABRvdTVdXHfIrRyUlg1qxbeOMNd6hUPMVIBDDAbAIDjB5GCODiRS/k5ATh+HE/\nBAXV4pVXBJKSPNGvH5cape6LAWYDGGDUUc3Njjh50g9abSAuXRqAZ5+twqJFPfDSSx5wdOQpRupe\nGGA2gAFGj6Ourjdyc1XQaALR0NADU6fWYdmyvoiI6Gft0ogsggFmAxhg9GOVlvaHVhuI3Fx/DBjQ\ngISEJixd2h8KBRcWJvvFALMBDDDqLEajDOfOKZGbG4BTp5QYObIGr73GVT/IPjHAbAADjLpCQ4Mc\nx48Pg1YbAJ3OHRMmVGHJkt6IjeWUfLIPDDAbwACjrnb9eh/k5t55dplMJsNLL93E66+7IjS0j7VL\nI3psDDAbwAAjSxECKCkZCK02AMeODYOv703MnduC5GQPeHr2sHZ5RI+EAWYDGGBkDQaDA86c8YVW\nG4jz570RFVWNhQudMHu2B3r04IM4yfYxwGwAA4ys7datnsjL84dWG4jqahdMnlyDlBQXPPecm7VL\nI3ogBpgNYICRLdHrXaHRBECrVaNPHwNmzqzH66+7w9+fS1iRbWGA2QAGGNmiuw/i1GrvrJLPJazI\n1jDAbAADjGzdvy9h9fzz17FsWW9MmsQp+WQ9DDAbwAAjKampcYZGE4CjRwPh5ATMnn1nlfyhQ3mK\nkSzLEgFmlelM2dnZCAoKglqtxoYNG+67z4oVK6BWqxEWFoYTJ06027a6uhoxMTEICAjAxIkTUVtb\na34vNTUVarUaQUFB2Ldvn3n7pEmTMHLkSISGhiIpKQkGg6ELektkOe7u9Zg8+SR+9audmDv3ILTa\n2wgNdcSYMXps3XoVzc38kkX2w+IBZjQasXz5cmRnZ6OgoADp6ek4d+5cq32ysrJQXFyMoqIibNmy\nBSkpKe22TUtLQ0xMDC5cuIDx48cjLS0NAFBQUICdO3eioKAA2dnZWLZsmflbwZdffomTJ0/i7Nmz\nqKurw86dOy34myDqOjIZoFbrkZh4AGlpf4VaXYi0NIGBAxsxb54Oubk3rF0i0Y/W4au9DQ0NSE9P\nx+nTp9HS0oL6+no4ODigb9++iIqKwssvvwwHh/bzMDc3FyqVCn5+fgCAhIQEZGRkIDg42LxPZmYm\nEhMTAQBRUVGora2FXq9HSUnJA9tmZmbi4MGDAIDExERER0cjLS0NGRkZmDNnDuRyOfz8/KBSqaDV\najF69Gj06XNnpQODwYDm5mZ4enp29NdBJBm9ehkwdmwhxo4thF7viqNHgzBxoju8vK7jlVcMSEnh\njdIkTR0KsG+//RYFBQX4yU9+goULF7Z6TwiBU6dO4aOPPsL48eMRFhb20M/S6XTw8fExv1YqldBq\nte3uo9PpUF5e/sC2lZWV8PLyAgB4eXmhsrISAFBeXo7Ro0e3+ay7YmNjkZeXh5iYGEyaNKkjvw4i\nyfL2rsOMGVpMm5aLM2d88Le/BSM1VWDs2HKkpPTEtGn9OfGDJKPdIVNjYyP8/PywYsUK+Pv7t3lf\nJpMhLCwMK1euhJNT+3kok3XsL0dHLv4JIe77eTKZ7KHHufe9vXv3oqKiAk1NTdixY0eHaiOSOkdH\ngbCwK1i6dC9+9atdcHX9AcuXO2Dw4Jt4/XUdiorqrV0iUbvaTZxevXpBpVKZX8+fPx8DBgzAM888\ngzFjxphHPQAQGhra7gEVCgVKS0vNr0tLS6FUKh+6T1lZGZRKJQwGQ5vtCoUCwJ1Rl16vh7e3Nyoq\nKjBw4MAHftbdNnf17NkTM2fOhFarNZ+6vNf69evNP0dHRyM6OrrdfhJJRb9+DYiJOY0JE07j8uUB\nOHo0GCNHeiI4uBILFgALFnjC2ZmPe6GHO3DgAA4cOGDRYz7WNPpz585Bo9FAo9EgPz8f8fHxWLVq\nVYeugbW0tCAwMBD79+/H4MGDERkZifT09FbXwLKysrBx40ZkZWVBo9HgrbfegkajeWjbNWvWwMPD\nA2vXrkVaWhpqa2uRlpaGgoICzJ07F7m5udDpdJgwYQKKi4tRX1+PGzduYNCgQWhpacG8efMwceJE\nJCUltf4FcRo9dUPNzY44fnwYcnKCUFbmhkmTqvHGG1y+ijrOEtPoH/mWfY1GAyEEFixYgAULFmD3\n7t0ICwvDp59+ikWLFrV/QCcnbNy4EbGxsTAajUhKSkJwcDA2b94MAEhOTsaUKVOQlZUFlUoFFxcX\nbNu27aFtAWDdunWIj4/H1q1b4efnh127dgEAQkJCEB8fj5CQEDg5OWHTpk2QyWS4ffs2pk2bhqam\nJgghEBsb2+b6HlF31aOHEaNHF2H06CJcu9YXOTmBmD49AO7u1Zg7txGvv+4Bb++e1i6TurlHHoG9\n9957kMvlOH78OJydneHr64vo6GjcunULU6dO7ao6rYYjMKI7TCYZzp8fjKNHg3HmjAJRUdVYssQJ\n8fGecHTkxA9qzWZW4tizZw+mT58OADhz5gzq6+sRGRlpfv/Pf/4zfHx8EBsb23WVWgkDjKit27d7\nIjdXhaNHg1Bf3xPTp9fhzTddMXw4H8JJd9hMgAUHB2P27NmIjIxEZGRkq/ul6urq4Orq2qVFWhMD\njOjhrlzxQE5OEHJz/TFs2A0sWGDCkiUDOPGjm7OZAFu9ejWCg4Nx6NAh7N27F71790ZERAQiIyNx\n8eJFbNq0qUuLtCYGGFHHGAyOOHlyCI4cCYFO544XX6zGqlX9EB7e19qlkRXYTIA1NTWhZ887F2x3\n7NiBuLg4nDhxAsePH0d6ejry8/O7tEhrYoARPbrKyn747rsQ5OSoMXToTSxefOdRL717c1TWXdjM\nYr53Z/Td5e7ujhdeeAGrVq3Ce++91yWFEZF0eXndwMyZGqSmfo6IiNPYuNEEb+8mvPaaDt9/f9Pa\n5ZGd6NA0+rVr1+K7777DM888g6tXr7Z674knnuiSwohI+uRyEyIjLyIy8iL0elccPhyCsWP7Q6Wq\nxJIlwMKFA9Czp1UeikF2oEOnEH/7299i1KhR0Gq1yMvLQ3FxMQYMGIDw8HCUlpYiPT3dErVaBU8h\nEnUug8ER+flD8d13Ibh2rR+mT6/BqlWuCA3lDEZ7YjPXwO5Hr9dDq9Vi06ZN2Lt3b2fXZTMYYERd\np7zcHd99FwytVoXAwDokJwOJiQPQowdHZVJn0wF219GjR/H00093Vj02hwFG1PWamx2Rnz8Mhw+H\noqbGBTNm1GLVKjcEBrpYuzR6TJIIMHvHACOyrLKy/jh8OAS5uf4YPrwGS5c64JVXPCGXc1QmJTYz\nC/F+vvzyy86sg4gIAKBUVmPOnO+QlvY5AgML8etfyzBoUD2WLtWhuJiPeaH/88iL+d51+/btzqyD\niKiVnj1bzE+SvnLFA4cPhyAszBNPPKHHsmWOmDuXazB2dxyTE5HN8/Wtwrx5h5Ga+lf4+1/Au+/K\n4O19C6+/rsOlSxyVdVePPQIjIrK0Xr0MeO6583juufO4fNkT330XihEjPBEeXoFly5wwezZHZd0J\nR2BEJEl+ftfxyisH8cEHf8WQIcVYt84BgwffxJtv6lBSwlFZd/DYIzCZjN9yiMj6evc2YNy4c3ju\nuXMoKRmI774LQWioJ8LD9Vi61BEJCR6cwWinHnsafX19PZydnTu7HpvDafRE0tPQIEdurgpHjgTj\n9u1emDGjDitX8r4yS7KZafRz5swx//zll1/i888/h8lkwtGjR/E///M/XVYcEdHjuDsqe+edr5Cc\nvBcXLtThySedEBFRiS1bKtHczC+b9qBDIzCDwQC5XA4A+OSTT+Dh4YGMjAzIZDIMHDgQv//977u8\nUGvhCIzIPjQ1OSE/fxiOHAnG9et9ERdXg5Ur+yEsjM8r6wo2uRLHpUuXoNfr8fTTT+PGjRswGo1w\nd3fvqvqsjgFGZH/Ky91x5EgQNBoVhg27iaQkExYt4lOkO5NNBtj8+fMxYMAAPPPMMxgzZgy8vLy6\nqjabwAAjsl8GgyNOnPDD0aPBKCtzx5Qp1XjrrT4YPdrV2qVJnk0GGACcP38eOTk50Gg0yM/PR3x8\nPFatWgUHB/ub6cMAI+oerl7thyNHgpCTE4BBg+oxf74BKSkD0K8fb5d9HDYZYBqNBkIIjBkzBgCw\ne/duhIWF4dChQ1i0aFGXFGlNDDCi7sVolOHUqSE4ciQYly4NQExMFVascMbzz9vvpZKuYIkAe+Sv\nFt9++y3kcjk++ugjODs7w9fXF56ennZ/KpGIugdHR4Hw8MsID7+M6moXHDkShFmzAuHmVo1XX23E\nG294wsOjh7XLJDzGCOzMmTOor69HZGSkeduf//xn+Pj4IDY2ttMLtDaOwIjIZJKhoECJI0eCcf78\nIIwbdx1vvNEbsbHucHDgog73YzOnEPfs2YPp06d3aSG2igFGRPeqq+uNnJwAHDkSjJ49jZgzpx5v\nvumBwYN7Wbs0m2IzARYcHIzZs2cjMjISkZGR8PT0NL9XV1cHV1f7nbHDACOi+zGZgKKiQThyJASn\nTikxZkwVli3rgZde8uCoDDYUYKtXr0ZwcDAOHTqEvXv3onfv3oiMjERERAQuXryITZs2dWmR1sQA\nI6L23LrVExqNGkeOBMNkcsRLL91EcnL3vknaZgKsqakJPXv2BADs2LEDcXFxOHHiBI4fP4709HTk\n5+d3aZHWxAAjoo4SArh0aSBycwOQnz8UXl71eOmlJixZ4gaVyv7Xjr2XzcxC3LVrF1599VXza3d3\nd7zwwgt44YUXEBoa2mXFERFJiUwG+Ptfhb//VcTHH8H58wocOaLCH/7ggaFDr2HWLAMWL+4PhYLX\nyzpDh0ZggwcPxtSpU/HMM8+gsrISq1evNr+n0+mgUCi6tEhr4giMiH4sg8ERZ8744NgxNc6eVSA0\ntBoJCcD8+f3tdkq+zZxC/O1vf4tRo0ZBq9UiLy8PxcXFGDBgAMLDw1FaWor09PQuLdKaGGBE1Jka\nG+X4/vshOHZMjaIiLzz1VBXmzXPAK694oE8f+1n1w2YC7H70ej20Wi02bdqEvXv3dnZdNoMBRkRd\n5datnjh+fCjy89W4cqU/xo6twquvyhEf74EePaS9NJ9NBFhTUxNu3rzZaur8vY4cOYJnnnkGAHDl\nyhX4+vp2fpVWxACzDydPnsR//dd/Yf369fD29rZ2Odi3bx9yc3MBAEajEXq9Hr/73e/aPCT2+vXr\n+NOf/oT6+nr4+vpi4cKFcHR0hF6vx/bt21FaWorp06cjJibGGt2gTlRb64xjx4bh2DE1qqr64IUX\nqjF/fi+8+GJ/ODpKb1q+TQQYAPzjH//AjRs38NJLL6F3795t3q+pqcHu3bsRHByMZ599tksKtRYG\nmH3YsmULDAYDfH19MXXq1DbvG41GODpa51Eap06dwv79+/HTn/60zXtbtmzBk08+iVGjRuHzzz+H\nUqnEuHHjcPPmTVRVVeHkyZNwcXFhgNmZa9f6Ii9Phbw8FRob5YiNrUNSkjOef95NMveY2cwsxBdf\nfBEVFRX48MMPcfXqVTQ2NsJgMMDR0RHOzs5QKpVYvHixXd/QTNLV2NiIy5cvY9WqVfj444/NAVZY\nWIjMzEy4uLhAr9dj/fr1+Oqrr1BUVISWlhaMGzcOzz33HBobG/HHP/4R9fX1MBqNmDZtGsLCwjqt\nvtzcXERERLTZLoRAYWGheZHsMWPG4O9//zvGjRuHvn37om/fvjh9+vRDP3vFihUYN24czpw5A1dX\nV8TFxeGrr75CTU0N4uPjO7Uf1HkGDLiJKVNOYMqUE9Dp3JGXp0JCggpOTjfx4os3sWRJX0RE9LN2\nmVbX4SuGgwYNwjvvvNNpB87OzsZbb70Fo9GIRYsWYe3atW32WbFiBb7++ms4Oztj+/btCA8Pf2jb\n6upqzJ49Gz/88AP8/Pywa9cuuLm5AQBSU1Px6aefwtHREZ988gkmTpyIhoYGzJo1C5cuXYKjoyOm\nTp2K1NTUTusj2Ybvv/8eoaGh6N+/P/r06dPqVHdpaSl+8YtfwMPDA4cOHYKzszPefvttGAwG/OY3\nv0FISAhS0Uh/AAAWtklEQVT69++PlJQU9OrVC7du3cKGDRvu+w//n/70J1RWVrbZPmHCBIwePfq+\ntTU3N6OgoABz585t897t27fh7OxsfkyRm5sbamtrH6nvzc3NCAoKwsyZM/HHP/4RmZmZWLlyJcrL\ny7F9+3YGmAQoFDVQKPIwbVoeLl8egLw8NWJi3ODmVoNp0+qxdKkbgoNdrF2mVbQbYIWFhXBwcIBa\nre60gxqNRixfvhzffvstFAoFIiIiEBcXh+DgYPM+WVlZKC4uRlFREbRaLVJSUqDRaB7aNi0tDTEx\nMVizZg02bNiAtLQ0pKWloaCgADt37kRBQQF0Oh0mTJiAoqIiAMCaNWswbtw4GAwGjB8/HtnZ2Zg0\naVKn9ZWsLy8vD+PHjwcAPPXUU8jNzTUHmJ+fHzw8PAAA586dg06nw/HjxwEADQ0NuHbtGtzd3fG3\nv/0NxcXFkMlkqK2txY0bN9CvX+tvwIsXL37k2r7//nuoVKo21746i6Ojo/leTYVCAblcDgcHBwwe\nPBhVVVVdckzqGjIZMHTotf+9nywHRUXeOHZMjchIDygU1zFzZjMWLXLD0KHd54bpdgPM398fBw4c\nwL59++Dg4ICIiAiMGjXqRx00NzcXKpUKfn5+AICEhARkZGS0CrDMzEwkJiYCAKKiolBbWwu9Xo+S\nkpIHts3MzMTBgwcBAImJiYiOjkZaWhoyMjIwZ84cyOVy+Pn5QaVSQavVYvTo0Rg3bhwAQC6X48kn\nn4ROp/tRfSPbcvv2bRQWFqK8vBwAYDKZIJPJMGvWLABAjx6t78FJSEhASEhIq21Hjx7FrVu38LOf\n/QwODg5455130NLS0uZYW7ZswdWrV9tsf9gI7NixY/c9fQgALi4uqK+vh8lkgoODA2pqasxnFDrq\n3ut6MpkMTk53/so7ODjAaDQ+0meR7XBwEAgMrEBgYAVmz/4OBQVK7N+vwocfeiAg4CpmzWrB3Llu\nGDbMvsOs3QBzcnLChAkTMGHCBAB3wuePf/wjTCYTAgMDER0dbf5L0VE6nQ4+Pj7m10qlElqttt19\ndDodysvLH9i2srLS/FwyLy8v8+mc8vLyVv+A3P2se9XW1uLvf/873nrrrUfqC9m2/Px8jB49GvPm\nzTNv+93vfmcegd8rJCQEBw8eRGBgIBwdHVFZWQl3d3c0Njaib9++cHBwQGFhIaqrq+97rCVLljxS\nbQ0NDSgqKkJSUtJ935fJZAgMDER+fj4iIiKg0WgwcuTIRzoG2T8nJxOeeOIKnnjiCpqbHXHq1BBk\nZPgjNdURXl7VeP75Bsya1RsTJrhBLpf21Px/98h3zd1dkR64c3px69ataG5uhkKhQGxsLFxc2j8X\nK5N1bBZNR2awCCHu+3kymeyhx7n3vZaWFsyZMwdvvvmmeWRH9uHYsWNtTgmHh4cjLy8Po0aNavX/\nwdixY1FVVYX3338fQgj07dsXy5YtQ2RkJP7whz/gV7/6FYYMGdJp0/BPnjyJkJCQNqPA3//+93jt\ntdfg6uqKGTNm4E9/+hMyMzPh4+ODsWPHArjzFIjU1FQ0NDTAwcEB+/fvx/r169GrV+slijr6d4Ds\nQ48eRowadQmjRl2C0SjDxYveOHPGF4sX+6KurhlRUdV48UUHxMe72cXjX37Ubd+BgYEIDAwEcGeU\n849//AOzZ89ut51CoUBpaan5dWlpKZRK5UP3KSsrg1KphMFgaLP97lJWXl5e0Ov18Pb2RkVFBQYO\nHPjAz7p3+aslS5YgMDAQK1asuG+969evN/8cHR2N6OjodvtItmHlypVttr3wwgvmnwMCAsw/y2Qy\nTJ8+/b7PvrvfJKMfa8yYMRgzZkyb7W+88Yb5Z09PT7z99ttt9nF1dUVaWlq7x/j444/NP//77QP3\nvkf2x9FRICCgAgEBFZgxQ4uqqj44c8YH27cPwdtvO8DP7zrGj29CfLwLxo51/dHT8w8cOIADBw50\nTvEd9Ngrcdx1+/btDo267tXS0oLAwEDs378fgwcPRmRkJNLT09tM4ti4cSOysrKg0Wjw1ltvQaPR\nPLTtmjVr4OHhgbVr1yItLQ21tbXmSRxz585Fbm6ueRLH3QvyP//5z3H+/Hns3r37gSM53gdGRPbE\nYHBEYeEgnD07BKdP+6ClxRFPP12HuDhHvPxyf7i7y3/0MWzmRuaH+eijjx7rutHXX39tngqflJSE\nt99+G5s3bwYAJCcnAwCWL1+O7OxsuLi4YNu2bXjyyScf2Ba4M40+Pj4eV65caTON/oMPPsCnn34K\nJycnfPzxx4iNjUVZWRl8fX0RHBxsPo3zxhtvYOHCheY6GWBEZM+EACorXXH6tC/Onh2CS5c8ERRU\ng4kTjZg9uy+eeurxnmlmMwG2cuVKHDx4sM20YeDO1GO9Xt8lxdkCBhgRdSeNjXKcO6f439GZEj17\nGjF27E289FIPTJ/eHy4uHVuxxmYCzGQy4aOPPrrv9YQPP/zwvkvg2AsGGBF1V0IAZWUe/zs684VO\n544RI6oxebIJCQmuCAp68OUjmwkw4M56h+7u7m22P841MClhgBER3XHrVk8UFChx9uwQnDmjhLt7\nA8aNq8fMmT0xZUr/Vivo21SAdVcMMCKitkwmGUpKBuDMmSE4c8YX16/3wahR1fjJT4DZs93g5+fM\nALM2BhgRUftqa51x5owPzp4dgnPnBqGhoZdtrEZPRET0MG5u9Rg7thBjxxZCJuuJR1yY5rHY17oi\nRERkdU5OljkbxQAjIiJJYoAREZEkMcCIiEiSGGBERCRJDDAiIpIkBhgREUkSA4yIiCSJAUZERJLE\nACMiIkligBERkSQxwIiISJIYYEREJEkMMCIikiQGGBERSRIDjIiIJIkBRkREksQAIyIiSWKAERGR\nJDHAiIhIkhhgREQkSQwwIiKSJAYYERFJEgOMiIgkiQFGRESSxAAjIiJJYoAREZEkMcCIiEiSGGBE\nRCRJDDAiIpIkBhgREUmSVQIsOzsbQUFBUKvV2LBhw333WbFiBdRqNcLCwnDixIl221ZXVyMmJgYB\nAQGYOHEiamtrze+lpqZCrVYjKCgI+/btM2//2c9+Bl9fX/Tt27cLeklERF3J4gFmNBqxfPlyZGdn\no6CgAOnp6Th37lyrfbKyslBcXIyioiJs2bIFKSkp7bZNS0tDTEwMLly4gPHjxyMtLQ0AUFBQgJ07\nd6KgoADZ2dlYtmwZhBAAgGnTpiE3N9eCvScios5i8QDLzc2FSqWCn58f5HI5EhISkJGR0WqfzMxM\nJCYmAgCioqJQW1sLvV7/0Lb3tklMTMSePXsAABkZGZgzZw7kcjn8/PygUqmg1WoBAJGRkfD29rZU\n14mIqBNZPMB0Oh18fHzMr5VKJXQ6XYf2KS8vf2DbyspKeHl5AQC8vLxQWVkJACgvL4dSqXzo8YiI\nSHqcLH1AmUzWof3unuZrb5/7fZ5MJnvocTpaw13r1683/xwdHY3o6OhHak9EZO8KCwtx4cIFAICD\ng2XGRhYPMIVCgdLSUvPr0tLSViOk++1TVlYGpVIJg8HQZrtCoQBwZ9Sl1+vh7e2NiooKDBw48IGf\ndbdNR90bYERE1FZgYCACAwMBAHK5HJmZmV1+TIufQhw1ahSKiopw+fJlNDc3Y+fOnYiLi2u1T1xc\nHP7yl78AADQaDdzc3ODl5fXQtnFxcdixYwcAYMeOHZg+fbp5+xdffIHm5maUlJSgqKgIkZGRFuwx\nERF1BYuPwJycnLBx40bExsbCaDQiKSkJwcHB2Lx5MwAgOTkZU6ZMQVZWFlQqFVxcXLBt27aHtgWA\ndevWIT4+Hlu3boWfnx927doFAAgJCUF8fDxCQkLg5OSETZs2mU8hrlmzBunp6WhoaICPjw8WL16M\n//zP/7T0r4SIiB6DTHTkYlM3JpPJ2r0ed/r0aWi1WphMJgtVRURku+RyORYuXNihuQw/BlfiICIi\nSWKAERGRJDHAiIhIkhhgREQkSQwwIiKSJAYYERFJEgOMiIgkiQFGRESSxAAjIiJJYoAREZEkMcCI\niEiSGGBERCRJDDAiIpIkBhgREUkSA4yIiCSJAUZERJLEACMiIkligBERkSQxwIiISJIYYEREJEkM\nMCIikiQGGBERSRIDjIiIJIkBRkREksQAIyIiSWKAERGRJDHAiIhIkhhgREQkSQwwIiKSJAYYERFJ\nEgOMiIgkiQFGRESSxAAjIiJJYoAREZEkMcCIiEiSrBJg2dnZCAoKglqtxoYNG+67z4oVK6BWqxEW\nFoYTJ06027a6uhoxMTEICAjAxIkTUVtba34vNTUVarUaQUFB2Ldvn3l7fn4+RowYAbVajTfffLML\nekpERF3F4gFmNBqxfPlyZGdno6CgAOnp6Th37lyrfbKyslBcXIyioiJs2bIFKSkp7bZNS0tDTEwM\nLly4gPHjxyMtLQ0AUFBQgJ07d6KgoADZ2dlYtmwZhBAAgJSUFGzduhVFRUUoKipCdna2BX8TtqGw\nsNDaJXQp9k/a7Ll/9tw3S7F4gOXm5kKlUsHPzw9yuRwJCQnIyMhotU9mZiYSExMBAFFRUaitrYVe\nr39o23vbJCYmYs+ePQCAjIwMzJkzB3K5HH5+flCpVNBqtaioqMDNmzcRGRkJAHjttdfMbbqTCxcu\nWLuELsX+SZs998+e+2YpFg8wnU4HHx8f82ulUgmdTtehfcrLyx/YtrKyEl5eXgAALy8vVFZWAgDK\ny8uhVCrv+1n3blcoFG3qICIi2+Vk6QPKZLIO7Xf3NF97+9zv82QyWYeP0xnuHk8ul1vsmJ3FwcFB\nknV3FPsnbfbcP3vum8lksshxLB5gCoUCpaWl5telpaWtRkL326esrAxKpRIGg6HNdoVCAeDOqEuv\n18Pb2xsVFRUYOHDgQz9LoVCgrKzsvp91L39/f4uGoTVkZmZau4Quxf5Jmz33z5775u/v3/UHERZm\nMBjEsGHDRElJiWhqahJhYWGioKCg1T7//Oc/xeTJk4UQQuTk5IioqKh2265evVqkpaUJIYRITU0V\na9euFUIIcfbsWREWFiaamprEpUuXxLBhw4TJZBJCCBEZGSk0Go0wmUxi8uTJ4uuvv7bI74CIiH48\ni4/AnJycsHHjRsTGxsJoNCIpKQnBwcHYvHkzACA5ORlTpkxBVlYWVCoVXFxcsG3btoe2BYB169Yh\nPj4eW7duhZ+fH3bt2gUACAkJQXx8PEJCQuDk5IRNmzaZR1SbNm3C/Pnz0dDQgClTpmDSpEmW/nUQ\nEdFjkgnRgYtNRERENqZbrMRRWFiI8PBw83+urq745JNPOvXm56amJsyePRtqtRqjR4/GDz/8YNE+\npqamIjQ0FCNGjMDcuXPR1NRkV/37+OOPMWLECAwfPhwff/wxgM69ed3S/Vu4cCG8vLwwYsQI8zZL\n9WfHjh0ICAhAQEAA/vKXv1ikb7t370ZoaCgcHR1x/PjxVvtLqW8P6t/q1asRHByMsLAwzJgxA3V1\ndXbVv3fffRdhYWEYOXIkxo8f32pegVX7Z+1zmJZmNBqFt7e3uHLlili9erXYsGGDEEKItLS0NtfN\nmpubRUlJifD39zdfN4uIiBBarVYIIVpdN/vDH/4gUlJShBBCfPHFF2L27NkW61NJSYkYOnSoaGxs\nFEIIER8fL7Zv3243/Tt9+rQYPny4aGhoEC0tLWLChAmiuLhY0v07dOiQOH78uBg+fLh5myX6U1VV\nJYYNGyZqampETU2N+eeu7tu5c+dEYWGhiI6OFvn5+ebtUuvbg/q3b98+YTQahRBCrF27VrJ/dg/q\n340bN8w/f/LJJyIpKckm+tftAmzv3r1i7NixQgghAgMDhV6vF0IIUVFRIQIDA4UQQnzwwQfmCSFC\nCBEbGytycnJEeXm5CAoKMm9PT08XycnJ5n00Go0Q4s5kE09PT4v0R4g7f/ABAQGiurpaGAwG8eKL\nL4p9+/bZTf92795t/gsjhBC//vWvxYYNGyTfv5KSklb/SFiiP3/961/F0qVLzW2Sk5NFenp6l/ft\nrn8PMCn2TYgH908IIb766isxb948IYR99u+DDz4wB7S1+9ctTiHe64svvsCcOXMAdO7Nz/fefO3k\n5ARXV1dUV1dbpE/9+/fHf/zHf8DX1xeDBw+Gm5sbYmJi7KZ/w4cPx+HDh1FdXY36+npkZWWhrKzM\nbvp3V1f3p6qq6oGfZS322LdPP/0UU6ZMAWBf/fvZz34GX19fbN++HW+//TYA6/evWwVYc3Mz/v73\nv+Pll19u856lb37uTBcvXsRHH32Ey5cvo7y8HLdu3cJ///d/t9pHyv0LCgrC2rVrMXHiREyePBkj\nR46Eo6Njq32k3L/7sbf+dBfvv/8+evTogblz51q7lE73/vvv48qVK1iwYAHeeusta5cDoJsF2Ndf\nf42nnnoKAwYMAPB/Nz8DeOybn+9+Y1AoFLhy5QoAoKWlBXV1dejfv79F+nXs2DE8/fTT8PDwgJOT\nE2bMmIGcnBx4e3vbRf+AOxeWjx07hoMHD8Ld3R0BAQF28+d3V1f3x8PDo0MLCViSPfVt+/btyMrK\nwueff27eZk/9u2vu3LnIy8sz12rN/nWrAEtPTzefPgSAuLg47NixA8Cd2S/Tp083b//iiy/Q3NyM\nkpISFBUVITIyEt7e3ujXrx+0Wi2EEPjss88wbdq0Np/15ZdfYvz48RbrV1BQEDQaDRoaGiCEwLff\nfouQkBBMnTrVLvoHAFevXgUAXLlyBV999RXmzp1rN39+d1miPxMnTsS+fftQW1uLmpoafPPNN4iN\njbVoP8U9d+7YS9+ys7Pxm9/8BhkZGejVq5fd9a+oqMj8c0ZGBsLDw22jfx2/rCdtt27dEh4eHq1m\n01RVVYnx48cLtVotYmJiWs14ef/994W/v78IDAwU2dnZ5u3Hjh0Tw4cPF/7+/uKNN94wb29sbBQv\nv/yyUKlUIioqSpSUlFikX3dt2LBBhISEiOHDh4vXXntNNDc321X/nn32WRESEiLCwsLEv/71LyGE\ntP/8EhISxKBBg4RcLhdKpVJ8+umnFuvPp59+KlQqlVCpVGL79u1d3retW7eKv/3tb0KpVIpevXoJ\nLy8vMWnSJEn27UH9U6lUwtfXV4wcOVKMHDnSPMvOXvo3c+ZMMXz4cBEWFiZmzJghKisrbaJ/vJGZ\niIgkqVudQiQiIvvBACMiIkligBERkSQxwIiISJIYYEREJEkMMCIikiQGGBERSRIDjIiIJIkBRiQR\nv/3tbzF48GB89tlnaGpqMj9Ecc+ePdYujcgqnKxdABF1zKhRozB16lS8+uqrAIDg4GC4uLiY10wk\n6m44AiOSCK1Wi2eeecb8+tChQ4iMjLRiRUTWxQAjkoi8vDxUVlZix44d2LFjB/bu3YvIyEicOXMG\n7733HjQaDQBg/vz51i2UyEJ4CpFIIoqLi/Hll18CAGpqavDLX/4Snp6euHTpEuRyOYQQOHfunPl5\nd0T2jiMwIgnQ6/WtgunEiROIiIgAAERGRuL48eMYM2YMNBpNq9OMRPaMAUYkAVqt1vwQQQA4fvx4\nq+tfzs7OAACNRoMxY8ZYvD4ia+ApRCIbd/ToUWzatAn9+/eHTqfDqVOnkJ6ejqioKNTV1cHV1RW+\nvr7YvXs38vPz4eXlZe2SiSyCD7Qkkrg///nP8Pf3h0KhwJ49e7BmzRprl0RkEQwwIonbu3cvmpub\nUVlZiYULF8LBgVcGqHtggBERkSTxqxoREUkSA4yIiCSJAUZERJLEACMiIkligBERkSQxwIiISJIY\nYEREJEkMMCIikqT/H6CIp4Vf0VC8AAAAAElFTkSuQmCC\n", "text": [ "" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "Height of packed cooling tower: 7.01 m\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6-1 Page Number 614" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Absorption of SO2 in Plate Tray\n", "from scipy.optimize import root\n", "from scipy.interpolate import interp1d\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "#Variable Declaration\n", "ysiP = 0.20 #Mole fraction of SO2 entering\n", "ysoP = 0.02 #Mole fraction of SO2 leaving \n", "P = 101325. #Total pressure at which SO2 is leaving in Pa\n", "Fair = 150 #Flowrate of air in kg/hrm2\n", "Fwat = 6000 #Flowrate of water in kg/hrm2\n", "effP = 0.25 #Fractional efficiency\n", "MWair = 29 #Molecular weight of air \n", "MWW = 18 #Molecular weight of water \n", "x = np.array([0.0000,0.0005,0.001,0.0015,0.002,0.0025,0.003,0.0035,0.004,0.0045,0.005,0.0055,0.006]) \n", "y = np.array([0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.]) \n", "xe = np.array([0.0,0.0000562,0.0001403,0.000280,0.000422,0.000564,0.000842,0.001403,0.001965,0.00279,0.00420,0.00698]) \n", "ye = np.array([0.0,0.000658,0.00158,0.00421,0.00763,0.0112,0.01855,0.0342,0.0513,0.0775,0.121,0.212]) \n", "\n", "#Calculations\n", "Vd = Fair/MWair\n", "Ld = Fwat/MWW\n", "k1 = Vd*ysiP/(1-ysiP)\n", "k2 = Vd*ysoP/(1-ysoP)\n", "f = lambda x: k1 -( Ld*(x/(1-x)) + k2) \n", "sol = root(f,0.002)\n", "xn = sol.x[0]\n", "\n", "for i in range(len(y)):\n", " k1 = Vd*ysoP/(1-ysoP) + Ld*(x[i]/(1-x[i]))\n", " ff = lambda yy: Vd*(yy/(1-yy))-k1\n", " sol = root(ff,.1)\n", " y[i] = sol.x[0]\n", "\n", "f1 = interp1d(x,y, bounds_error=False)\n", "f11 = interp1d(y,x, bounds_error=False)\n", "f2 = interp1d(ye,xe, bounds_error=False)\n", "plt.plot(x,y,'r-',xe,ye,'b-')\n", "\n", "plt.text(.0037, .1, 'Equilibrium Curve')\n", "plt.text(.0025, .22, 'Operating Line')\n", "plt.annotate('$(x_N,y_{N+1})$', xy=(xn,ysiP), xytext=(0.004,0.2))\n", "plt.annotate('$(x_0,y_1)$', xy=(0,ysoP), xytext=(0.0003,0.12))\n", "def ypos(xop):\n", " return f1(xop)\n", "\n", "def xpos(yop):\n", " return f2(yop)\n", "\n", "xmax = f11(ysiP)\n", "x1 = x[0]\n", "y1 = y[0]\n", "plot(x[0],y[0],'ro-')\n", "plot([0.,xn], [ysiP,ysiP], 'k--', lw=1)\n", "plot([xn,xn], [ysiP,0.], 'k--', lw=1)\n", "plot(xn,ysiP,'bo-')\n", "xlabel(\"Liquid phase mole fraction\")\n", "ylabel(\"Vapor phase mole fraction\")\n", "n = 0\n", "while x1 <= xmax:\n", " x2 = xpos(y1)\n", " y2 = y1\n", " plt.text(x2, y2-0.013, str(n+1))\n", " plot([x1,x2], [y1,y2], 'k-', lw=1) #Draw Horizontal line to equilibrium curve\n", " if x2 > xmax:\n", " dxt = x2-x1\n", " dx = xmax-x1\n", " dxbydxt = dx/dxt\n", " n = n + dxbydxt\n", " break\n", " x1 = x2\n", " y1 = y2\n", " y2 = ypos(x1)\n", " plot([x1, x2], [y1, y2], 'r-', lw=1) #Draw a vertical line to operating line\n", " n = n+1\n", " x1 = x2\n", " y1 = y2 \n", "\n", "print 'Number of Stages for separation', round(n,2)\n", "print 'Actual Number of stages', round(n/effP,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of Stages for separation 2.26\n", "Actual Number of stages 9.0\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEPCAYAAABoekJnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdY01cXB/BvVBwtVutWUJGlKFOWs6IiqLitFlcd1I2z\nddaBC3eH2rfiHm3dA1fRquBAKIooIC4QFFAUBUUExCT3/eNKCjLCyC+L83keHk34jcPKyV3nihhj\nDIQQQkgpVVB1AIQQQjQbJRJCCCFlQomEEEJImVAiIYQQUiaUSAghhJQJJRJCCCFlImgi8fPzQ4sW\nLWBiYoLVq1fn+7yvry+srKxgY2MDW1tbXLx4sdjnEkIIUQ8iodaRSCQSNG/eHOfPn4eenh7s7e2x\nb98+mJmZyY559+4dPv/8cwBAREQE+vfvj+jo6GKdSwghRD0I1iIJCQmBsbExDAwMoKOjA3d3d/j6\n+uY5JieJAEB6ejrq1KlT7HMJIYSoB8ESSWJiIho3bix7rK+vj8TExHzHHT9+HGZmZujRowc2bNhQ\nonMJIYSonmCJRCQSFeu4fv364e7duzh58iRGjBgBqthCCCGapZJQF9bT00N8fLzscXx8PPT19Qs9\nvmPHjhCLxUhJSYG+vn6xzjU2NkZMTIxiAyeEEC1nZGSE6OhoxV2QCeTDhw/M0NCQxcbGsvfv3zMr\nKysWFRWV55jo6GgmlUoZY4yFhoYyQ0PDYp/7cZKAUOErxeLFi1UdQplQ/KqlyfFrbOxiMWN797LF\nzs6qjqRMFP3aKViLpFKlSti0aRNcXV0hkUjg4eEBMzMz+Pj4AADGjx+PI0eOYM+ePdDR0YGuri72\n799f5LmEEKISjAGnTgHz5wNffAGYmqo6IrUiWCIBgB49eqBHjx55nhs/frzs/7Nnz8bs2bOLfS4h\nhCjdlSvA3LlAWhrg7Q306gUsWaLqqNSKoImEFM3JyUnVIZQJxa9amhy/RsR++zZvgURFAUuXAkOH\nAhUrAtCQ+JVIsAWJyiASiWiWFyFEsWJigEWLgIsXgR9/BMaOBapUUXVUCqXo106qtUUIIQDw7Bkw\naRLg6AiYmQEPHwKenlqXRIRAiYQQUr69fs27sMzNgc8+A+7dAxYsAHR1VR2ZxqBEQggpnzIygDVr\nABMT4MUL4NYtYN064GOpJlJ8lEgIIeXLhw+Ajw9PINev81lZ27YBucoykZKhWVuEkPJBKgUOHeLd\nVgYGwPHjgL29qqPSCpRICCHajTHg7Fk+DlKxIvD774Czs6qj0iqUSAgh2isoCJg3D0hK4osJ+/cH\nillQlhQfjZEQQrTPnTtAv37AN98A334LREYCAwZQEhEIJRJCiPZ4+hTw8AA6dwa++gp48AAYMwao\nRJ0vQqJEQgjRfOnpgJcXYGEB1K3LFxPOnAlUrarqyMoFSiSEEM0lkQDbtwPNm/PkERoKrFoF1Kih\n6sjKFWrvEUI009mzwKxZQM2aNJVXxSiREEI0S0QETyCPHvGV6X370iC6ilHXFiFEMzx7xivxOjsD\nbm7/zcyiJKJylEgIIert3Tu+kZS5OfDll8D9+8CUKYCOjqojIx9RIiGEqCeJBNixg29re+8eH0hf\ns4aPiRC1QmMkhBD1888/wA8/8P3Rjx7le4QQtUWJhBCiPiIj+UB6dDSwejWVNNEQ1LVFCFG9pCRg\n3DigSxegRw8+kE4lTTQGJRJCiOq8ewcsW8YH0mvU4APpU6cClSurOjJSAtS1RQhRPokE2LuX7w3S\noQMQEgIYGqo6KlJKlEgIIcoVEADMmMH3Rz98GGjTRtURkTKiREIIUY4nT/hMrH//5Xujf/01jYFo\nCRojIYQIKzOTLyi0sQFatQLu3gUGDaIkokWoRUIIEQZjwJEjvBXi4ADcvAk0barqqIgAKJEQQhQv\nIgKYNg14+RLYtQtwclJ1RERAgnZt+fn5oUWLFjAxMcHq1avzff7PP/+ElZUVLC0t0b59e4SHh8s+\nZ2BgAEtLS9jY2MDBwUHIMAkhipKSwutgde0KDBzIWyGURLSeYC0SiUQCT09PnD9/Hnp6erC3t0ef\nPn1gZmYmO8bQ0BCXL19GjRo14Ofnh3HjxiE4OBgAIBKJEBAQgFq1agkVIiFEUSQSYOtWYPFinkDu\n3gVq11Z1VERJBEskISEhMDY2hoGBAQDA3d0dvr6+eRJJ27ZtZf93dHREQkJCnmswxoQKjxCiKJcv\n80WENWoA584BVlaqjogomWBdW4mJiWjcuLHssb6+PhITEws9fvv27ejZs6fssUgkgrOzM+zs7LB1\n61ahwiSElFZ8PDBkCDB8ODB/Pl8fQkmkXBKsRSIqwdQ+f39/7NixA4GBgbLnAgMD0bBhQyQnJ6Nb\nt25o0aIFOnbsKESohJCSyMwE1q8Hfv4Z8PTke6Z/9pmqoyIqJFgi0dPTQ3x8vOxxfHw89PX18x0X\nHh6OsWPHws/PD19++aXs+YYNGwIA6tati/79+yMkJKTAROLl5SX7v5OTE5xoYI8QYTDG90afORNo\n3Rq4cQNo1kzVUZFiCAgIQEBAgGDXFzGBBiLEYjGaN2+OCxcuoFGjRnBwcMC+ffvyjJE8efIEXbp0\nwR9//IE2ucokZGRkQCKRoHr16nj37h1cXFywePFiuLi45A1eJKJxFEKU4c4dPp03KQn49Vc+K4to\nLEW/dgrWIqlUqRI2bdoEV1dXSCQSeHh4wMzMDD4+PgCA8ePHY+nSpUhNTcXEiRMBADo6OggJCUFS\nUhIGDBgAgCekYcOG5UsihBAleP0a8PIC/vwTWLQImDgRqETLz0hegrVIlIFaJIQIRCLhYx+LFgH9\n+vFS73XrqjoqoiAa0yIhhGio4GBg8mQ+gP7337xGFiFFoERCCOFSUoB584CTJ4G1a4GhQ6mwIikW\nqv5LSHnHGLBnD6/MW6kSEBUFDBtGSYQUG7VICCnPoqKASZOAt2+BEycAe3tVR0Q0ELVICCmPMjJ4\nN1anTrw2VkgIJRFSapRICClvTp3i3VhxcUB4OK/WW7GiqqMiGqxYXVuBgYGIi4uDWCwGwKeOffvt\nt4IGRghRsCdP+KLCO3eALVuAbt1UHRHREnITyfDhw/Ho0SNYW1ujYq53LZRICNEQHz4Av/wCrF7N\nq/Tu2wdUrarqqIgWkZtIQkNDERUVVaIijIQQNXH1Kl+N3qgRXx9ibKzqiIgWkjtGYm5ujmfPnikj\nFkKIorx8CXh4AO7uwMKFgJ8fJREiGLktkuTkZLRs2RIODg6oUqUKAD5GcuLECcGDI4SUkFQK7NzJ\n9wcZMoRP7/3iC1VHRbSc3ESSU6Y9p2uLMUbdXERpEhISMHnyZNy9exdSqRS9evXC2rVroaOjI+h9\nd+/eDRcXF9l2BmPHjsXMmTPzVK8uLV1dXaSnp+d5zsfHB5999hlGjBhR+gtHRAATJgBiMW+BUGkT\noiTFKtqYlJSE69evQyQSwcHBAfXq1VNGbHJR0UbtxhiDo6MjJk+ejJEjR0IqlWLcuHGoVasW1qxZ\nU+brS6VSVKhQcO9u586dsW7dOtja2pb5Pp+qXr063r59q7gLpqfzCr179gBLlwJjx9J0XlIkRb92\nyh0jOXjwIBwdHXHo0CEcPHgQDg4OOHTokMICIKQwFy9eRLVq1TBy5EgAQIUKFfDzzz9jx44dyMzM\nxK5du9C3b1907twZpqamWLp0qezcP/74A46OjrCxscGECRMglUoB8NbADz/8AGtrawQFBWHZsmVw\ncHCAhYUFxo8fDwA4fPgwbty4gWHDhqF169bIysqCk5MTbt68KbvGggULYG1tjbZt2+LFixcAgJiY\nGLRp0waWlpZYsGABqlevXuyv1cvLC+vXrwfAN2ibO3cuHB0d0bx5c1y9ehUAIJFIMGvWLDg4OMDK\nygpbfHyAY8eAli2BFy/+a5FQEiHKxuSwsLBgz58/lz1+8eIFs7CwkHeaUhQjfKLBfv31VzZjxox8\nz9vY2LDw8HC2c+dO1rBhQ5aSksIyMzOZubk5u3HjBouKimK9e/dmYrGYMcbYxIkT2Z49exhjjIlE\nInbo0CHZtVJSUmT/HzFiBDt58iRjjDEnJycWGhoq+1zuxyKRiJ06dYoxxtjs2bPZ8uXLGWOMubm5\nsf379zPGGNu8eTPT1dUt8Osq6HkvLy+2fv162b1++OEHxhhjZ86cYc7Ozowxxnx8fGT3yrp7l9nV\nqMFiDQ0Z8/cv/JtISAEU/dopt0XCGEPdXPsQ1K5dm7qTiFIUNRYnEokgEong4uKCL7/8ElWrVsWA\nAQNw9epVXLhwAaGhobCzs4ONjQ0uXryI2NhYAEDFihUxcOBA2XUuXrwoa0VcvHgRUVFRss8V9nte\nuXJluLm5AQBsbW0RFxcHAAgODsagQYMAAEOGDCnT156zsVvr1q1l1z937hz27NkDGz09tDE3R0rF\niojetAmg7aWJiskdbO/evTtcXV0xdOhQMMZw4MAB9OjRQxmxkXKuZcuWOHz4cJ7n0tLS8OTJExgb\nG+PGjRt5PsdyTQQZOXIkvL29812zatWqsmOysrIwefJkhIaGQk9PD0uWLEFWVpbs2MISWe6B/goV\nKsgqPihSzgzJihUr/nf9N2+wiTF0a94cuHwZMDJS+H0JKQ25LZI1a9Zg/PjxuH37NiIiIjB+/HiF\nDHQSIk/Xrl2RkZGBvXv3AuBjBN9//z1Gjx6Nqh9XZv/zzz9ITU1FZmYmfH190aFDB3Tt2hWHDx9G\ncnIyACAlJQVPnjzJd/2cpFG7dm2kp6fnGfurXr060tLSShRvmzZtZIlv//79Jf56C23pMwYsXAjX\n4GD87/PPIT57FjAywoMHD5CRkVHi+xCiaHJbJCKRCAMHDszTHUCIshw7dgyTJk3CsmXLIJVK4ebm\nJmtp5MwiHDhwIBISEjBixAi0bt0aALB8+XK4uLhAKpVCR0cH//vf/9CkSZM8rYyaNWti7NixMDc3\nR4MGDeDo6Cj73KhRozBhwgR89tlnuHbtWp6Ycl8jp4sNAH755RcMHz4c3t7ecHV1RY0aNQr8mjIy\nMtC4cWPZ45kzZ+a7rsy//0L09CkQGYnv7t1D3P/+h9a2tmCMoV69ejh27FhJvp2ECKLQ6b/t27dH\nYGAgdHV18/2Ci0SiEr9bEwJN/y3fdu3ahdDQUGzcuFHVoQAAMjMzUa1aNQC8RXLgwIHSv9C/fcsX\nFR45AmzYwEu90/otoiBK27M9MDAQAPItnCJEXeRuDaiD0NBQeHp6gjGGL7/8Ejt27Cjdhfz8+DTe\nzp2ByEigVi3FBkqIgsldkDhixAhZH3VRz6kCtUiIVnn1CpgxA7hyBfDxAVxcVB0R0VJKX5AYGRmZ\n57FYLEZoaKjCAiCk3GMMOHAAMDcHatfmCwspiRANUmjXlre3N1auXInMzMw8K3R1dHQwbtw4pQRH\niNZLSOB7pj96xFept2mj6oiIFgsO5qXYFK3QFsn8+fPx9u1bzJo1C2/fvpV9pKSkYNWqVYqPhJDy\nRCoFNm/mhRVtbYGbN8ucRN6/f6+g4BQr99ocoho3bgBubsDgwcDHWfEKJbdry97eHq9fv5Y9fv36\nNY4fP674SAgpLx484APpu3YBAQHA4sVA5cpluuSpU6cUWwhSgRISEnD+/HlVh1Eu3boF9O0L9OvH\nE8nDh0D//oq/j9xEsmTJEtSsWVP2uGbNmrLS8oSQEhCL+Xa37drxv+bAQKBVqzJf9tmzZ0hLS0Od\nOnUUEKTiGRsbIyoqCpmZmaoOpdyIjAS+/hro0QPo0gWIjuY9qB8LJihcsWptfUoikQgSDCFaKywM\ncHAALlwArl8Hpk9XWJXenTt3or8QbzMVyM3NDfv27VN1GFrv3j2+n1nXrrynNCYGmDYN+FgIQjBy\nE4mtrS1mzpyJmJgYREdHY8aMGYLs0UCIVsrMBObNA1xd+V/02bNAs2YKvcWLFy9QrVo1SCQS/PXX\nX1i+fDl2796NyZMn49GjRyW6VmRkJJYvX47g4GAAfIW/IhgZGSEiIkIh1yL5RUcD334LfPUVYGXF\nE8gPPwCffaac+8tNJBs3boSOjg6++eYbuLu7o2rVqvjtt9+KdXE/Pz+0aNECJiYmWL16db7P//nn\nn7CysoKlpSXat2+P8PDwYp9LiNq7cgWwtuZ/1eHhwMiRgqxOzxnMvn37NgYOHAhDQ0NIpVIMGjRI\ntsNjcWVkZEBHRweMMdy9ezdP5e+yEqK4ZXkXGwuMGcNbHyYmPKHMnQvo6io5EIUWpc9FLBYzIyMj\nFhsby7Kzs5mVlRWLiorKc8y1a9fY69evGWOM/f3338zR0bHY535cSClU+ISUyKlTl5iLy4+sU6fF\nzKXrHHaq52DG9PQYO3ZM8HuPGTMmz2NPT0/26NGjPM9FRkay1q1bs+zsbBYdHc3mzp3LMjMzC7ze\n4MGDGWOM7dixgx37GH9Jzs9x/PhxlpiYWGicpPQeP2Zs3DjGatVibOFCxlJTS3a+ol875bZIXrx4\ngR9++AE9e/ZE586d0blzZ3Tp0kVuggoJCYGxsTEMDAygo6MDd3d3+Pr65jmmbdu2ssJ2jo6OSEhI\nKPa5hKiL06cvY9q0szh3bjkuXfLCuQurMO1KdZxev4VPlxFYxY9jLdevX8fLly8RGRmJZs2a4cqV\nK7JjPnz4gDlz5uDYsWOoVq0aJk2aJKugDEC2XwsAfPaxPyQ4OBht27Yt1vmJiYl5YkpKSsLu3bvz\njLEWtq0xKb7ERMDTk88ar1WLTwBcuhTINR9KJeT+ZIcNG4YWLVrg0aNH8PLygoGBAezs7OReODEx\nMU+FU319/Xy/bLlt374dPXv2LNW5hKjShg3nEBOzIs9zMW+3YePOIKXcP+eF38/PD0ePHkX79u3z\nFYt89+4dBg0ahLNnz+Lx48d5/r4SExPh7Owse9ykSRMcOnQIoaGhqF+/vtzzAeDevXt5Hjdo0ABW\nVlayx4yxEm09TPJKSuLzMywsgGrVgLt3gZUreSEEdSA3kbx69QrfffcdKleujE6dOmHnzp24ePGi\n3AuXpJiev78/duzYIRsLKcm5OYX7cn8UNj3Zy8uLjqfjFX78/fCYAo/PylLO3un6+vpITU3FwoUL\nMW7cOCxfvhz9+/dHx44dZcfkxGpoaIiHDx/mOV9PTw/bt28HAGzbtg1OTk6wsrLC4MGD5Z4fHR2N\ns2fP4saNGzh79izOnTtX4EzP8PDwPGX6SfEkJwOzZgEtW/LHUVHA2rVAvXolu05AQAC8vLxkHwon\nr+8rZ9yiW7du7OTJkyw0NJQZGhrK7TMLCgpirq6ussfe3t5s1apV+Y67ffs2MzIyYg8fPizxucUI\nnxDhvH/P2MKFzEWnHeMFs/J+uLouUEoYr1+/Zj4+PoV+Pjg4mK1Zs4YxxtjTp0/Z1q1b8x3j5+cn\n+/fEiRNs69atTCqVFvv88+fP53n8/PlzNmTIELZ3717GGGPr169nEomkFF9d+fTyJWPz5vExkEmT\nGEtIUOz1Ff3aKfdqJ0+eZKmpqSw8PJx16tSJ2djYMF9fX7kX/vDhAzM0NGSxsbHs/fv3BQ6YP378\nmBkZGbGgoKASn8sYJRKiQuHhjNnYMObmxk7tOcqMjObnSSJGRvPYqVOXlBbO5cuX2ePHj5V2v0/5\n+/sX+rnIyEh269Yt5QWjwVJTGVu0iLHatflgulA/UqUmErFYzNavX1/qi585c4aZmpoyIyMj5u3t\nzRhjbPPmzWzz5s2MMcY8PDxYrVq1mLW1NbO2tmb29vZFnpsveEokRNnEYsZWrWKsTh3Gtm9n7OO7\n9lOnLjFX1wUM6MRcXRcoNYkQzffmDWNLl/Jfq9GjGYuJEfZ+in7tlLsfib29Pa5fv674PjUFoP1I\niFI9fMjXglStCuzYARgY5DuEfidJSaSnA5s2AT/9xNesLlrE14MITen7kXTo0AGenp64cuUKbt68\nidDQUNy8eVNhARCi9qRS/tfeti2vP3H+fIFJhJDiysgA1q8HjI2B27eBS5eAvXuVk0SEUOh+JDnC\nwsIgEomwaNGiPM/7+/sLFhQhauPxY750OCMDuHYNMDUt8vDFixcrKTCiibKy+OaXObU7z5/n+5lp\nukK7tn799VdMmzYNV69eRYcOHZQdV7FQNwIRDGO8zPvs2cD33/PCRZXkvu8ipEDv3wPbtwPe3nz7\nmSVLePUcVVH0a2ehicTKygq3b9+GjY0NwsLCFHZDRaJEQgTx7BkwbhwQHw/s2QNYWqo6IqKhPnzg\n70eWL+ctjyVLgGKs5xacol87C32L1bJlS5iYmCAxMREWFhb5gshdYJEQrXHwIDBlCk8kR46UecMp\nUj6JxcAff/DyJcbGwP79fIhNWxU5ayspKQkuLi44efJkvuxloAaDjdQiIQrz6hUweTIf+dy9m+8d\nQkgJSSTAvn285aGvzxNJrgIDakNpXVuagBIJUYhTp4Dx44FvvgFWrODFjAgpAakUOHQI8PLi9a+W\nLeO7KasrpU//JURrpaUBHh7A1KnAX3/xyfxlTCK0DXX5IpUCR4/yzaR+/hn49Ve+DY06JxEhUIuE\nlE8XL/Jpva6uwLp1gIIq09LvZPnAGG/ILlrEd0xeupTvjy7AvmWCUNpg+6cyMjJk5aoJ0VjZ2cCC\nBcCffwLbtvG/fkKKiTHAz48nkOxsnkD69NGcBCIUuV1b165dQ8uWLdG8eXMAwK1btzBp0iTBAyNE\n4R484KvA7t0Dbt2iJEKKjTG+eLB9e76kaM4cICwM6NuXkghQjEQyffp0+Pn5oU6dOgAAa2trXLp0\nSfDACFEYxnhtrPbteXeWry+gwL3IiXa7dAlwcuKT+qZMAcLDga+/BmjDx/8Uq2urSZMmeU+iFb5E\nU6SmAhMm8B2B/P21ox4FUYrAQN6F9fgxsHgxL7NGL30Fk5tTmzRpgsDAQABAdnY21q1bBzMzM8ED\nI6TMrlzhdSjq1wdCQpSSRKjWlub791+ge3dg+HBg2DC+re2IEZREiiJ31lZycjKmTZuG8+fPgzEG\nFxcXbNiwAbXVYLNgmiFDCiQW81HQLVv4gHqvXqqOiGiAmzd5CyQ8HPjxR2D0aO0tbEALEnOhRELy\niY3lbyOrV+dFjho2VHVERM2Fh/Ouq5AQYN48YOxYoEoVVUclLKVN/50yZUqRQWzYsEFhQRCiEH/9\nBUybxl8Npk+n0VBSpDt3eCmTK1f4LKy//qKiBqVVaCKxtbWF6OO8tk8zl4jmuxF1kpYGeHryt5Tn\nzgE2NqqOiKix+/d5ArlwgU/l3bkT+PxzVUel2YrdtfX27VuIRCLo6uoKHVOxUdcWwb//AkOHAl27\n8hoV9IpAChETw4fOzpwBZszgU3kVVNBA4yi91lZERARsbGzQqlUrtGzZEra2toiMjFRYAISUikTC\ndwnq3RtYs4YPrKtBEqFaW+onLg747jvA0REwMgKio4H588tvEhGC3BZJ27Zt4e3tjc4fq5AFBARg\n/vz5uHbtmlICLAq1SMqp+HhgxAiIaGEsKYGUFIYvv1R1FOpB6S2SjIwMWRIBACcnJ7x7905hARBS\nIkeP8i3mXFzAwMfv1OkDahhTeftITGTw9GSoVYthzhyG5GT+PCUR4chNJM2aNcOyZcsQFxeH2NhY\nLF++HIaGhsqIjZD/vHvHdy2cNQs4cYL3TRCSy/PnwMyZfN1p5cp8IeGqVcDH6k5EQHITyY4dO/Di\nxQsMGDAAAwcORHJyMnbs2KGM2AjhwsIAW1sgK4v/39FR1RERNfLyJZ++27IlHzq7cwdYvx6oV++/\nY7KysuDo6Ahra2u0bNkS8+bNU13AWogWJBL1JZUCv/wCrFzJ/x02LO/nRSJekFGN0O+k8qSk8L3I\nfv+db245fz7f3rYwOVthiMVidOjQAevWrUOHDh2UF7AaUfp+JNevX4e3tzfi4uIgFotlQYSHhyss\nCELySUoCRo7ka0T+/RfQkO5UqrUlvNev+fuKTZuA/v15aZOmTeWfl7OfUnZ2NiQSCWrVqiVwpOWH\n3BaJqakp1q1bB3Nzc1TItVLYwMBA6Njkond/WurCBV4lz8ODFz/S0Sn4ODVskRDhvH0LbNjAk0iv\nXnx/MiOj4p8vlUrRunVrxMTEYOLEiVizZo1wwao5pbdI6tatiz59+ijshoQUSioFVqwA/vc/4I8/\n+CJDUu69ewf89hsf9+jWjZd3NzUt+XUqVKiAW7du4c2bN3B1dUVAQACcnJwUHm95JHewffHixfDw\n8MC+fftw5MgRHDlyBEePHi3Wxf38/NCiRQuYmJhg9erV+T5/7949tG3bFlWrVsX69evzfM7AwACW\nlpawsbGBg4NDMb8corGSk/mOhf/8A4SGUhIhyMzkYyBGRvxXwt+fv78oTRLJrUaNGnBzc8ONGzcU\nEyiR3yLZvXs37t+/D7FYnKdra8CAAUWeJ5FI4OnpifPnz0NPTw/29vbo06dPnr1MateujY0bN+L4\n8eP5zheJRAgICKB+zPIgMBBwd+eD6cuX08YP5VxWFrB1K5+66+jI31tYWJTtmi9fvkSlSpVQs2ZN\nZGZm4p9//qHxLAWS+xd748YN3Lt3r8SFGkNCQmBsbCwbS3F3d4evr2+eRFK3bl3UrVsXp0+fLvAa\nNP6h5RjjbznXrAG2b6d9Q8q57Gy+I/KKFbzu5smTQOvWirn2s2fPMHLkSEilUkilUowYMQJdqdWr\nMHITSbt27RAVFYVWrVqV6MKJiYlo3Lix7LG+vj7+/fffYp8vEong7OyMihUrYvz48Rg7dmyJ7k/U\nXGoq3zno6VM+K0sNJm8ogpeXF9XbKqEPH4A9e4BlywAzM+DIEUDRvdkWFha4efOmYi9KZOQmkqCg\nIFhbW6NZs2ao8nG3l+JM/y1rqfnAwEA0bNgQycnJ6NatG1q0aIGOHTvmOy73H62TkxMNnmmC0FBg\n0CBecPHgQa3ahm7JkiWUSIpJLAb+/JNX5DU05PuBtGun6qi0U0BAAAICAgS7vtxE4ufnV6oL6+np\nIT4+XvY4Pj4e+kWtFvpEw48729WtWxf9+/dHSEiI3ERC1BxjfPWYlxefmfX116qOiKiARAIcOMD3\nBGnQgHflmWQsAAAgAElEQVRndeqk6qi026dvspcsWaLQ68tNJKVdL2JnZ4eHDx8iLi4OjRo1woED\nB7Bv374Cj/10LCQjIwMSiQTVq1fHu3fvcO7cORoY03Rv3/JaWXfv8sF1ExNVR0SUTCrl3VZeXkCN\nGvy9RJcufDkQ0WyCTY+pVKkSNm3aBFdXV0gkEnh4eMDMzAw+Pj4AgPHjxyMpKQn29vZIS0tDhQoV\n8OuvvyIqKkpW2wsAxGIxhg0bBhcXF6FCJUKLiOBdWR07AkFBtJ9pOcMYcPw43xe9alU+v8LFhRKI\nNqFaW0RYu3fz/UzXrwe+/Vax11bDle30O/kfxoDTp3lxAoCPhbi5UQJRB0pf2Q4AcXFxiI6OhrOz\nMzIyMiAWi/HFF18oLAiihTIz+V6mgYFAQABQwll/moq6YHkCOXeOJ5DMTD4W0q8fJRBtJrdFsmXL\nFmzduhUpKSmIiYnBgwcPMHHiRFy4cEFZMRaK3v2pqQcPeFeWuTng4wPo6gpzHzVskZRnjPHV54sW\n8cq8Xl58PkUFufUziLIpfYfE3377DVevXpW1QExNTfHixQuFBUC0zKFDQIcOwKRJvJ6FUEmEqJXL\nl4HOnYEJE/iPPiICGDyYkkh5Ibdrq0qVKrL1IwAf/C7rGhGihd6/52MhZ84Afn6KW5JM1FpQEG+B\nPHrE/x02jCrclEdy3y906tQJK1asQEZGBv755x8MGjQIvXv3VkZsRFPExfEZWYmJfLEhJRGtd/06\nr7Hp7s43lbp3j28fQ0mkfJI7RiKRSLB9+3acO3cOAODq6orvvvtOLVolNEaiBk6d4vuGzJ0LTJ+u\n3BFVGiNRurAwPo03LAz48UdgzBitKkxQbij6tbNE039TUlIQHx8PKysrhQVQFpRIVEgs5q8k+/fz\nj7ZtlR+DGiYSba21FRHBB8+DgoB584CxY/maEKKZlJ5IOnXqhJMnT0IsFsPW1hZ169ZF+/bt8fPP\nPyssiNKiRKIiL17wkdRq1YC9e4E6dVQThxomEm37nbx7lyeQS5eA2bOBiRNpPak2UPqsrTdv3uCL\nL77A0aNH8e233yIkJATnz59XWABEw4SGAvb2wFdf8dVmqkoiRFAPHwLDhwNOToCtLRATA8ycSUmE\nFExuIpFIJHj27BkOHjwINzc3AGWv7KuO3r9/L+j1s7KyBL2+Uuzdy0dYf/6ZL1OmuZ1a59EjXt2/\nXTte0j06mrdEPv9c1ZERdSb3lWDRokVwdXWFkZERHBwcEBMTAxMtK7h36tQpvH37VtB7JCQkaG5L\nTizmb0eXLuUrzuTsjkk0z+PHvKamgwPQtClvkfz4I1C9uqojI5qg3NfaevbsGfz9/TF06FAFRVW4\nDRs2YOzYsaimSf0DL1/y+Z2VK/MNI778UtUR/YfGSMosIQHw9uZl3SdO5O8XaHdr7af0WluZmZnY\nvn07oqKikJmZKQtix44dCgtClXbu3IkZM2Yo5V5ubm7Yt28fxowZo5T7ldnt20D//jyRLF8OVKyo\n6ojUnqbU2nr2jO+J/scfwHffAffv03AXKT25XVsjRozA8+fP4efnBycnJyQkJEBXi8pevHjxAtWq\nVYNEIsFff/2F5cuXY/fu3Zg8eTIePXok9/zIyEgsX74cwcHBAIBRo0YVeqyRkREiIiIUFbqw9u8H\nnJ35q83KlZREikndp/6+eMELEJib8x9pVBSwejUlEVI2chNJdHQ0li1bBl1dXYwcORJnzpwp0d7r\n6i5nEPz27dsYOHAgDA0NIZVKMWjQINkujUXJyMiAjo4OGGO4e/cu6tatW+TxYrFYIXELRiIB5swB\n5s8Hzp/n03yJxnv1iq8ZNTPj1WwiIvi+IPXrqzoyog3kJpLKH5et1qhRAxEREXj9+jWSk5MFD0xZ\nPnz4AABo3bo1qlSpgqCgINm2lNWqVZNNd87ZkOtTDg4OuHnzJtq2bYvg4GC0b98eAODr64unT5/m\nOz4jI0O4L6asUlKAnj35FN/r1wE1WXhKSi81FVi4EDA1Bd68AW7dAjZuBBo1UnVkRJvITSRjx45F\nSkoKli9fjj59+qBly5aYPXu2MmJTioofu2yuX7+Oly9fIjIyEs2aNcOVK1cAAAcPHoSzszPev3+P\nJ0+eyM6LjY2V/f+zzz4DAAQHB6Nt27ZISkrC7t27CxzMqqCuU2YjI/mUHQsLXnSxdm1VR0TK4NUr\nXsrExISPh4SGAr//DjRurOrIiDaSO9g+duxYAHyFe+4XT22RkwT8/PxQv359tG/fHseOHUOdj53G\nOS0IXV1dPH/+HE2aNEFiYiKcnZ0RExMDAGjSpAkOHTqE0NBQ1P/YV1BQGRnGGKqr43zKI0d4/e+f\nf+ar0IjGevaMd1nt2MFnaf/7L2BkpOqoiLaTm0iysrJw5MgRxMXFQSKRgDEGkUiERTn7Z2o4fX19\npKamYuHChQV+vkaNGgCA169fy5KEnp4etm/fDgDYtm0bnJycoKenh8FyxhPCw8Ph6OiowOjLSCrl\ntb//+AM4e5aq9iqAqmptxcUBa9cC+/YBI0bwLixqfRBlkdvP0rdvX5w4cQI6Ojr4/PPPZR/aYuzY\nsTh06FChn+/Zsyf8/f1RoUIFNGnSRPZ8zkr4xo0bIz09HZcvX8YPP/wAgM8Eu3//Pvz9/fNc68KF\nCxg0aJAAX0UpvHkD9OkDXL0KhIRQElGQJUuWKPV+9+8Do0bxMiY1avBy7r/+SkmEKJfcBYnm5uaI\njIxUVjwloqhFNVeuXEHTpk3zJApFu3PnDsRisXpUTr57l2+i7eoKrF8P6OioOqLSKccLEm/d4gsJ\nAwKAqVMBT0+gZk3Bb0u0hNIXJLZr1w7h4eGwtLRU2E3VTceOHQW/R6tWrQS/R7GcOMFXoK1ezYsq\nEY1y7RqwYgVPJN9/z8dCtGhZF9FQhbZILCwsAPCijQ8fPkSzZs1kW+6KRCKEh4crL8pCaFo5CpWS\nSoFly4Bt24DDhwF1GqsprXLSImEMuHCBJ5C4OL7MZ9Qo2g+ElJ7SWiQnT57Md2MA9MKtidLSgG+/\nBZKT+fqQBg1UHREpBqmUb0C5YgXw9i3fUMrdXXN7Ion2KjSRGBgYyP4fGhqKq1evokKFCmjfvj1a\n08Cs5njwgI+HfPUVcPAg7YsqMEXU2pJIgEOH+BhIpUq8Cm///lS1n6gvub+aS5cuxahRo5CSkoLk\n5GSMHj0ay5YtU0ZspKzOnAE6dOB7qW/eTElECUoz9bdixYqwsbGBtbUNmjSxQf36a7BpEx/GCg0F\nBg4sfhLJqawQFxcn656+ceMGpk2bJotv/fr1JbqWoiUlJcHd3R3Gxsaws7ODm5sbHj58KMi9iJIw\nOUxMTFhmZqbscUZGBjMxMZF3mlIUI/zySSplbNUqxho1YiwwUNXRCEdLfv66urpswwbGGjdmzMWF\nsYAA/iMsi9jYWGZubp7veS8vL7Zu3boiz/3w4UPZbl4EqVTK2rRpw3x8fGTP3b59m125cqXY15BI\nJEKEVq4o+rVT7vscPT09Wfl4gC9Q1NfXFzC1kTLJzuazsg4c4OtD2rVTdUSkEGlpvNXx7h1w8SIv\nMHD2LNCpE59H4OfnBzMzM9ja2mLq1Kno3bs3gPytCnNzc1n5noIqcwcEBMjOBXiB0nbt2sHU1BTb\ntm2THdOxY0f07dsX5ubmea716fmenp7YvXs3AN4FPn/+fNjY2MDOzg43b96Ei4sLjI2NC6xP5+/v\nj8qVK2PcuHGy5ywtLdGhQwe595k7dy5sbW2xdu3aPAt74+LiZLNKQ0ND4eTkBDs7O3Tv3h1JSUny\nfxCkzOQmki+++AKtWrXCqFGjMGrUKJibm6NGjRqYMmUKpk6dWuS5fn5+aNGiBUxMTLB69ep8n793\n7x7atm2LqlWr5mtuyzuXFCA1FejenW9GdfkyoKen6ohIAV694gUFjIyA8HCgQoVMxMXZYNw4G9jY\n2ODQoUPIysrCuHHjcOrUKYSGhuL58+eyCS+fbnWd+7G8bbAZYwgPD4e/vz+CgoKwdOlSPHv2DAAQ\nFhaGDRs24N69e0VeSyQS5YmladOmCAsLw1dffYVRo0bh2LFjCA4OLnC8KDIyEra2tsX6Pn16nzp1\n6iA0NBRz5sxBdnY24uLiAAAHDhyAu7s7xGIxpkyZgiNHjuDGjRsYPXo0fvzxx2Ldi5SN3HUk/fv3\nR//+/QHwH6aTk5Ns6lhRv7QSiQSenp44f/489PT0YG9vjz59+sDMzEx2TO3atbFx40YcP368xOeS\nT0RHA716AW5uwJo1tH+IGnr2jK//3LGDj3sEBQHGxsCJE9UQFhaW59hbt26hWbNmMPpYKGv48OHY\nsmVLmWMQiUTo168fqlSpgipVqqBz584ICQlBzZo14eDggKZNm5b4mn369AHAlwy8e/dOVv2iSpUq\nSEtLwxdffJHn/qX1zTffyP4/ePBgHDhwAHPmzMHBgwdx8OBB3Lt3D3fu3IGzszMA/jrSiMocK4Xc\nRFLURk1FCQkJgbGxsWz2l7u7O3x9ffMkg7p166Ju3bo4ffp0ic8luVy9Cnz9NeDlxYsvEpUpqNZW\nXBzP7fv38zpYt2/LL2Hy6QsuyzXtvlKlSpBKpbLHOXvqlFZORerCSh99er/cXd0AZOvLKlSoINt2\nIufxp/vvtGrVCocPHy7VfXLH980332DQoEEYMGAARCKRbNO4Vq1a4dq1a4V+rUQYgk0oTExMRONc\nfy36+vpITEwU/Nxy588/eZnXPXsoiaiB3LW27t0DRo7kdbBq1ixZHazmzZsjLi5Otkvnvn37ZMnF\nwMAAN2/eBADcvHmzRFW5GWPw9fXF+/fv8erVKwQEBMDe3r7I9WFNmzZFVFQUsrOz8fr1a1y8eLHQ\na8vTpUsXvH//Hlu3bpU9Fx4ejqtXr8LAwKBY9wEAQ0NDVKxYEcuWLYO7uzsA/j1LTk6W7Vb64cMH\nREVFyY2JlJ3cFklplaUJW5Jzc7/7y9mQqlxgDFiyBNi9m4/UfhwgJaoXFsbXgFy6xOtgxcQUXQcr\nMzMTNjY2ssc9evSAt7c3tmzZAjc3N3z22Wfo2LGjbNuCgQMHYs+ePTA3N4ejoyOaN28uO7ew8ZLc\nYw2Wlpbo3LkzXr58iUWLFqFBgwa4f/9+oWMvjRs3xuDBg2Fubo5mzZoVuo4s95jGp/fP7dixY5g+\nfTpWr16NqlWrolmzZvjll1+gr69frPvk+OabbzB79mwsX74cAN+E7/Dhw5g6dSrevHkDsViMGTNm\noGXLlkVepzwICAhAQECAcDcoakqXWCxm33//fammgwUFBTFXV1fZY29vb7Zq1aoCj/10SmJxz5UT\nvvbKzGRs6FDGHB0ZS0pSdTSqo2Y//8BA/jvZqBFjP/3E2Nu3irt2QEAA69Wrl+IuSMo1Rb92Ftki\nqVixIq5evSp3YL0gdnZ2ePjwIeLi4tCoUSMcOHAA+/btKyyZlfrccic5mS9zbtQI8PcHqlVTdUTl\nWu46WI8f8+cePQI+DhsoVFla+YQISW4Z+QkTJuDp06cYNGiQbDdBkUiEAQMGyL3433//jenTp0Mi\nkcDDwwPz5s2TzS0fP348kpKSYG9vj7S0NFSoUAHVq1dHVFQUdHV1Czw3X/DlrWjjvXt8Vpa7Oy/A\nWN5rZqiwaKNUCpw8ybuwcupgDRkC6OiUs99JopEU/dopN5HkzNr69N3Qzp07FRZEaZWrRHLxIn+l\nWr2al34lKkkkEgkvWebtzYsnfloHS1U7JBJSEkpPJOqs3CSS7duB+fP5avXyMpmgOJSYSLKzgb17\ngVWrgPr1eQLp3p2HQIimUfRrp9y+kfj4ePTv31+25mPgwIFISEhQWACkCFIpMHcusHIlX6lOSUTp\nMjKADRv4wsGDB3lOv3oV6NGDkgghOeQmktGjR6NPnz54+vQpnj59it69e2M07awnvIwMYPBgIDAQ\nCA4Gck3xJMJLS+OtD0NDPqchpw7WV1+pOjJC1I/cRJJTOl5HRwc6OjoYNWoUXrx4oYzYyq+kJN76\nqFYNOH8eqFNH1RGVGy9f/lcHKzKSf/uPHQPs7VUdGSHqS24iqV27Nvbu3QuJRAKxWIw//vgDdeiF\nTTgREUCbNkDv3ny1uhDzSEk+T5/yPdBNTXkeDw4G/viD1nkSUhxyE8mOHTtw8OBBNGjQAA0bNsSh\nQ4fUYsaWVvr7b6BLFz4msnAhdcIrQVwcMHEiTxgSCa/Gu2ULb5GUBs3YIuURzdpSF7/9BixfDhw+\nDAi0M53WKcOsrXv3eL4+dQoYP55vIlmvniJC0qLfSaK1lD5rKyYmBr1790adOnVQt25d9O3bV1ZI\njiiARMJfxTZt4tOBKIkIKiwMGDSIbx5lasrrYHl7KyaJEFJeyU0kQ4cOxeDBg/Hs2TPZCvchQ4Yo\nIzbt9/Yt0LcvHxe5dq30/SlErsBAoGdPvmVLu3a8jMmPPxZdTJEQUjxyE0lmZiZGjBghm7U1fPjw\nMu9/QAAkJAAdOwINGgB+fsCXX6o6Iq3DGPDPP3wC3IgRPGc/egTMmAEUsvUGIaQU5I6RzJkzBzVr\n1pS1Qg4cOIDU1FTMnj0bAFCrVi3hoyyExvZHR0XxFW2TJgGzZ9OgemkVMkaSUwdrxQogPf2/OliV\nBNs0IXdIGvo7ScoVpZdIMTAwKHLvZlWOl2jkH21QENCvH7BuHX+bTErvk0SSuw5W5cq866pfP+XW\ntqRaW0QTUK2tXDQukZw6BYwezdeH9Oih6mg038dEIhYD+/bxSW916vCZ066u1NAjpDCKfu0sVmM/\nMjISUVFRecZGvv32W4UFUS7s3Mn7WE6dAhwdVR2N1ti1i3dhNWoE/P470LkzJRBClE1uIvHy8sKl\nS5dw584duLm54e+//0aHDh0okRQXY7z0++bNQEAA0KKFqiPSeB8+8EadB/i/W7dSPUtCVElu15a5\nuTlu376N1q1b4/bt23j+/DmGDRuG8+fPKyvGQql915ZUCsycCVy4AFFkpKqj0ToMUNnGVoRoMqUv\nSKxWrRoqVqyISpUq4c2bN6hXrx7i4+MVFoDWys4Ghg8Hbt4ELl/Gx02S6aMUH1lZDP/7H0OTJgyu\nrgyBgfx5SiKEqAe5icTOzg6pqakYO3Ys7OzsYGNjg3bt2ikjNs319i1f+ZaRwWuP0xqRUsnK4gv+\njY350NLBg3zJTc6vX3x8PDp37oxWrVrB3NwcGzZsUG3AoFpbpHwqtGtr0qRJGDp0KDp06CB7LjY2\nFmlpabCyslJagEVRy66tFy/4EurWrYH//e+/xQsq3F9c02Rm8sKJa9YAtra8rLudXf7jkpKSkJSU\nBGtra6Snp8PW1hbHjx+HmZmZ8oP+SC1/Jwn5hNK6tkxNTTFr1iw0bdoUs2fPRlhYGJo1a6Y2SUQt\nxcbyWlk9ewI+PspZAadF3r0DfvqJbyYVEMBbISdOFJxEAKBBgwawtrYGAOjq6sLMzAxPnz5VXsCE\nEADFGGyPi4vD/v37ceDAAWRkZGDo0KEYMmQITE1NlRVjodTq3d+tW4CbG99bffLk/J+nFkmh0tP5\n1N3163nVmAULgJK+X4mLi0OnTp1w584d6OrqChNoMajV7yQhhVDpgsSwsDCMHj0aERERkEgkCgui\ntNTmjzYggG+L+9tvvLRsQSiR5PP2Lf+W/fwzX/+xYEHpNpJKT0+Hk5MTFixYgH79+ik+0BJQm99J\nQoqg9FlbYrEYJ06cwNChQ9G9e3e0aNECR48eVVgAGu/wYZ5E9u8vPImQPN684YsIjYx44WN/f/7t\nK00S+fDhAwYOHIjhw4erPIkQUl4V2ol/7tw57N+/H6dPn4aDgwOGDBmCLVu2qLTbQO38/juvy3H2\nLGBjo+po1N7r18Cvv/KZWD16AFeuAM2bl/56jDF4eHigZcuWmD59uuICLYPFixerOgRClK7Qrq0u\nXbpgyJAhGDhwoEor/BZFZd0IjAFeXsBff/EkYmgo/5xy3LWVkgL88gufxNa7Nx9GMjEp+3WvXr2K\nr776CpaWlrLCoitXrkT37t3LfnFCtBgVbcxFJYlEIuHl32/cAM6cAerXL9555TCRvHrFZ2Ft3gz0\n788TSHFyLiFEWCop2kg+ysoChg4F0tL4AHv16qqOSC0lJ/MZWFu3Al9/DYSGAgYGqo6KECIUJe7U\noOFev+a1yStXBk6fpiRSgOfPgVmz+LhHWhrfH93Hh5IIIdpO0ETi5+eHFi1awMTEBKtXry7wmKlT\np8LExARWVlYICwuTPW9gYABLS0vY2NjAwcFByDDle/oU+Oorvrjhr7+AKlVUG4+aefaM16Y0M+ON\ntvBwPh7SpImqIyOEKAUTiFgsZkZGRiw2NpZlZ2czKysrFhUVleeY06dPsx49ejDGGAsODmaOjo6y\nzxkYGLBXr14VeQ8Bw//PvXuMGRgw5u3NmFRa+usoI1YlS0hgbOpUxr78krFp0xhLTFR1RKq3ePFi\nVYdAiFyKfu0UrEUSEhICY2NjGBgYQEdHB+7u7vD19c1zzIkTJzBy5EgAgKOjI16/fo3nz5/nTnJC\nhVc8ISFAp058y71582jHpI/i4wFPT8DCgleBiYris7IaNVJ1ZKq3ZMkSVYdAiNIJlkgSExPRuHFj\n2WN9fX0kJiYW+xiRSARnZ2fY2dlh69atQoVZuH/+4SVPtm4FxoxR/v3VUHQ0MG4c7+H77DPg3j0+\nqN6ggaojI4SokmCztkTFfPdeWKvj6tWraNSoEZKTk9GtWze0aNECHTt2VGSIhTt5EvDwAI4e5cWf\nyrnbt4FVq4Dz54GJE4EHD/je6IQQAgiYSPT09PJsgBUfHw99ff0ij0lISICenh4AoNHHfpK6deui\nf//+CAkJKTCR5N7/wcnJCU5l3XP18GFedPHUKUDVg/wqdvUqsHIlr0c5YwYv7U6T1QjRPAEBAQgI\nCBDuBgodccnlw4cPzNDQkMXGxrL379/LHWwPCgqSDba/e/eOpaWlMcYYS09PZ+3atWNnz57Ndw+F\nh793L2MNGjAWFqbY6zKmMYPtUiljp08z1qEDY4aGjG3ezFhmpqqj0hwC/kkRojCK/j0VrEVSqVIl\nbNq0Ca6urpBIJPDw8ICZmRl8fHwAAOPHj0fPnj1x5swZGBsb4/PPP8fOnTsB8A2LBgwYAIAXjRw2\nbBhcXFyECpXbtg1YvBi4cAFo2VLYe6khiQQ4dIh3YUmlfG7BoEG0pUpJUa0tUh5RiRSAVxFcu5YP\nAiiiCFRB1LREyvv3wJ49fDfCevV4AnFzowlqhGgzKpGiaGvX8mJQly6VqyXY6el81flPPwGWlsD2\n7XxeASUQQkhJld9EwhiwbBnw5588iXwyEUBbvXoFbNjAV5537sznFFAFfEJIWZTPWluM8VK0hw4B\nly+XiySSkMDLmJiYAImJQGAgcPAgJRFCSNmVv0TCGDB9Ot9HxN+/+GXgNdSDB8B33/HuK4DXwdq2\nDTA1VW1chBDtUb4SiVQKTJjAS59cvKjVq+rCwvgOwO3bA3p6PKH89FO5aHypVO51TYSUF+Vn1pZY\nzFerx8XxgQFlr6xTwqwtxvj2tStX8pbHzJm8pAktIlQele3aSUgJ0Kyt0vjwARg+HEhNBf7+mxeK\n0iJSKd+sceVKvifI7NnA8eNU7Z4Qohzan0jev+d9PFIpcOIEULWqqiNSmPR0vgZk40aeNObO5TsS\n0iJCQogyafdLTkYGMGAAoKvLN6SqXFnVESnE48d8DeXOnXztx++/82r3tAaEEKIK2jvYnp7Ol2jX\nqQPs36/xSYQxPlN54ECgdWvewLp+HTh2DHByoiRCCFEd7WyRvHkD9OjBa2b5+AAVK6o6olLLyuJ5\n8NdfgXfvgKlTgV27aABdXVGtLVIead+srVevAFdXoE0bvoS7gpo0uko4a+vZM95ltWUL30hq2jSg\ne3f1+XIIIZpL0bO2tOtl6cULXvejc2c+Aq2Br7o3bgAjRvDGVHIyXzN59izQs6dGfjmEkHJAe16a\nnj7lI879+/NStho0aCAW83Il7dvzMRBLS+DRI94iMTNTdXSEEFI07RgjefwY6NqVLzicN0/V0RTb\nq1d8S/jffgOaNeMLCPv2pem7hBDNovEtkgUdO+KyvT3g6akxSeTOHb7i3NgYuHsX8PX9b0YWJRFC\niKbR+ESy/OpVnAVwWagNqRTo1CnA2Zl/6OkB9+4Bu3fz6bxEO1CtLVIeaf6srY//X+jqimV+fiqN\npyBpaXy67tRpItjZMkybxhfaU/kS7US1togmUPTvqcYnEk3BADAp06Q5AKQUKJEQTUDTfz/BPn4s\ncHUFY0ylH9nZDIcPM3TtylCvHsOcOQyPH/PPgVESIYRoJ60Y2p1vZITuU6ao7P6JiXz21datgKEh\nMHEiHzjP3X01ZswYnD59GvXq1UNERITKYiWEEEXT+BbJQldXdP/1V3zl5qbU+0qlwPnzPGFYWPDF\ng35+fD+QoUPzj4GMHj0afmo4hkMIIWWl8S0SZQ+wp6TwwfPNm4Fq1Xjrozi1rzp27Ii4uDglREhU\niWptkfJI4xOJMjDGK+3+/juvtturF08ebdtq1AJ6ogQ0/ZeUR5RIipCayrcx2baNFxSeMIFXX6lb\nV9WREUKI+qBE8omcfT+2bQNOnuQVd9euBbp0oaKJhBBSEEokHz17BuzdyxOIjg4wdizw8898XyxC\nCCGFK9fvsbOyeNVdNzdetv3+fV6yJDISmD5dsUlkyJAhaNeuHR48eIDGjRtj586dirs4IYSokKCJ\nxM/PDy1atICJiQlWr15d4DFTp06FiYkJrKysEBYWVqJzS4MxICQEmDSJ17vasgUYMgRISAC2bxdu\nAH3fvn14+vQp3r9/j/j4eIwePVrxNyEqR4PtpFxiAhGLxczIyIjFxsay7OxsZmVlxaKiovIcc/r0\nadajRw/GGGPBwcHM0dGx2Ocyxlhxw8/OZiwggLFZsxhr3pwxIyPGli1jLC6ujF9kGfn7+6s2gDKi\n+DOeQIAAAA4gSURBVPMT8E8qH03+/mty7IxpfvyK/j0VrEUSEhICY2NjGBgYQEdHB+7u7vD19c1z\nzIkTJzBy5EgAgKOjI16/fo2kpKRinStPcjKwZw/wzTdA/fp8r4+qVflzDx8CCxYATZsq7MstlYCA\nANUGUEYUv2ppcvyaHDug+fErmmCD7YmJiWjcuLHssb6+Pv7991+5xyQmJuLp06dyz80hlQJxcXxc\nIzKS7/UREfHfXldubsAvvwANGyr26yOEEMIJlkiKW5mXlbECZc2awBdf8DIl5uaAiwswYwZ/TKXa\nCSFEeIIlEj09PcTHx8sex8fHQ19fv8hjEhISoK+vjw8fPsg9FwCMjIwQEyPC27e8cKImlrJasmSJ\nqkMoE4o/P2Vub6DJ339Njh3Q7PiNjIwUej3BEomdnR0ePnyIuLg4NGrUCAcOHMC+ffvyHNOnTx9s\n2rQJ7u7uCA4ORs2aNVG/fn3Url1b7rkAEB0dLVT4hBBCikmwRFKpUiVs2rQJrq6ukEgk8PDwgJmZ\nGXx8fAAA48ePR8+ePXHmzBkYGxvj888/l62tKOxcQggh6kejd0gkhBCiemq1sl2IBYwpKSno1q0b\nTE1N4eLigtevX2tM7IcOHUKrVq1QsWJF3Lx5U5C4hYx/1qxZMDMzg5WVFQYMGIA3b95oVPwLFy6E\nlZUVrK2t0bVr1zzjdpoQf47169ejQoUKSElJ0aj4vby8oK+vDxsbG9jY2Ai2n49Q3/uNGzfCzMwM\n5ubmmDNnjiCxCxW/u7u77PverFkz2NjYFB2EQlellIFQCxhnzZrFVq9ezRhjbNWqVWzOnDkaE/vd\nu3fZ/fv3mZOTEwsNDVV43ELHf+7cOSaRSBhjjM2ZM0eQ772Q8aelpcnO37BhA/Pw8NCo+Blj7MmT\nJ8zV1ZUZGBiwV69eaVT8Xl5ebP369YLELHTsFy9eZM7Oziw7O5sxxtiLFy80Kv7cvv/+e7Zs2bIi\n41CbFolQCxhznzNy5EgcP35cY2Jv0aIFTE1NFR6vsuLv1q0bKnwsmezo6IiEhASNir96rt3K0tPT\nUUegCp5CLt6dOXMm1qxZI0jcyoifCdzzLlTsv//+O+bNmwcdHR0AQF2B9p4QeuE3YwwHDx7EkCFD\nioxDbRJJYYsTi3NMQQsYc859/vw56tevDwCoX78+nj9/rjGxK4sy4t+xYwd69uwpQPTCxv/jjz+i\nSZMm2L17N+bOnatR8fv6+kJfXx+WlpaCxC10/ADvHrKysoKHh4cg3dJCxf7w4UNcvnwZbdq0gZOT\nE27cuKHw2IWMP8eVK1dQv359udOF1SaRKHIBI2OswOuJRCJB5vgra/GlUISOf8WKFahcuTKGDh1a\nqvPlETL+FStW4MmTJxg1ahRmzJhR4vOLQ4j4MzMz4e3tnWetg1C/f0J9/ydOnIjY2FjcunULDRs2\nxPfff1+a8IokVOxisRipqakIDg7G2rVrMXjw4NKEJ5fQf7v79u0r1t+t2uxHosgFjAkJCdDT0wPA\nWyFJSUlo0KABnj17hnr16ql17IUtvhSSkPHv2rULZ86cwYULFzQy/hxDhw4VrEUlRPwxMTGIi4uD\nlZWV7HhbW1uEhIQo/G9AqO9/7ji/++479O7dW6FxCxm7vr4+BgwYAACwt7dHhQoV8OrVK9SuXVsj\n4gd4Mjx27FjxJvqUYZxHoT58+MAMDQ1ZbGwse//+vdxBo6CgINmgUVHnzpo1i61atYoxxtjKlSsF\nGfAVKvYcTk5O7MaNGwqPW+j4//77b9ayZUuWnJwsWOxCxv/gwQPZ+Rs2bGDDhw/XqPhzE3KwXaj4\nnz59Kjv/p59+YkOGDNGY2Ddv3swWLVrEGGPs/v37rHHjxgqPXcj4GeN/v05OTsWKQ20SCWOMnTlz\nhpmamjIjIyPm7e3NGOM/kM2bN8uOmTx5MjMyMmKWlpZ5ZjIVdC5jjL169Yp17dqVmZiYsG7durHU\n1FSNif3o0aNMX1+fVa1aldWvX591795dkNiFit/Y2Jg1adKEWVtbM2trazZx4kSNin/gwIHM3Nyc\nWVlZsQEDBrDnz59rVPy5NWvWTLBEIlT8I0aMYBYWFszS0pL17duXJSUlaUzs2dnZbPjw4czc3Jy1\nbt1a0LLzQv3ujBo1ivn4+BQrBlqQSAghpEzUZrCdEEKIZqJEQgghpEwokRBCCCkTSiSEEELKhBIJ\nIYSQMqFEQgghpEwokRBB6Orq5nvOx8cHe/fuLfU13dzckJaWlu95Ly8vrF+/vtjX2bVrF6ZMmVLq\nOJRp1KhROHLkSLGPT05OhqOjI2xtbREYGFimez9+/DjPzqShoaGYNm1ama5JtJPalEgh2qWgGkDj\nx48v0zVPnz5d7HsVRZl7qpdVSevDXbhwAZaWlti6dWu+z0mlUlk15uKIjY3FX3/9Jav8amtrC1tb\n22KfT8oPapEQpcndcggNDZVtGjVr1ixYWFgAyN9a6NWrFy5fvgwAMDAwkG3OtGLFCjRv3hwdO3bE\n/fv3C7zfqFGjMGHCBNjb26N58+Z5EtHTp0/Ro0cPmJqa5tl0aNKkSbC3t4e5uTm8vLxkz8+dOxet\nWrWClZUVZs2aBYC/+//666/h4OAABwcHXLt2LV8Mu3btQr9+/eDi4oJmzZph06ZNWLduHVq3bo22\nbdsiNTUVAHDr1i20adNGtglY7kq3OWuGQ0ND4eTkBDs7O3Tv3h1JSUl57nXr1i3MmTMHvr6+aN26\nNbKysqCrq4sffvgB1tbWCAoKwrJly+Dg4AALC4s8iT06OhrOzs6wtraGnZ0dHj16hLlz5+LKlSuw\nsbHBL7/8goCAAFm9q5SUFPTr1w9WVlZo27YtIiIiZD/jMWPGoHPnzjAyMsLGjRsL/NkQLVPW5fmE\nFERXVzffc7k3KrKwsGBXrlxhjPF6aBYWFowxxnbu3Mk8PT1l5/Tq1YtdunSJMfZfvagbN24wCwsL\nlpmZydLS0pixsXGBGyCNGjVKVmPo4cOHTF9fn2VlZbGdO3cyQ0NDlpaWxrKysljTpk1ZQkICY4yx\nlJQUxhjf9MfJyYmFh4ezly9fsubNm8uu++bNG8YYY0OGDGFXr15ljDH2+PFjZmZmli+GnTt3MmNj\nY5aens6Sk5PZF198ISs7MWPGDPbLL7/Ivh+XL19mjDG2aNEiNn36dNnXcOTIEZadnc3atm3LXr58\nyRhjbP/+/WzMmDH57rdr1y42ZcoU2WORSMQOHToke5zz9THGS5CcPHmSMcaYg4MDO378OGOMsffv\n37OMjAwWEBDAevXqJTve399f9tjT05MtXbqUMcY3cbK2tmaMMbZ48WLWvn17lp2dzV6+fMlq167N\nxGJxvjiJdqGuLaJ0b978v727e4mqiQM4/h3Xl6WldUUUyReyhHR9WffGbjQTRYg2hUS6CnxBFARB\n/wDBa1FBJBAvRKSLUKKLwJsUQYOSAgtMu1CRQBEpXE+tJzw1z0V4Hn06Rs+zj4/P0/P7XO2cc+Y3\nZ2Zh5rwMZ8KEw2FKS0sBuHv3LlNTUz+VV2vN3Nwct2/fxu1243a7qampOfEz2Yef787JyeHSpUus\nrKyglKKystJeuMrv97OxsUF6ejoPHjxgZGQEy7LY2tpieXkZv9+P2+2mubmZUChEKBQC4MmTJywv\nL9tlGYZBJBLh3Llz9jalFBUVFXg8HjweDz6fz76qLyws5PXr1+zt7REOhykrKwO+LcBWX19/rM5v\n375laWmJqqoqAL58+cKFCxcc2+doW7hcLurq6uz0zMwMvb29RCIRPnz4QEFBAeXl5WxublJbWwtA\nfHy8HeskT58+5eHDhwBUVFTw/v17DMNAKcXNmzeJi4sjOTmZ1NRUtre3Hc9V/DpkIBFn7miHFRsb\ny9evX+20aZrfHa+UOpbnRx2eU16AhIQEe5vL5cKyLNbX1+nr6+PFixckJibS2NjI/v4+LpeLhYUF\npqenmZycZGhoiOnpabTWPH/+3O54T3K0rJiYGDsdExODZVnfHX9SffLz8x0fnznV75Db7ba3maZJ\ne3s7L1++JD09nZ6eHkzT/MvvjE46z6Ptcdi24tcm70jEP0prTWJiIj6fz55VdP/+fXv/xYsXWVxc\nRGvNu3fvWFhYOJZfKcW1a9d49OgRpmliGAaPHz927Ay11kxMTKC1ZnV1lbW1NXJzcx07QK01hmHg\n8Xjwer1sb28zNTWFUopPnz6xu7vLjRs36O/v59WrVwBUV1czODhox1hcXHSM+6O2APB6vSQlJTE/\nPw/A+Pg4169fP1bnK1eusLOzw7NnzwA4ODjgzZs3f6q8w0E5OTmZjx8/MjExAXybYZeRkWEvs/r5\n82f29/fxer0YhuEYq6yszP7fZmdnSUlJ4fz58//axdvE6ZI7EnEqIpHIsWU8u7q6gN+vmEdHR2lq\nakIpRXV1tX1caWkp2dnZ+P1+8vLyHGcJBYNB7ty5QyAQIDU1lZKSEsdzUEqRlZVFSUkJe3t7DA8P\nEx8f7zgTSilFUVERwWCQ3NxcMjMz7UdvhmFQW1uLaZporRkYGABgcHCQ9vZ2AoEAlmVRXl7OvXv3\nvot7tKw//j5Mj42N0dbWRiQS4fLly4yOjh6LExcXx+TkJB0dHYTDYSzLorOzE7/f/9Pl+Xw+Wlpa\nKCgoIC0tjatXr9r7xsfHaW1tpbu72y6rqKgIl8tFcXExDQ0NBINBO97hS/VAIIDH42FsbMyxfPH/\nIJ+RF2duY2ODUChkz/z5uzQ2NnLr1i17pTohxOmQR1vizGmt5SpWiP8wuSMRQggRFbkjEUIIERUZ\nSIQQQkRFBhIhhBBRkYFECCFEVGQgEUIIERUZSIQQQkTlN9kAlumd805PAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6-2 Page Number 621 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Absorption of Acetone in a PAcked Tower\n", "from scipy.optimize import root\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "#Variable Declaration\n", "P, T= 101325., 293. #column pressure and temperature\n", "y1, y2 = 0.026, 0.005 #Compositions in gas phase\n", "x2 = 0.0 #Composition of fresh solvent feed\n", "V, L = 13.65, 45.36 #Vapor and liquid rates to the coloumn \n", "kyd, kxd = 3.78e-2, 6.16e-2 #Film coefficient for gas and liquid phase, (kmol/(s.m3.mol frac))\n", "xA, pA, PmmHg = 0.0333, 30., 760. #liquid equilibrium mole frac at partial presure \n", "A = 0.186 #Tower cross sectional area\n", "#Calculations\n", "def func1(s1,c1,s2,c2,s3,x0,y0):\n", " c3 = c1 - (s3-s1)*x0\n", " x = (c3 - c2)/(s2 - s3)\n", " y = s2*x + c2\n", " return [x,y]\n", "\n", "def lm(a,b,c,d):\n", " return ((a-b)-(c-d))/log((a-b)/(c-d))\n", "\n", "S = (pA/PmmHg)/xA\n", "k1 = V*y1/(1-y1)-V*y2/(1-y2)\n", "k1 = k1/L\n", "x1 = k1/(1+k1)\n", "yA = pA/PmmHg\n", "me = yA/xA\n", "ce = 0.0\n", "mop = (y2-y1)/(x2-x1)\n", "cop = y2 - mop*x2\n", "xe = np.arange(0.,0.015,0.001)\n", "ye = me*xe\n", "plt.plot(xe,ye,'b-')\n", "plt.plot([x1,x2], [y1,y2], 'ko-', lw=0.5)\n", "m1 = -(kxd/(1-x1))/(kyd/(1-y1))\n", "m2 = -(kxd/(1-x2))/(kyd/(1-y2))\n", "[xi1,yi1]=func1(mop,cop,me,ce,m1,x1,y1)\n", "plt.plot([x1,xi1], [y1,yi1], 'ko-', lw=0.5)\n", "[xi2,yi2]=func1(mop,cop,me,ce,m2,x2,y2)\n", "plt.plot([x2,xi2], [y2,yi2], 'ko-', lw=0.5)\n", "\n", "plt.text(.006, .006, 'Equilibrium Curve')\n", "plt.text(.001, .02, 'Operating Line')\n", "\n", "plt.annotate('$(x_1,y_1)$', xy=(x1,y1), xytext=(x1,y1+0.002),\n", " arrowprops=dict(facecolor='black', shrink=0.05),\n", " )\n", "\n", "plt.annotate('$(x_2,y_2)$', xy=(0,y2), xytext=(0.0005,y2),\n", " arrowprops=dict(facecolor='black', shrink=0.05),\n", " )\n", "plt.xlabel(\"Liquid phase mole fraction, $x$\")\n", "plt.ylabel(\"Vapor phase mole fraction, $y$\")\n", "plt.plot([0,x1,x1], [y1,y1,0], 'ko-', lw=0.5)\n", "plt.plot([0,xi1,xi1], [yi1,yi1,0], 'ko-', lw=0.5)\n", "plt.plot([0,xi2,xi2], [yi2,yi2,0], 'ko-', lw=0.5)\n", "V1 = V/(1-y1)\n", "V2 = V/(1-y2)\n", "V = (V1+V2)*.5/3600.\n", "L = L/3600.\n", "dyyilm = lm(y1,yi1,y2,yi2)\n", "zy = V*(y1-y2)/(kyd*dyyilm*A)\n", "dxxilm = lm(xi1,x1,xi2,x2)\n", "zx = L*(x1-x2)/(kxd*dxxilm*A)\n", "y1s = me*x1\n", "y2s = me*x2\n", "plt.plot([0,x1,x1], [y1s,y1s,0], 'ko-', lw=0.5)\n", "d1yilm1 = lm(1.,yi1,1.,y1)\n", "d1yilm2 = lm(1.,yi2,1.,y2)\n", "d1yilm = (d1yilm1 + d1yilm2)/2.\n", "d1xilm = lm(1.,x1,1.,xi1)\n", "d1ys1lm = lm(1.,y1s,1.,y1)\n", "d1ys2lm = lm(1.,y2s,1.,y2)\n", "d1yslm = (d1ys1lm + d1ys2lm)/2.\n", "Kya = 1./(d1yslm*(1/(kyd/d1yilm) + me/(kxd/d1xilm)))\n", "dyyslm = lm(y1,y1s,y2,y2s)\n", "z = V*(y1-y2)/(A*Kya*dyyslm)\n", "#Results\n", "print \"The values of kya, kxa, Kya are:\", round(kyd,4),round(kxd,4),round(Kya,4),\" kgmol/(s.m2. mol frac) respectively\"\n", "print \"Tower Height calculated using kya:\", round(zy,4),'m'\n", "print \"Tower Height calculated using kxa:\", round(zx,4),'m'\n", "print \"Tower Height calculated using Kya:\", round(z,4),'m'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The values of kya, kxa, Kya are: 0.0378 0.0616 0.0223 kgmol/(s.m2. mol frac) respectively\n", "Tower Height calculated using kya: 1.9489 m\n", "Tower Height calculated using kxa: 1.9394 m\n", "Tower Height calculated using Kya: 1.8973 m\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAETCAYAAADtZdsKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdclfX7x/HXUXGvzMICFQUcpQI5kMzCTHEkjtK0NHKi\nOVIcuMWNe/4qRSMwt2WaGuXCUSCKKO6VpIDiREWGjM/vjzvPV1wclMNhXM/Hw0ec4z2um/C8ue/7\nuj8fnVJKIYQQQmSDAqYuQAghRP4hoSOEECLbSOgIIYTINhI6Qgghso2EjhBCiGwjoSOEECLbZGvo\nBAQEUKNGDWxtbZkxY8ZTlxk0aBC2trbY2dkRFhYGQGJiIo6Ojtjb2/PWW28xatQo/fK3bt2iWbNm\nVKtWjebNmxMbG5stxyKEECLzsi10UlNTGTBgAAEBAZw8eZLVq1dz6tSpdMts27aN8+fPc+7cOZYu\nXUq/fv0AKFq0KLt37+bIkSOEh4eze/du/vrrLwC8vb1p1qwZZ8+epWnTpnh7e2fXIQkhhMikbAud\nkJAQbGxssLKywszMjM6dO7Np06Z0y2zevBk3NzcAHB0diY2NJSYmBoDixYsD8ODBA1JTU3nllVee\nWMfNzY1ff/01uw5JCCFEJmVb6ERFRVGxYkX9a0tLS6KiojJcJjIyEtDOlOzt7TE3N6dJkya89dZb\nAMTExGBubg6Aubm5PqSEEELkPNkWOjqdzqDlHh+V5+F6BQsW5MiRI0RGRrJ3714CAwOfug9D9yOE\nECL7FcquHVlYWHD58mX968uXL2NpafncZSIjI7GwsEi3TJkyZWjdujWhoaE4Oztjbm7O1atXqVCh\nAleuXOH1119/6v5tbGy4cOFCFh6REELkbdbW1pw/fz5Lt5ltZzr16tXj3LlzRERE8ODBA9auXYur\nq2u6ZVxdXfH39wcgODiYsmXLYm5uzo0bN/RdaQkJCWzfvh17e3v9On5+fgD4+fnRrl27p+7/woUL\nKKVy5Z8JEyaYvAap3/R1SP25809urt8Yv6hn25lOoUKFWLx4MS4uLqSmptKzZ09q1qzJkiVLAHB3\nd6dVq1Zs27YNGxsbSpQoga+vLwBXrlzBzc2NtLQ00tLS6NatG02bNgVg5MiRdOrUieXLl2NlZcW6\ndeuy65CEEEJkUraFDkDLli1p2bJluvfc3d3TvV68ePET69WuXZvDhw8/dZvlypVjx44dWVekEEII\no5ERCXIBZ2dnU5fwUqR+05L6TSu315/VdEqpfDGJm06nI58cqhBCZAljfG7KmY4QRpaUlGTU7Scm\nJhp1+0JkJQkdIYxoy5Yt3Lt3z6j7iIyMlPuaIteQ0BHCSK5cucLdu3cpX768UfdjY2PDyZMnSUhI\nMOp+hMgKEjpCGImvry/t27fPln21bt2a1atXZ8u+hHgZEjpCGMm1a9coVqwYqamprFq1iilTpuDn\n50f//v35559/Mlz/+PHjTJkyheDgYAC++uqrZy5rbW3NsWPHsqp0IYxGQkcII3l4g//o0aN88skn\nVK1albS0NDp27Mgbb7yR4frx8fGYmZmhlOLUqVO89tprz10+JSUlS+oWwpgkdIQwkuTkZADeeecd\nihQpQlBQEM7Ozjg7O1OsWDEANm3aRHR09FPXb9CgAYcPH8bJyYng4GAaNWr03HXi4+ONdCRCZB0J\nHSGMpGDBggAcPHiQGzducPz4capUqcK+ffsAuHr1Kn5+fk88B3Hx4kX91w/nkQoODsbJyemZ6wAU\nKCD/nEXOl63D4AiRnzwMjICAAMzNzWnUqBEbN27Ud7NVqFABOzu7dOtERUXx0Ucf6QdarFSpEuvX\nryc0NFQ/b9Tj64A2JUipUqWMeThCZAkJHSGMxNLSktu3bzNu3DiD17GwsGD58uUALFu2DGdnZyws\nLOjUqdNz1wsPD8fR0fGl6hUiO8j5uBBG0rt3b9avX//Mv7927Rpnzpxh9+7d6d5/OIJBxYoViYuL\nY+/evQwbNuy56+zcuZOOHTtm8REIkfVk7DUhjGjfvn1UrlyZSpUqGW0fJ06cICUl5amX3YR4Gcb4\n3JTQEUII8VTG+NyUezpCZIGZM2dy/fp1/evy5cszYsQIdDqdCasSIueRMx0hssDTwiUtLU1CR+Rq\nMrWBEEKIXE1CRwghRLaR0BFCCJFtJHSEEEJkGwkdIYQQ2SZfhY6Liwtbt241dRkin/j8889NXYIQ\nOU6+ek7nzz//1A+k2Lp1axNXI3Kzzp07ExgYiK2tLba2tk9dZs2aNezYsYOCBQvy/vvvs27dumyu\nUoicJ1+FDsCFCxdYtGiRhI54KTqdjpiYGGJiYti/f/8zl7tx4wYg0w4I8VC+ejj0ocqVKz936l8h\nMmvixIlPfb9gwYIyo6fItWTstZfwaOi4uLgQEBBgwmpEXmNmZvbUcClUqJB+BlEhchsZkSALWFtb\nM3DgQFOXIfKQyMhIqlSp8tS/s7W1ZdGiRTKVtBD/ydbQCQgIoEaNGtja2jJjxoynLjNo0CBsbW2x\ns7MjLCwMgMuXL9OkSRPefvttatWqxcKFC/XLe3l5YWlpiYODAw4ODs89g3FxcWHBggVyP0dkmaio\nKGbNmkV4eDhdunShUKFC6HQ6ChUqRJcuXTh58iQtW7ZkypQpLFy4UMJHCJVNUlJSlLW1tbp48aJ6\n8OCBsrOzUydPnky3zNatW1XLli2VUkoFBwcrR0dHpZRSV65cUWFhYUoppe7du6eqVaumTp06pZRS\nysvLS82ZMyfD/WfjoYp8IjIyUg0cOFAlJCSke3/ChAlPXf78+fNq1KhRav78+SouLi4bKhTi5Rjj\nczPbznRCQkKwsbHBysoKMzMzOnfuzKZNm9Its3nzZtzc3ABwdHQkNjaWmJgYKlSogL29PQAlS5ak\nZs2aREVFPRqc2XUYQgAQHR2Nt7c3M2fOpGjRogatY21tzbRp02jTpg3Tpk1j/vz53L9/38iVCpGz\nZFvoREVFUbFiRf1rS0vLdMHxrGUiIyPTLRMREUFYWFi6+eAXLVqEnZ0dPXv2JDY21khHIITmypUr\nTJ8+PVOB86iqVasydepU2rZty7Rp05g3bx5xcXFGqFSInCfbQsfQeUUeP2t5dL24uDg+/fRTFixY\nQMmSJQHo168fFy9e5MiRI7zxxhsMHTo064oW4jFXr15l6tSpzJgxg2LFir3UtqpUqcLUqVNp3749\n3t7ezJ07l3v37mVRpULkTNn2cKiFhQWXL1/Wv758+TKWlpbPXSYyMhILCwsAkpOT+eSTT+jatSvt\n2rXTL/P666/rv+7Vqxdt2rR5Zg1eXl76r52dnXF2dn7RwxH5UExMDFOnTmXmzJkUL148y7ZrZWXF\nlClTuHTpEjNnzqRs2bL07t2b0qVLZ9k+hDBEYGAggYGBxt1Jlt8leobk5GRVtWpVdfHiRZWUlJRh\nI0FQUJC+kSAtLU1169ZNDR48+IntRkdH67+eO3eu6tKly1P3n42HKvKgmJgY1b9/f4MaAJ7VSGCo\nS5cuqXHjxqlZs2apO3fuvNS2hHgZxvjczLYznUKFCrF48WJcXFxITU2lZ8+e1KxZkyVLlgDg7u5O\nq1at2LZtGzY2NpQoUQJfX18A/vrrL3766Sfq1KmDg4MDANOnT6dFixZ4enpy5MgRdDodVapU0W9P\niKxy/fp1Jk2axIwZMyhRooTR91exYkUmTZpEZGQks2fPplSpUvTp04cyZcoYfd9CGFu+GpEgnxyq\nyEI3btzAy8sLb29v/X3EjHh5eaW7lPuyIiMj8fHxoUSJEvTp04eyZctm2baFeB5jfG7muwE/hTDU\nzZs3mTBhQqYCxxgsLS2ZOHEi0dHRzJ8/n2LFiuHu7i7hI3KlTIXOV199xWuvvUajRo1wcnLC3Nzc\nWHUJYVI3b95k/PjxTJ8+nVKlSpm6HADefPNNvLy89OFTtGhR3N3deeWVV0xdmhAGy/TltVOnThEc\nHExwcDChoaF06tSJYcOG5fih2+XymjDUrVu3GDduHNOnT3+hDrKsvrz2LFeuXGHp0qUULlwYd3d3\nypUrZ/R9ivzF5KNMBwcHo5TCyckJgPXr12NnZ8fevXvp1atXlhaW1SR0hCFu377N2LFjmTZt2gvf\nuM+u0Hno6tWrLF26FDMzM/r06cOrr76abfsWeZvJ7+ns2LEDMzMz5s+fT/HixalUqRLly5eXy2wi\nT4iNjWXs2LFMnTo1V3WKVahQgfHjxxMTE8O3335LgQIFcHd3p3z58qYuTYgnZCp02rVrR3x8PJ6e\nnvr3li1blm7oGiFyozt37jBmzBimTp2aa2/Qm5ubM27cOK5du8Z3330n4SNyJGmZFvnenTt3GD16\nNFOmTMmSm/LZfXntWa5fv57uObjXXnvNxBWJ3Mbkl9eEyGvu3r3L6NGjmTx5cp7rAnvttdcYO3Ys\nN27cYMmSJaSmptK3b990Q0cJkd0kdES+de/ePUaNGsWkSZPydOdX+fLlGTNmDDdv3mTJkiWkpKTg\n7u4u92KFSbxw6Fy5coVy5cpRpEiRrKxHiGzxMHAmTpyYb7q9Xn31VUaPHq0Pn+TkZNzd3alQoYKp\nSxP5yAuHTteuXblw4QKffvops2fPzsqahDCquLg4Ro0ahZeXV768yf4wfG7dusXSpUtJTEzE3d2d\nN954w9SliXzghUNn586dpKWlcerUqaysRwijun//PiNHjmTChAn5MnAeVa5cOUaOHMnt27dZsmQJ\nCQkJuLu78+abb5q6NJGHGRw6iYmJ/Pzzz0RERJCSkgJonQ3jx483WnFCZKX79+/j6enJ+PHjpZPr\nEa+88gojR44kNjaWpUuXcv/+ffr06aOfy0qIrGRw6LRt25ayZctSt27dF5qiVwhTevh82bhx46R7\n6xnKli3LiBEjuHPnDkuXLuXevXv06dPnickWhXgZBodOVFQUf/zxhzFrEcIo4uPjGTFiBGPHjpWO\nLQOUKVOG4cOHc+fOHXx8fLh79y69e/eWh8BFljA4dN59913Cw8OpU6eOMesRIkslJCTg6enJmDFj\npEsrk8qUKcOwYcO4e/cuPj4+xMbG0rt3bypVqmTq0kQuZnDo7Nu3D19fX6pUqaJvk9bpdISHhxut\nOCFeRmJiIp6enowaNUo6s15C6dKlGTp0KPfu3cPHx4dbt27Ru3dvKleubOrSRC5kcOj8/vvvgBY0\ngAwpI3K0xMRERowYgaenp3RjZZFSpUrh4eHBvXv3WLZsGTdv3qRXr15YWVmZujSRixgcOlZWVhw5\ncoR9+/ah0+lo3LgxdnZ2xqxNiBeSlJSEp6cnI0aMkA4sIyhVqhRDhgwhLi6OZcuWcf36dXr16kWV\nKlVMXZrIBQyeeW3BggV07dqV69evExMTQ9euXVm4cKExaxMi05KSkhgxYgTDhg2TrisjK1myJIMH\nD2b06NFs3ryZMWPG8M8//5i6LJHDGTzKdO3atQkODqZEiRKA9sxDw4YNOXbsmFELzCoyynTe9zBw\nhg4datKb3TlllOnsdv/+fZYvX87Vq1fp2bMn1tbWpi5JvCSTjzL96JTUOX16apG/PHjwAE9PTzw8\nPKS7ykRKlCjBoEGDiI+PZ/ny5URHR9OzZ09sbGxMXZrIQQwOne7du+Po6EiHDh1QSvHrr7/So0cP\nY9YmhEGSk5Px9PRk8ODB0lGVAxQvXpyBAwcSHx/PDz/8QFRUFD169MDW1tbUpYkcIFOTuIWGhrJ/\n/350Oh3vvfce77zzjjFry1JyeS1vehg4AwcOzDE3svPr5bVnSUhIwNfXl0uXLtG9e3eqV69u6pKE\ngYzxuSkzh4pc62HgDBgwgKpVq5q6HD0JnadLTEzkhx9+4N9//6V79+7UqFHD1CWJDJjknk6jRo34\n66+/KFmypP4ZnUcLunv3bpYWJIQhUlJSGDlyJP37989RgSOerWjRonz99dckJiby448/4uvry1df\nfUXNmjVNXZrIRhl2A/z111+ANgfJvXv30v2RwPmfyMhI2rZtS7Vq1bCxsWHw4MEkJycbfb9+fn5c\nuXJF/7p3795ZNt1EyZIln3hvyZIlrFixIku2/6JSUlLw9PSkX79+0iGVCxUtWpS+ffsyadIk9u7d\ny4gRIzh58qSpyxLZxOAWNE9PT4Pey4+UUnTo0IEOHTpw9uxZzp49S1xcHGPGjMmS7aelpT3z7378\n8Ueio6P1r318fLLsN8fHz2wB3N3d6datW5Zs/0U8PMNxd3eXrqhcrkiRIri7uzN58mT279/P8OHD\nOX78uKnLEsamDGRvb//Ee7Vq1TJ0dZPLxKFm2o4dO9T777+f7r27d++qV199VcXHxytfX1/l6uqq\nnJ2dla2trZo4caJ+uRUrVqgGDRooe3t75e7urlJTU5VSSpUoUUINHTpU2dnZqf3796tJkyap+vXr\nq1q1aqk+ffoopZRav369KlmypKpevbpycHBQCQkJ6oMPPlChoaH6bYwZM0bZ2dmphg0bqpiYGKWU\nUufPn1eOjo6qdu3aasyYMapkyZJPPa6nvT9hwgQ1e/ZspZRSH3zwgfL09FQNGjRQ1apVU/v27VNK\nKZWSkqKGDRum6tevr+rUqaOWLFnyMt9evYfbPX36dJZsz1gmTJhg6hJypcTERLV06VI1bNgwFR4e\nbupyhDLO52aGZzrfffcdtWvX5syZM9SuXVv/x8rKKtMjTgcEBFCjRg1sbW2ZMWPGU5cZNGgQtra2\n2NnZERYWBsDly5dp0qQJb7/9NrVq1Uo3EsKtW7do1qwZ1apVo3nz5sTGxmaqpqxw4sQJ6tatm+69\nUqVKUalSJc6fPw/AwYMH+eWXXwgPD2f9+vWEhoZy6tQp1q1bx99//01YWBgFChRg5cqVgDYcf8OG\nDTly5AiNGjViwIABhISEcOzYMRISEtiyZQuffvop9erVY9WqVRw+fJiiRYumOzuJj4/HycmJI0eO\n8P777+Pj4wPAN998w5AhQwgPD8/0cPU6nU6/D51OR2pqKgcOHGD+/PlMnDgRgOXLl1O2bFlCQkII\nCQnBx8eHiIiIF/rePpSamsqoUaPo2bOndD/lUUWKFKF3795MnTqVkJAQhg8fLgMK50EZhs7nn3/O\nb7/9hqurK1u2bOG3337jt99+IzQ0VP8BaYjU1FQGDBhAQEAAJ0+eZPXq1U/ce9i2bRvnz5/n3Llz\nLF26lH79+gFgZmbGvHnzOHHiBMHBwfzf//0fp0+fBsDb25tmzZpx9uxZmjZtire3d2aOP0s87TLU\no3+n0+lo3rw5r7zyCkWLFqVDhw7s37+fnTt3EhoaSr169XBwcGDXrl1cvHgRgIIFC/LJJ5/ot7Nr\n1y4aNmxInTp12LVrV7pr4OoZ3SWFCxemdevWANStW1f/wR8cHEzHjh0B6NKly0sde4cOHQB45513\n9Nv/888/8ff3x8HBgYYNG3Lr1i19+L6I1NRURo8eLR1P+UThwoXp2bMn06ZN49ChQwwbNoyjR4+a\nuiyRRTLsXitTpgxlypRhzZo1L7WjkJAQbGxs9CPSdu7cmU2bNqW7/7B582bc3NwAcHR0JDY2lpiY\nGCpUqKCfC6VkyZLUrFmTqKgoatSowebNm9mzZw8Abm5uODs7Z3vwvPXWW2zYsCHde3fv3uXSpUvY\n2Nhw6NChdH+nlNIHlZubG9OmTXtim4+etSQmJtK/f39CQ0OxsLBg4sSJJCYm6pd9VuiZmZnpvy5Q\noIB+mvGs9HCai4IFC6bb/uLFi2nWrNlLbz8tLY0xY8bg5uYmXU75jJmZGT169CA5OZmffvqJFStW\n8MUXX+Dg4GDq0sRLMLiRwM3Njdu3b+tf37p1K1MjEkRFRaW7lGNpaUlUVFSGy0RGRqZbJiIigrCw\nMBwdHQGIiYnRzwZpbm5OTEyMwTVllaZNmxIfH6/v6kpNTWXo0KF0795dP7X39u3buX37NgkJCWza\ntIn33nuPpk2bsmHDBq5fvw5o39NLly49sf2HAfPqq68SFxfH+vXr9X9XqlSpTHcRNmzYUB+SL/LL\nxLPOrB5ycXHh22+/1YfQ2bNniY+Pz/R+HgZO165deeuttzK9vsgbzMzM6N69O9OnTyc8PJxhw4Zx\n+PBhU5clXpDBw+AcPXqUV155Rf+6XLlymfof/7xLUI96/APt0fXi4uL49NNPWbBgwVPbeR+93/A0\njz6w5+zsjLOzs0E1GWLjxo18/fXXTJ48mbS0NFq3bq0/g9HpdDRo0IBPPvmEyMhIunXrph/NYcqU\nKTRv3py0tDTMzMz49ttvqVSpUrrjKFu2LL1796ZWrVpUqFBBH7gAX331FX379qV48eL8/fff6Wp6\ndBuPfm/mz59P165dmTZtGi4uLpQpU+apxxQfH5/ulwAPD48ntvu0/fXq1YuIiAjeeecdlFK8/vrr\nbNy40bBv5H/S0tIYO3Ysn3/+ObVq1crUuiJvMjMzw83NjZSUFFatWsWqVavo0qXLE/dTxYsLDAwk\nMDDQuDsxtOOgTp066ubNm/rXN2/ezFT3WlBQkHJxcdG/njZtmvL29k63jLu7u1q9erX+dfXq1dXV\nq1eVUko9ePBANW/eXM2bNy/dOtWrV1dXrlxRSikVHR2tqlev/tT9Z+JQs5yvr68aMGCAyfb/uPj4\neP3Xq1evVu3atTNhNU9KTU1Vo0aNUkeOHDF1KS9EuteyR3JysvL391ceHh7q4MGDpi4nTzLG56bB\nl9eGDh2Kk5MT48aNY+zYsTg5OTF8+HCDw61evXqcO3eOiIgIHjx4wNq1a3F1dU23jKurK/7+/oB2\ns7ts2bKYm5ujlKJnz5689dZbDB48+Il1/Pz8AO1ByXbt2hlcU3bJ6Awsu4WGhmJvb4+dnR3ff/89\nc+bMMXVJemlpaYwfP55OnTrJJIHiuQoVKkS3bt2YMWMGZ86cYejQoYSEhJi6LJGRzCTU8ePH1cKF\nC9WiRYvUiRMnMp1w27ZtU9WqVVPW1tZq2rRpSimlvv/+e/X999/rl+nfv7+ytrZWderU0T9vsm/f\nPqXT6ZSdnZ2yt7dX9vb26vfff1dKaWdcTZs2Vba2tqpZs2bq9u3bT913Jg9VmEBaWpoaO3asOnz4\nsKlLeSlypmMaKSkpauXKlWrIkCEqODjY1OXkCcb43MzUgJ+3b9/m7NmzJCYm6n9zf//9940Uh1lL\nBvzM2ZRSeHl50bZt21w1evnTyICfppWamsq6des4ePAgHTt2xMnJydQl5VomncTNx8eHhQsXEhkZ\nib29PcHBwTg5ObFr164sLUjkP0opJk6ciKura64PHGF6BQsWpEuXLnTq1IkNGzawfv16Pv30U959\n911TlybIRMv0ggULCAkJoXLlyuzevZuwsLBndj0JYSilFJMmTaJ169bShSSyVMGCBfnss8+YPXs2\nkZGReHh4sH//flOXle8ZHDpFixalWLFigPbcSI0aNThz5ozRChN5n1KKyZMn06JFC+rXr2/qckQe\nVaBAATp16sTs2bO5evUqQ4YMYe/evaYuK98yOHQqVqzI7du3adeuHc2aNcPV1VU/uoAQmaWU0j+j\n9OhzR0IYS4ECBfj000+ZM2cO169fZ8iQIfrRTET2MaiRQCnF5cuXqVSpEqA9QHT37l1atGhB4cKF\njV5kVpBGgpxDKcXUqVNp2rRpnrzJK40EuUNaWhqbNm1iz549tGvXLksfFs8rjPG5afCZTqtWrfRf\nOzs74+rqmmsCR+QcSimmT59OkyZN8mTgiNyjQIECtG/fnrlz5xIbG8uQIUPYtWuX/HJqZAaFjk6n\no27duvLglXgpSilmzJjB+++/T6NGjUxdjhCAFj7t2rVj7ty5xMXFMWTIEHbu3CnhYyQGn+k8bJGu\nWrWqfk6dzM6nI/IvpRQzZ87k3Xff5b333jN1OUI8QafT4erqyrx584iPj8fDw4Pt27dL+GSxDJ/T\n6datGytWrKBfv345cogZkTvMnj2bhg0b5pqHiUX+pdPpaNOmDR9//DHbtm3Dw8ODli1b0qxZsxw1\nnFVuleGZTmhoKNHR0fzwww+ULl36iT9CZGT27NnUq1ePDz74wNSlCGEwnU5H69atmTt3LqmpqXh4\neBAQECBnPi8pwzOdvn370rRpU/75558nHt7T6XT8888/RitO5H5z5szhnXfeoUmTJqYuRYgXotPp\naNmyJS1atOCPP/7Aw8OD5s2b06JFCznzeQEGj73Wt29fvv/+e2PXYzTSMp395s2bR+3atfnoo49M\nXUq2kpbpvE0pxfbt2/n999/56KOPaNWqVZ4NH5O2TOfmwBHZb8GCBdSqVSvfBY7I+3Q6Hc2bN2fu\n3LkULlwYDw8PtmzZIr/UGsjg0BHCUIsWLaJmzZo0a9bM1KUIYTQ6nY5mzZoxd+5cihUrhoeHB5s3\nb5bwyYCEjshSixcvxtbWlubNm5u6FCGyhU6no2nTpsydO5eSJUvi4eHBpk2bJHyeQUJHZJn/+7//\no2rVqrRo0cLUpQiR7XQ6HR9++CHz5s2jTJkyeHh4sHHjRtLS0kxdWo5icOikpaWxYsUKJk2aBMCl\nS5dkhAKh991332FlZZVuuCQh8itnZ2fmzZtHuXLlGDp0KL/88ouEz38MDp2vv/6aoKAgVq1aBUDJ\nkiX5+uuvjVaYyD2+//57LC0tad26talLESJH+eCDD5g3bx7ly5dn2LBhbNiwId+Hj8Ghc+DAAb79\n9lv9nDrlypUjOTnZaIWJ3GHJkiW8+eabtGnTxtSlCJFjvf/++8ydO5cKFSowbNgw1q9fn2/Dx+DQ\nKVy4MKmpqfrX169fp0ABuSWUn/n4+GBubo6rq6upSxEiV3jvvfeYO3cub775JsOGDWPt2rXpPldz\nEmNlosGpMXDgQNq3b8+1a9cYPXo0jRo1YtSoUcapSuR4y5cvp3z58jIenxAvoFGjRsydO5dKlSox\nfPhwVq9enWPC58wZGDsWqlQxzvYzHAbnoa5du1K3bl127twJwK+//spbb71lnKpEjvbDDz9QtmxZ\n2rdvb+pShMjVnJyccHJyIjg4mOHDh1OvXj0+++wzChYsmK113LoFa9eCnx9ERMAXX8DmzWBvn/X7\nMjh0AGr73iXNAAAgAElEQVTWrEnNmjWzvgqRa/z444+UKlWKTz75xNSlCJFnNGzYkIYNG3LgwAFG\njBiBg4MDnTt3plChTH1EZ0pyMvz+O/j7w44d0KIFjB8PzZuDEXebceiULFnymeMK6XQ67t69m+VF\niZzJz8+P4sWL07FjR1OXIkSe5OjoiKOjIyEhIXh6emJvb0+XLl2yLHyUgsOHtaBZvRqqVQM3N1i2\nDMqWzZJdZCjDI4mLi8uOOkQOt2LFCooWLUqnTp1MXYoQeV6DBg1o0KABhw4dwtPTEzs7Oz7//PMX\nDp/oaPjpJy1s4uPhyy8hKAisrbO4cANk6giOHj3K3r170el0NG7cGDs7O2PVJXKQn376iUKFCvHZ\nZ5+ZuhQh8pV69epRr149QkNDGTlyJLVr1+aLL74wKHzi4+HXX7X7NCEh8Mkn8N130KgRmLLx2OBd\nL1iwgC+++ILr168TExND165dWbhwoTFry3IuLi5s3brV1GXkKqtWraJAgQJ06dLF1KUIkW/VrVuX\n2bNnU6dOHUaNGoWvry/Jycl4eXlRvnx5ypYtS/ny5Rk/3os9e6BnT7CwgBUroHt3iIrSLqE1bmza\nwAFAGahWrVoqLi5O/zouLk7VqlXL0NVNDlCAsra2Vlu2bDF1ObnC6tWr1YoVK0xdRq4zYcIEU5cg\n8riwsDDVsGFDVaBAAf1nm/ankHrttQlq1iyloqNffj+ZiAiDZSrzHn0Y9EUeDA0ICKBGjRrY2toy\nY8aMpy4zaNAgbG1tsbOzIywsTP9+jx49MDc3p3bt2umW9/LywtLSEgcHBxwcHAgICHhuDRcuXGDR\nokWZrj2/Wbt2LQ8ePKBr166mLkUI8Rh7e3vOnDn3lFENUkhLW8ywYfDGGyYpLUMG39Pp3r07jo6O\ndOjQAaUUv/76Kz169DB4R6mpqQwYMIAdO3ZgYWFB/fr1cXV1TdeCvW3bNs6fP8+5c+c4cOAA/fr1\nIzg4WL//gQMH8uWXX6bbrk6nw8PDAw8PD4NrOX36tMzs+BwnTpwgOTkZe3t7+T69gMDAQPm+CaNI\nTYULF+DoUbh9++lNXikpKdlcVeYYHDoeHh44Ozuzf/9+QHtew8HBweAdhYSEYGNjg5WVFQCdO3dm\n06ZN6UJn8+bNuLm5AVrrYGxsLFevXqVChQo0btyYiIiIp25bZXLeiho1asiHwjNs2LCBypUr0717\nd1OXkmvJdNUiKymlhYyfn9bmbG0NgwbBqFGLuX076YnljflsT1Yw+BrZwYMHmTx5Mr6+vvj4+PDl\nl19Sp04dg3cUFRVFxYoV9a8tLS2JiorK9DJPs2jRIuzs7OjZsyexsbHPXdba2pqBAwcaXHd+8vPP\nP3P37l0JHCFygCtXYM4csLODdu2gVCnYtw/++gvc3WHQoAFPBEyhQoUYMGCAiSo2jMGR+MUXXzB7\n9mxq1ar1QvdznvWA6eMeP2vJaL1+/foxfvx4AMaNG8fQoUNZvnz5U5e1tramQYMGHDx4kBIlSuDs\n7GxQTfnBxo0biY2NpWfPnqYuRYh8KyEBNm3SzmqCg6F9e1i06OldZw/PphcvXkxcXBwlS5ZkwIAB\nL3WWHRgYSGBg4AuvbwiDQ+e11157qdGELSwsuHz5sv715cuXsbS0fO4ykZGRWFhYPHe7r7/+uv7r\nXr16PXeI/fPnz2e27Hzh119/5caNG/Tu3dvUpQiR7ygF+/drD27+/DPUr6+NEvDzz1C8+PPXfXgp\nN6su6To7O6f7ZXzixIkvvc3HGRw6EyZMoGfPnnz00UcULlwY0M5COnToYND69erV49y5c0RERPDm\nm2+ydu1aVq9enW4ZV1dXFi9eTOfOnQkODqZs2bKYm5s/d7tXrlzhjf/aNDZu3PhEd5t4vs2bN3Pt\n2jX69Olj6lKEyFcuXNCeo/H318LFzQ2OHdOer8nLDA4dPz8/zpw5Q0pKSrrLa4aGTqFChVi8eDEu\nLi6kpqbSs2dPatasyZIlSwBwd3enVatWbNu2DRsbG0qUKIGvr69+/S5durBnzx5u3rxJxYoVmTRp\nEt27d8fT05MjR46g0+moUqWKfnsiY1u2bCE6Opq+ffuauhQh8oU7d2DdOi1ozpyBLl1gwwZwcAAD\n70DkejplYOtX9erVOX36tMH3ZnIanU6X6S63vGzr1q38+++/MuW4EUj3mnhUSgps367dpwkIgI8+\n0sY+a9kSzMyyZh/G+pkzxuemwWc67777LidPnuTtt9/O0gJE9tu2bRsRERH079/f1KUIkWeFh2tB\ns2oVWFlpQfPtt1CunKkrMy2DQycoKAh7e3uqVKlCkSJFAC0Fw8PDjVacyHoBAQFcuHBB2saFMIKY\nGFi5Urt8dvs2dO0KgYFQvbqpK8s5DA6djIaXETnfH3/8wdmzZxk0aJCpSxEiz0hM1GbZ9PODv//W\nnqmZNw8++CAHDK6ZAxkcOg9HEhC50/bt2zl16hSDBw82dSlC5HpKaQHj56c1AtStq3WfrVsHJUqY\nurqcLWePlyCyxM6dOzl+/DhDhgwxdSlC5GoXL2qXzlas0JoA3Ny0ezePPXIonkNCJ4/btWsXR44c\nYejQoaYuRYhc6c4d7WzGzw9OnYLOnWHNGu3sJpc285qUhE4eFhgYSGhoKMOHDzd1KULkKikpsGOH\nFjTbtkHTpuDhAa1awX/PxosXZHDopKWlsXLlSi5evMj48eO5dOkSV69epUGDBsasT7ygPXv2EBIS\nwogRI0xdihC5xrFj2uWzlSuhYkWtzXnRIihf3tSV5R0G91Z8/fXXBAUFsWrVKgBKliwpDxbmUHv3\n7iUoKEjOcIQwQEwMzJ+vjQrQqpV2r2bnTjhwAPr3l8DJagaf6Rw4cICwsDD9HDrlypUjOTnZaIWJ\nF7N//37++usvRo4cmWtHjxDC2BIT4bfftMtn+/dD27YwezY4O0PBgqauLm8zOHQKFy5Mamqq/vX1\n69dfaIoDYTx//fUXe/bsYfTo0RI4QjxGKQgK0i6frV8P9vba5bM1a6BkSVNXl38YHDoDBw6kffv2\nXLt2jdGjR7NhwwamTJlizNpEJgQFBbF7927GjBkjgSPEIyIi/jeac8GCWptzWBhUqmTqyvIng0On\na9eu1K1bl507dwI8MdW0MJ3g4GB27NjB2LFjJXCEAO7e1dqc/f3h+HGtzXnlSm2uGvknYloGXx9b\nv349FhYWDBgwgNu3bzN69GgOHz5szNqEAUJCQvjjjz8kcES+l5oKf/wBX3yhncVs3gzffANRUbB4\nMTRoIIGTExgcOpMmTaJ06dLs37+fnTt30rNnT5mHxcQOHjzItm3bGD9+vASOyLeOH4cRI7SgGTsW\nGjaE8+fh11+16Z7/G59Y5BAGh07B/1o6tmzZQu/evfn444+le82EDh06xJYtW5gwYYIEjsh3rl+H\nBQu0UQFatNAG1ty+HQ4ehIEDpc05JzP4no6FhQV9+vRh+/btjBw5ksTERNLS0oxZm3iGw4cPs3nz\nZiZOnCiBI/KNpCTYskVrc967F9q0gRkzoEkTaXPOTQwOnXXr1hEQEMDw4cMpW7YsV65cYdasWcas\nTTxFWFgYGzduZNKkSRI4Is9TSntI089Pa3OuU0frPlu5EkqVMnV14kUYHDolSpSgSZMmnD9/nr17\n9wJQtGhRoxUmnnT06FE2bNjA5MmTJXBEnvbvv/DTT1r3GWjP04SGQuXKpq1LvDyDQ8fHx4eFCxcS\nGRmJvb09wcHBODk5sWvXLmPWJ/4THh7O2rVrmTJlijyUK/Kke/fg55+1s5pjx6BTJ+1rR0fpOstL\nDP70WrBgASEhIVSuXJndu3cTFhZGmTJljFmb+M+xY8dYvXq1BI7Ic1JTtQaAbt20ATY3boQBA7Q2\n52+/1TrRJHDyFoPPdIoWLUqxYsUASExMpEaNGpw5c8ZohQnN8ePHWblyJdOmTZPAEXnGyZPapbOf\nfoIKFbTLZ3PmwOuvm7oyYWwGh07FihW5ffs27dq1o1mzZrzyyisyhbWRnThxghUrVjB9+nQJHJHr\n3bgBq1drYRMdDV27QkAA1Kpl6spEdjI4dDZu3AiAl5cXzs7O3L17lxYtWhitsPzu5MmT+Pn5SeCI\nXC0pSZsEzc8PAgOhdWuYOlWbFE3anPMng0MnMTGRn3/+mYiICFJSUgA4cuQI48ePN1px+dXp06fx\n9fXF29tb/1CuELmFUtpDmn5+sHatdibj5qad4ZQuberqhKkZHDpt27albNmy1K1bV1qljejMmTMs\nW7aMGTNmSOCIXOXy5f+1OaekaPdpDh0CuQovHmVw6ERFRfHHH38Ys5Z87+zZs/j4+MgZjsg14uLg\nl1+0oAkLg44d4YcfpOtMPJvBofPuu+8SHh5OnTp1jFlPvnXu3DmWLFnCjBkzKFTI4P8tQmS7tDTY\nvVsLmk2boHFjcHfXhqWRiyAiIxneoa5duza1a9dm//791K1bl2rVqunfy2wABQQEUKNGDWxtbZkx\nY8ZTlxk0aBC2trbY2dkRFhamf79Hjx6Ym5tTu3btdMvfunWLZs2aUa1aNZo3b05sbGymasoJzp8/\nz3fffSeBI3K006dh9Gjtctnw4eDgAGfPatM+d+wogSMMk+En3G+//ZYlO0pNTWXAgAHs2LEDCwsL\n6tevj6ura7qJ4LZt28b58+c5d+4cBw4coF+/fgQHBwPQvXt3Bg4cyJdffpluu97e3jRr1owRI0Yw\nY8YMvL298fb2zpKas8OFCxf49ttvJXBEjnTzpjads7+/ds/miy9g61Z47Hc/IQyW4adcVj2LExIS\ngo2NjX57nTt3fmL20c2bN+Pm5gaAo6MjsbGxXL16lQoVKtC4cWMiIiKe2O7mzZvZs2cPAG5ubjg7\nO+ea0Pnnn39YtGgRs2bNwszMzNTlCAHAgwdam7O/P+zaBa1awcSJ8NFHIL8XiZdl8I9QQkIC3377\nLfv370en09G4cWP69etncCdbVFQUFStW1L+2tLTkwIEDGS4TFRVFhQoVnrndmJgYzM3NATA3Nycm\nJsbQQzKpiIgIFi5cyMyZMyVwhMkppQ2o6eenndnUrKm1Ofv6gox2JbKSwaHz5ZdfUrp0aQYNGoRS\nilWrVtGtWzfWr19v0PqGjoqslHqh9R4u+7zlvby89F87Ozvj7Oxs8Laz0r///sv8+fOZOXMmhQsX\nNkkNQgBERmrTBPj5aQ9yfvmlNpVA1aqmrkyYQmBgIIGBgUbdh8Ghc+LECU6ePKl//eGHH/LWW28Z\nvCMLCwsuX76sf3358mUsLS2fu0xkZCQWFhbP3a65ubn+EtyVK1d4/TmDNz0aOqZy6dIl5s6dK4Ej\nTOb+fW1gTT8/7ezm00/BxwfefVfanPO7x38ZnzhxYpbvw+DxVd555x2CgoL0r4ODg6lbt67BO6pX\nrx7nzp0jIiKCBw8esHbtWlxdXdMt4+rqiv9/E2gEBwdTtmxZ/aWzZ3F1dcXPzw8APz8/2rVrZ3BN\n2e3y5cvMmTOHmTNnUkQmbhfZ6GGbc/fuYGmpjYHWq5c2mvPSpdCokQSOyB4Gn+kcOnSIRo0aUbFi\nRXQ6HZcuXaJ69erUrl0bnU5HeHj483dUqBCLFy/GxcWF1NRUevbsSc2aNVmyZAkA7u7utGrVim3b\ntmFjY0OJEiXw9fXVr9+lSxf27NnDzZs3qVixIpMmTaJ79+6MHDmSTp06sXz5cqysrFi3bt0LfiuM\nKzIyklmzZkngiGx19qzWELBiBZQtq92nmT5dG9lZCFPQqcdvojzD0zrHHpXTR5zW6XRP3C/KLlFR\nUXh7ezNr1iwZQigf8PLyMuml3Fu3tDHP/P3h4kX4/HMtbOzsTFaSMDJj/cwZ43PT4DOdnB4qOVV0\ndDTe3t7MnDlTAkcYTXIy/P67FjQ7dkCLFjBuHDRvLm3OImeRH0cjunLlCtOmTWPWrFn6CfCEyCpK\nweHDWtCsXg3VqmlnNMuWaZfShMiJDAodpRSRkZHpnqERz3f16lWmTp3KzJkzJXBEloqO/t9ozvHx\nWptzUBBYW5u6MiEyZvCZTsuWLTl+/Lgxa8kzYmJimDJlCjNnzqR48eKmLkfkAfHxWpuzvz+EhMAn\nn8B332ldZzLHn8hNDAodnU5H3bp1CQkJoUGDBsauKVe7du0akydPZsaMGRI44qWkpcG+fdrzNBs3\natMFfPWV9rX8aIncyuAzneDgYH766ScqV65MiRIlAAxqlc5Prl+/zqRJk5gxY4b+eyREZp079782\n51KltPs0U6fCG2+YujIhXp7BofNwAreHw8yYqv04p7p+/TpeXl4SOOKF3L79vzbnCxe0NueNG8He\nXh7aFHlLplqmjxw5wr59+/QDftpJ4z8AN27cwMvLC29vb0qWLGnqckQukZwMf/yhXT7780+tvXn0\naHBxARkDVuRVBt+CXLBgAV27duX69evExMTQtWtXFi5caMzacoWbN28yfvx4pk+fTqlSpUxdjsjh\nlNKmdR48WBuOZto0aNoUIiJg/Xr4+GMJHJG3GXyms2zZMg4cOKC/dDRy5EgaNmzIoEGDjFZcTnfr\n1i3Gjx+Pt7c3pUuXNnU5IgeLjtZGc/b3h3v3tDbn/fvB1tbUlQmRvTLVbFngkd7MArmwT9PFxYWt\nW7dmybZu377NuHHjmDZtmgSOAGDr1q24uLjw448/4uLiws8/b2X1am10gLffhlOnYPFi+OcfmDRJ\nAkfkTwaf6XTv3h1HR0c6dOiAUopff/2VHj16GLO2LPfnn39y4cIFAFq3bv3C24mNjWXs2LFMnTqV\nMjLDlUALnG+++Ub/8/Xvv/+yffsF7O1h2LDW/PKLtDkLAZk40/Hw8MDX15dXXnmFV199lR9//JEh\nQ4YYszajuHDhAosWLXrh9WNjYxkzZgxTp06lrIw1Iv7j7b1QHzgPKXWB119fxOefS+AI8VCmxl6r\nW7dupubQyalOnz79QiOyJiYmsnPnTj788EPmz5+f9YWJXCUxEU6cgKNHITLyzDOWSczmqoTI2QwO\nnYSEBL799lv279+vb5nu169frhw5uUaNGpkOnbt37zJy5Ej++OMPypUrZ5zCRI6XkqK1N/v5QUAA\nNGsG//d/sGhRENu3//vE8rnx34cQxmRw6Hz55ZeULl2aQYMGoZRi1apVdOvWjfXr1xuzvixnbW3N\nwIEDM7XOvXv3GDVqFJMnT5bAyaeOHtWCZtUqqFJFGyXgu+/g4Y9DgQKD+OefC+kusb3Iz5oQeZ3B\noXPixAlOnjypf/3hhx/y1ltvGaUoY3FxcWHgwIGZaiK4d+8eI0eOZOLEibz66qtGrE7kNFevaiHj\n5wexsdCtG+zdq00h8LiHP1OLFi0iODiYhg0bZvpnTYj8wODQeeeddwgKCsLJyQnQxmLLbfd3AgIC\nMrV8XFycPnDKly9vpKpETpKQAJs3a8/T/P03tGsH8+fDBx9kPJpz69atad26Nc7Ozpn+WRMivzC4\ne+3QoUM0atSIypUrY2VlxbvvvsuhQ4eoXbs2derUMWaNJvEwcLy8vCRw8jiltAc1+/QBCwtYvhy6\ndIHISPD1hSZNwMysIA4ODvo/M2fOfOH9NWrUCNCmgK9duzag/fv65ptvAG3q4Tlz5mRqW1nt6tWr\ndO7cGRsbG+rVq0fr1q05d+6cUfYl8heDz3Se9pubMebPzgnu37+Pp6cnEyZM4LXXXjN1OcJI/vlH\nG8nZ3x+KFNHu04SHa8PTPK548eKEhYVlyX7/+uuvJ96rV68e9erVA/43qO7zpKSkUKhQoadu62Up\npWjfvj3du3dnzZo1AISHhxMTE4OtgU+0pqWl5coHyIXxGfxTYWVlRZkyZbh27RqXLl3i0qVL/Pvv\nv1hZWWFlZWXEErNXfHw8I0aMYPz48bz++uumLkdksTt3tOmc339fm5/m5k1tdOcTJ8DT8+mB8zwB\nAQHUrFmTunXrMmjQINq0aQM8ebZSq1YtLl26BPDUQWEDAwP16wIcPXqUd999l2rVqrFs2TL9Mo0b\nN6Zt27bUqlUr3bYeX3/AgAH4+fkB2r/d0aNH4+DgQL169Th8+DDNmzfHxsaGJUuWPFHL7t27KVy4\nMH369NG/V6dOHd57770M9zNy5Ejq1q3LrFmzcHR01C8XERGhvyISGhqKs7Mz9erVo0WLFly9ejXj\nb7TIMww+0/Hx8WHhwoVcvnwZBwcHgoODcXJyYteuXcasL1s9DJxx48Zhbm5u6nJEFklJge3btTOa\n33/XBtgcOhRatoTChQ3bRkJCAg4ODvrXo0ePpk2bNvTp04fdu3djbW3NZ599pj9Lefxs5dHXGZ3J\nKKUIDw/nwIEDxMXF4eDgoG9ICAsL48SJE1SuXPm529LpdOlqqVy5MmFhYXh4ePDVV18RFBREQkIC\ntWrVwt3dPd26x48fN/h+7eP7KV++PKGhoQCsWbOGiIgIrKysWLt2LZ07dyYlJYWBAwfy22+/8eqr\nr7J27VrGjBnD8uXLDdqfyP0MDp0FCxZw8OBBnJyc2L17N6dPn2bUqFHGrC1bJSQkMGLECMaMGUOF\nChVMXY7IAseOaZ1nK1dCpUra5bPFi+FFmhCLFSv2xOW1I0eOUKVKFaytrQHo2rUrS5cufem6dTod\n7dq1o0iRIhQpUoQmTZoQEhJC2bJladCggT5wMsPV1RWA2rVrc//+fUqUKEGJEiUoUqQId+/eTTd+\noCGX957ls88+03/dqVMn1q5di6enJ+vWrWPdunWcPn2aEydO8NFHHwGQmprKm2+++cL7E7mPwaFT\ntGhRihUrBmhPWdeoUYMzZ57+FHZu8zBwRo8ezRsyPWOuFhMDq1drYXPjhtbmvHs31KiR9ft6/MP5\n0fubhQoVIi0tTf/6ZUcmeHh/5FkTBD6+v4SEhHR/X6RIEf12Cj9yelegQAFSUlLSLfv222+zYcOG\nF9rPo/V99tlndOzYkQ4dOqDT6bC2tubYsWO8/fbb/P333888VpG3GXxPx9LSktu3b9OuXTuaNWuG\nq6trnriXk5iYiKenJyNHjnzub1xJSUlGr0O8mMTE/81FU726Nl/NnDnw77/afDXGCByA6tWrExER\nwT///APA6tWr9UFkZWXF4cOHATh8+DAXL140eLtKKTZt2kRSUhI3b94kMDCQ+vXrP7dpp3Llypw8\neZIHDx4QGxv7zMvehjT+fPjhhyQlJeHj46N/Lzw8nP3792NlZWXQfgCqVq1KwYIFmTx5Mp07dwa0\n79n169cJDg4GIDk5Od3zfyLvy/BM5+uvv+bzzz/n119/BbQbpM7Ozty9e5cWLVoYvcCsEB8f/9T3\nExMTGTFiBCNGjMDCwuKZ62/ZsoWGDRvqf1s0hsjISCIiIvSXHcTzKQVBQdp9mvXrwcFBm6NmzRow\nxuStj9/TadmyJdOmTWPp0qW0bt2a4sWL07hxY/2IBJ988gn+/v7UqlULR0dHqlevrl/3Wfd3Hr03\nUqdOHZo0acKNGzcYP348FSpU4MyZM8+8V1SxYkU6depErVq1qFKlCu+8885Tj+PRezCP7/9RGzdu\nZPDgwcyYMYOiRYtSpUoV5s+fj6WlpUH7eeizzz5jxIgRTJkyBYDChQuzYcMGBg0axJ07d0hJSWHI\nkCG57kFz8RJUBubNm6caNmyoKlWqpIYPH64OHz6c0So5DqAeP9TExEQ1cOBAdenSpeeuGx0drVau\nXGnM8vQWLFig4uPjs2VfudXFi0pNmqSUjY1S1asrNW2aUv/+a+qqNIGBgerjjz9WH3zwgalLEfnM\nhAkTjLJdAyIi0zK8vDZ48GCCgoLYs2cP5cqVo0ePHlSvXp2JEydy9uxZo4eiMSQlJTF8+HCGDRtG\nxYoVSU5OJigoiKlTp9KnT590lyB8fX1p3759ttTVunVrVq9enS37yk3u3oUffgBnZ6hXT7tvs3Kl\nNinaqFFak0BO8TI34YXIF14kqQ4fPqzs7OxUgQIFMrXe77//rqpXr65sbGyUt7f3U5cZOHCgsrGx\nUXXq1El3VvWsdSdMmKAsLCyUvb29sre3V7///vsT26xfv74+sZOSklT//v3VL7/8oqZOnaoaNmyo\nihQpokqVKqXMzMxU0aJF1fnz5/XrfvPNN0oppVJSUtTKlSvV5MmT1Y8//qi+/vprdeHChQyP+dix\nY2ry5MkqKChIKaWUm5vbc5cfPHhwhtvMD1JSlPrjD6U+/1ypMmWUattWqV9+USox0dSVZUzOdER2\ny01nOgZ3r6WkpLBt2zbWrFnDzp07adKkCRMnTjQ43FJTUxkwYAA7duzAwsKC+vXr4+rqSs2aNfXL\nbNu2jfPnz3Pu3DkOHDhAv379CA4Ofu66Op0ODw8PPDw8nrlvZ2dnDh48yNixY/nhhx+4efMm/v7+\nJCUl8eDBA+B/jQKFCxcmMDBQ3wb78Ab/0aNH+eSTT/j5559JSkqiY8eOBnW6xcfHY2ZmhlKKU6dO\nZTjCweOdRPnNiRP/a3N+802tzXnBApCRiITIGzK8vPbnn3/So0cPLCws8PHx4eOPP+bChQusWbOG\ntm3bGryjkJAQbGxssLKywszMjM6dO7Np06Z0y2zevBk3NzcAHB0diY2N5erVqxmuqzLoyHk4ssDU\nqVO5cuUKDx484N69e/rAedT9+/fZsmWL/nVycjKgDXhapEgRgoKCcHZ2xtnZmWLFinHo0CH27Nnz\nzLG4GjRowOHDh3FyciI4OFg/Zt2z1nlW00Nedv06LFwIdeuCiwsULKg9zHnwIAwYIIEjRF6SYeh4\ne3vj5OTEqVOn+O233/j888+fOoxHRqKioqhYsaL+taWlJVFRUQYtEx0d/dx1Fy1ahJ2dHT179iQ2\nNvaJfWdmWunChQtz6NAh/euCBQsCcPDgQW7cuMHx48epUqUK+/btA7SBGh0dHblx4wZxcXH69R5t\nkS3+31zFD0dxeNY6QL4ZryopCX7+Gdq2BVtbLWBmzNDanKdPB2lmEiJvyvDyWlYNc2PoDdaMzloe\n1+Kmyr8AABZkSURBVK9fP8aPHw/AuHHjGDp06BNDajzv+ZsiRYpgZmZGWloajo6OtGnThlatWun/\n/mFgBAQEYG5uTqNGjdi4caN+5Om+ffuSmppKSkqKPoyjoqL46KOP9O2zlSpVYv369YSGhlKhQoWn\nrvPw2EuVKpWp489NlIIDB7Q253XroE4drc35p58gDx+2EOIRBt/TeVkWFhZcvnxZ//ry5ctYPja6\n4uPLREZGYmlpSXJy8jPXfXRQzl69eqUbjPChZs2aPfFekSJFcHJyok2bNnz44YfUrl1bf1bzqIcP\nxY4bN+6Zx7Z27VpGjx5NcnIyZmZmWFhY6INv2bJlODs7Y2FhQadOnZ65DmgP4D06SGJe8e+/WrD4\n+2vB4+YGoaHwAqO5CCGMKDAwkMDAQOPuJMtbE54hOTlZVa1aVV28eFElJSUpOzs7dfLkyXTLbN26\nVbVs2VIppVRQUJBydHTMcN3o6Gj9+nPnzlVdunR56v7571kdQBUuXFgdOHDAoLpjY2PVkiVLnvn3\nP/74o+rRo4fq1auXSklJ0b8fEBCg/+/mzZuVj4+PSktLe+46c+bMUampqQbVldPdvauUr69STZoo\n9eqrSvXrp1RQkFL/fQvyNOleE9ktN3WvZVvoKKXUtm3bVLVq1ZS1tbWaNm2aUkqp77//Xn3//ff6\nZfr376+sra1VnTp1VGho6HPXVUqpbt26qdq1a6s6deqotm3bqqtXrz5134+GztixY5W/v78aOnSo\nQQ+77t27V/1r5CcQjx8/ro4cOWLUfRhbSopSf/6pVNeuWptzmzZKbdiQO9qcs5KEjshuuSl0dP9t\nOM/T6XSYmZmRnJysv2+UkpLCypUrOX78OF27dsXOzs7EVeZOJ09ql85++gnMzbXLZ507Q36djsjZ\n2dn4lyiEeISXlxdeXl5Zvl1jTNSZP1ql/vNwYMaH/y1UqBBubm5MmzaNw4cPM3z4cI4dO2bKEnON\nGzdg0SKoXx8++gjS0iAgQLtXM2hQ/g0cIcTzZVsjQU5gaWnJhg0bnpigzczMjO7du5OcnMyKFStY\nsWIFX375pX52RqFJSoJt27SHNwMDoXVrmDJFC52n9GAIIcQT8lXogDb677OYmZnRo0cPHjx4gL+/\nPytWrMDNzS1fj4CrlPYMjZ+fNq1zrVpam7O/Pzwy75cQQhgk34WOIQoXLkyvXr1ISkrCz88PPz8/\nunfvTg1jTcySA12+DCtWaOGSmqoFzcGDUKWKqSsTQuRmEjrPUaRIEfr06UNSUhK+vr78+OOP9OjR\ng2rVqpm6NKOIi9NGCfD3hyNHoGNHbXRnJyeQwZOFEFlBQscARYoUoW/fviQmJvLDDz/www8/0KtX\nL2xsbExd2ktLTdXuz/j5webN0Lgx9O0LbdpA0aKmrk4IkddI6GRC0aJF+frrr0lISGD58uVER0fT\ns2dP/YjUucnp01rQ/PSTNqCmmxvMmqW1PAshhLFI6LyAYsWKMWDAAOLj41m+fDlXrlyhd+/eVMnh\nNzxu3tSmc/bz0+7ZfPEFbN2qjYEmhBDZQULnJRQvXpyBAwdy//59li1bxrVr1+jduzdWVlamLk3v\nwQOtzdnfH3buhFatYNIkrc25kPzfF0JkM/nYyQIlSpTgm2++IS4uDh8fH27evEmfPn2oZKJ5lJWC\nQ4e0oFmzBmrW1C6f+fpCmTImKUkIIQAJnSxVsmRJhgwZwr179/Dx8eH27du4u7s/MZq2sURG/m80\n56Qkrc35wAGoWjVbdi+EEBmS0DGCUqVK4eHhwd27d/Hx8eHOnTu4u7tjYWGR5fu6fx9++UULmtBQ\n+PRT8PGBd9+VNmchRM4joWNEpUuXZujQody5c4elS5cSFxeHu7v7cyeVM0RaGuzZozUEbNqkBUzv\n3lrLc7FiWVS8EEIYgYRONihTpgzDhw8nNjaWJUuWkJCQQN++falQoUKmtnPmjHZGs2IFlCunXT7z\n9oZMbkYIIUwmX40y7eLiwtatW/+/vXsPiqrs4wD+XVyMXrEBNYkEE7msLLsuIBcdIk1EDEdHKclR\ni8JMKc0ZjAGnxsESxAaaVBKsSZEsp7QJe4MILzmIieAl00wF3EVUUGO5qIC68Hv/2NiXlWVZLrvs\nyu8zsyO7nmef7znrw89z9pzzDFj/dnZ2iI+Px+rVq5GVlYWPPvoIN2/eBKC+NfmoUaNgZ2eHUaNG\naW5TrlQCGRnA5MnA1KlASwvw3/+q7xgQG8sFhzFmWQbVnk5BQQEqKioAALNnzx6wHPb29khISIBS\nqcT27dvx66+/4tixY1CpVJplNmxIwnffATduJGLWLGDdOmDmTD7NmTFm2QbVng4AVFRUYOvWrQMd\nAwAwYsQIrF27Fn/++adWwQGA1lYVqqrSUVmpvrtzeDgXHMaY5RuUv8YuXrxolFn2eqOxEWhsbNL5\nd0KhCnZ2Jg7EGGNGNCiLzoQJEwa06DQ1AT/+qD4poLQUEArT0dp6v9NyQt61YYw9Zgbd4TVXV1es\nWrXK5P22n+YcHQ2MGaO+iPPNN4Hr14GEhJWdCoxQKMTKlStNnpMxxoxpUP1XOiwsDKtWrTLpSQRl\nZf8/zXn4cPXtaJKSAEfH/y/TvteVnp6Ou3fvwtbWFitXrjSbQ4CMMdZfBlXRyc/PN0k/dXXA99+r\nL96sqAAWLQJycgCZrOu7BCQmJmo9GGPscTSoio4xPXwI/Pqreq+moEB9evMHH6j/tLYe6HSMMWYe\nuOj0AZH6Is3sbODbbwE3N/VdArZvB+ztBzodY4yZHy46vVBdDXzzjbrYNDYCr70GFBUB7u4DnYwx\nxswbFx0DNTerv5fJzgaKi4GICGDrViA4GLAadOcAMsZY73DR0aOtTb0Hk52tnj7A31999tkPPwD/\n+c9Ap2OMMcvDRUeH8nL1Kc5ff60uLlFRwLlz6utrGGOM9Z5JDwzl5+djwoQJcHd3x6ZNm3Qu8957\n78Hd3R0ymQxnzpzptq1SqURoaCg8PDwwc+ZM1NfX9ypbfT3wxRfA888DQUFAQwOwb5+62MTFccFh\njLH+YLKi09raipUrVyI/Px8XLlzAnj178Pfff2stk5eXh/LycpSVleGLL75ATExMt21TUlIQGhqK\ny5cvIyQkBCkpKQZnUqmAvDzg1VeB555Tn+ocH6+e9vmzzwBfX/OYffPIkSMDHaFPOP/A4vwDy9Lz\n9zeTFZ2SkhK4ublh3LhxsLa2xsKFC7F//36tZX766SdERUUBAAIDA1FfX4+amhq9bTu2iYqKQk5O\nTrdZzp5Vz0Xj5AR8/DHw4ouAXK7es5kzZ2Cuq8nNzUVYWBiysrI6zftj6f9oB0v+9jmRioqKtOZE\nGmiDZfubK2Pm1/d7w1yZ7Dud69evw9nZWfPcyckJJ06c6HaZ69ev48aNG122vXnzJhwcHAAADg4O\nmknRdPn0U/VdAurr1ac5FxYCHh79snp9kpubi9WrV2vm+qmsrDSLeX+Y4RITE5GUlKSZoqK2thZJ\nSUmav2Osv1nq7w2T7ekIDDxORUQGLaPr/QQCgd5+zp1THzaTy4ENG8yj4ADAli1bNP9Y2pnTvD+s\ne+np6Z3mRFKpVEhPTx+gROxxZ7G/N8hEjh8/TmFhYZrnycnJlJKSorXM8uXLac+ePZrnIpGIampq\n9LYViURUXV1NREQ3btwgkUiks39XV1cCwA9+8IMf/DDw4erq2m81oJ3JDq/5+fmhrKwMCoUCzz77\nLL777jvs2bNHa5m5c+ciPT0dCxcuRHFxMezs7ODg4ICRI0d22Xbu3LnYtWsX4uPjsWvXLsybN09n\n/+Xl5UZfR8YYY/qZrOgIhUKkp6cjLCwMra2tWLp0KTw9PbF9+3YAwPLlyxEeHo68vDy4ublh2LBh\n2Llzp962AJCQkIDIyEh89dVXGDduHL7//ntTrRJjjLEeEhAZ8CUKY4wx1g8s8q5h5nyR6UDlj4uL\ng6enJ2QyGSIiItDQ0GAx2dulpaXBysoKSqXSKNmNmX/r1q3w9PSERCJBfHy8ReUvKSlBQEAAfHx8\n4O/vj9LSUrPMHx0dDQcHB0ilUq3lLWXsdpXfVGPXWPnbGTx++/1bIiNTqVTk6upKcrmcHjx4QDKZ\njC5cuKC1TG5uLr300ktERFRcXEyBgYHdto2Li6NNmzYREVFKSgrFx8dbVP6CggJqbW0lIqL4+Hij\n5DdWdiKiq1evUlhYGI0bN45qa2v7Pbsx8x8+fJhmzJhBDx48ICKiW7duWVT+qVOnUn5+PhER5eXl\n0bRp08wuPxFRYWEhnT59miQSiVYbSxi7+vKbYuwaMz9Rz8avxe3pmNNFpuaUPzQ0FFb/3u46MDAQ\n165ds5jsABAbG4tPPvmk3zObIn9GRgbWrl0L63+vKn766actKr+jo6Pmf9f19fUYY6R7PvUlPwAE\nBwfDXsdEVZYwdvXlN8XYNWZ+oGfj1+KKTlcXkBqyjK6LTNvb9uQiU3PM39GOHTsQHh5uMdn3798P\nJycnTJw4sd8zmyJ/WVkZCgsLMXnyZEybNg0nT560qPwpKSlYs2YNxo4di7i4OGzcuNHs8utjCWPX\nUMYau4Dx8vd0/FrcXabN4SLTvujP/LokJSVh6NChWLRoUa/a62OM7M3NzUhOTsaBAwd61b4njLXt\nVSoV6urqUFxcjNLSUkRGRuLKlSu9iaiXsfIvXboUW7Zswfz587F3715ER0drfR79pbf5ezIWzXHs\nGtrOmGO3Jzl6kr+pqanH49fiis6YMWNQVVWleV5VVQUnJye9y1y7dg1OTk54+PBhp9fbDyU4ODig\npqYGzzzzDKqrqzF69Gizz/9o26ysLOTl5eHQoUMWk72iogIKhQIymUyz/KRJk1BSUtLvn4Gxtr2T\nkxMiIiIAAP7+/rCyskJtbS1GjhxpEflLSkpw8OBBAMArr7yCt956q19z9zV/d4f7zH3sGnK40thj\nV1e2/sjfq/Hb2y+lBsrDhw9p/PjxJJfL6f79+91+GXb8+HHNl2H62sbFxWnucrBx40ajfZlnrPy/\n/PILicViun37tlFyGzN7R8Y8kcBY+TMzM2ndunVERHTp0iVydna2qPw+Pj505MgRIiI6ePAg+fn5\nmV3+dnK5XOeJBOY+dvXlN8XYNWb+jgwZvxZXdIjUZ9h4eHiQq6srJScnE5F64GdmZmqWeffdd8nV\n1ZUmTpxIp06d0tuWiKi2tpZCQkLI3d2dQkNDqa6uzqLyu7m50dixY8nb25u8vb0pJibGYrJ35OLi\nYrSiY6z8Dx48oCVLlpBEIiFfX1/67bffLCp/aWkpBQQEkEwmo8mTJ9Pp06fNMv/ChQvJ0dGRhg4d\nSk5OTrRjxw4ispyx21V+U41dY+XvyJDxyxeHMsYYMxmLO3uNMcaY5eKiwxhjzGS46DDGGDMZLjqM\nMcZMhosOY4wxk+GiwxhjzGS46DDGGDMZLjqMMcZMhosOMwlbW9tOrwUFBfXpPXW1T0xMRFpamsHv\noVAoupyUyhzp2o76bNmyBWKxGK+99lqf+m1oaEBGRobWa339/NjgxEWHmYSuO9UeO3asT++pq72x\n7jBsLnq6fhkZGTh48CC+/vprrddJfQssg9+nrq4O27Zt03qtr58fG5y46LAB0/F/7UlJSRCJRAgO\nDsaiRYuQlpaGyspKrb2Q1NRUrF+/vlP7jm0vXbqksy+FQoEJEyZgyZIlEIvFWLBgAZqbmwEAra2t\nePvttyGRSBAWFoaWlhZNu/nz58PPzw8SiQRffvklAODevXuYPXs2vL29IZVKsXfvXgDA7t27ERgY\nCB8fH6xYsQJtbW06M7z55psQiURYvHgxCgoKEBQUBA8PD61poj/99FNIpVJIpVJs3rxZ5zp119+K\nFStw5coVzJo1C5999hkqKyshEokQFRUFqVSKqqoqnesHANnZ2ZDJZPD29sbrr7+OtWvXoqKiAj4+\nPprpuDt+frryKhQKeHp6drlt2SDVD/eQY6xbtra2Xb528uRJkkql1NzcTI2NjeTm5kZpaWmkUCi0\n7mibmppKiYmJWu1PnTqls+2j5HI5CQQC+v3334mIKDo6mlJTU0kul5NQKKSzZ88SEVFkZCTt3r1b\n006pVBIRUVNTE0kkEqqtraV9+/bRsmXLNMs0NDTQhQsXaM6cOaRSqYiIKCYmhrKzsztlEAqFdP78\neWpra6NJkyZRdHQ0ERHt37+f5s2bp7U9mpqa6O7du+Tl5UV//PGH1jYzpD8i7bv+yuVysrKyohMn\nTnS5fkqlks6fP08eHh6adnV1dZ0+C12fX8e8Z86c6Xbb6qJSqeibb76hjz/+mLKysuidd96hiooK\nvW2YZeE9HTbgjh49ioiICNjY2GD48OGYO3euwYd+etLW2dkZU6ZMAQAsWbIERUVFEAgEcHFx0cx6\nOGnSJCgUCk2bzZs3w9vbG1OmTMG1a9dQXl6OiRMn4sCBA0hISEBRURGeeuopHDp0CKdOnYKfnx98\nfHxw+PBhyOXyThlcXFzg5eUFgUAALy8vzJgxAwAgkUg0/RYVFSEiIgJPPvkkhg0bhoiICBQWFmq9\nj6H9Peq5555DQEBAl+t3+fJlHD58GJGRkRgxYgQAwM7OTu/noSvv0aNHu922upw9exYvv/wyxo8f\nj7a2NixYsACOjo7drhezHBY3iRt7/AgEAq1favTvjK5CoVDrkFH74bBHPdpWXz+P9gEATzzxhOb1\nIUOGaPo5cuQIDh06hOLiYtjY2ODFF19ES0sL3N3dcebMGeTm5uLDDz9ESEgI7O3tERUVheTkZL3r\n2rEvKysrDB06VPOzSqXSuz0eZUh/jxo2bJjm567W79H+u6Mvb1fbtiu+vr4AgOPHjyM2NhYuLi4G\n52CWgfd02IALDg5GTk4OWlpacOfOHfz8888A1DNC3rp1C0qlEvfv39e83tELL7zQqW1XX7ZfvXoV\nxcXFAIBvv/0WwcHBenM1NjbC3t4eNjY2uHjxoqZtdXU1bGxssHjxYrz//vs4ffo0QkJCsG/fPty+\nfRsAoFQqcfXq1T5tj+bmZty7dw85OTmdsk6fPr3P/elaP4FAgOnTp2Pv3r1QKpUA1CcRDB8+HHfu\n3NH5Ps8//7zOvN0VrpCQEFRXV2u9Vlpain/++Qfnz5+Hi4sLjh492qN1YuaP93SYSTQ1NcHZ2Vnz\nPDY2VlMcfH198eqrr0Imk2H06NHw9/cHEUEoFGLdunUICAjAmDFjIBaLtQqKQCCAj4+PVtuOh44e\nJRKJ8PnnnyM6OhpeXl6IiYlBTU1NpyLV/nzWrFnIzMyEWCyGSCTSHJo7d+4c4uLiYGVlBWtra2Rm\nZsLT0xMbNmzAzJkz0dbWBmtra2zbtg1jx47V+d66nrf/7OPjgzfeeEOzLsuWLdNMB9y+jFgs7nN/\nXa2fWCzGBx98gKlTp2LIkCHw9fXFjh07EBQUBKlUivDwcGzatEnr89OVV6FQdNl/W1sbKioqNIfw\n2uXn58PBwQFBQUH48ccfMWrUKLDHC0/ixszO+vXrYWtrizVr1vTbeyoUCsyZMwfnzp3rt/dkvffX\nX39h586dSE1NHegozMT48BozS8a43uZxv4bHknh5eXHBGaR4T4cxxpjJ8J4OY4wxk+GiwxhjzGS4\n6DDGGDMZLjqMMcZMhosOY4wxk+GiwxhjzGS46DDGGDMZLjqMMcZM5n+rZ9nbYgnZLwAAAABJRU5E\nrkJggg==\n", "text": [ "" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6-3 Page Number 625" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Use of Transfer Unit for Packed Tower\n", "\n", "#Variable Declaration\n", "kyd = 0.0378 #Film coefficient in kmol/s.m3\n", "kxd = 0.0616 #Film coefficient in kmol/s.m3 \n", "Kya = 0.022523 #Overall mass transfer coefficient\n", "V = 3.852e-3 #Molar flowrate kmol/s\n", "A = 0.186 #Cross sectional area of the tower m2\n", "y1 = 0.026\n", "y2 = 0.005\n", " #From answers to previous problem\n", "yi1 = 0.0154\n", "yi2 = 0.0020\n", "d1yilm = 0.97925\n", "d1yilm1 = 0.979249088369\n", "d1yilm2 = 0.996443506323\n", "d1xilm = 0.99023 \n", "d1yslm = 0.98313\n", "dyyilm = 0.00590\n", "d1yslm = 0.983131759622 \n", "d1ys2m = 0.997497911442\n", "dyyslm = 0.0102576937583\n", "\n", "#Calculations\n", " #PART A\n", "HG = V/(kyd*A)\n", "NG1 = (d1yilm1/(1-y1) + d1yilm2/(1-y2) )/2.\n", "NG2 = (y1-y2)/dyyilm\n", "NG = NG1*NG2\n", "z = HG*NG \n", "#Results\n", "print \"Answers to Part A\"\n", "print \"Height of gas transfer unit\",round(HG,3)\n", "print \"Number of gas transfer unit\",round(NG,3)\n", "print \"Total Height of tower\", round(z,4),'m'\n", "\n", " #PART B\n", "HoG = V/(Kya*A)\n", "NoG1 = (d1ys1lm/(1-y1) + d1ys2lm/(1-y2))/2.\n", "NoG2 = (y1-y2)/dyyslm\n", "NoG = NoG1*NoG2\n", "z = HoG*NoG \n", "\n", "#Results\n", "print \"Answers to Part B\"\n", "print \"Height of Overall gas transfer unit\",round(HoG,3)\n", "print \"Number of Overall gas transfer unit\",round(NoG,3)\n", "print \"Total Height of tower\", round(z,4),'m'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Answers to Part A\n", "Height of gas transfer unit 0.548\n", "Number of gas transfer unit 3.571\n", "Total Height of tower 1.9567\n", "Answers to Part B\n", "Height of Overall gas transfer unit 0.919\n", "Number of Overall gas transfer unit 2.059\n", "Total Height of tower 1.8936\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7-1 Page Number 628" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Desing of an Absorption Tower with Concentrated Gas Mixture\n", "from scipy.interpolate import interp1d\n", "import numpy as np\n", "import scipy.integrate as integrate\n", "\n", "#Variable Declaration\n", "dp = 0.0254 #Diameter of the rings ,m\n", "x2 = 0.0 \n", "P = 101325 #Total pressure ,Pa\n", "y1 = 0.20 #Inlet Mole fraction of SO2 \n", "y2 = 0.02 #Outlet Mole fraction of SO2 \n", "Vd = 6.53e-4 #Molar flowrate of air ,kmol/s\n", "Ld = 4.20e-2 #Molar flowrate of water ,kmol/s\n", "AT = 0.0929 #Tower cross sectional area,m2\n", "xe = np.array([0.0,0.0000562,0.0001403,0.000280,0.000422,0.000564,0.000842,0.001403,0.001965,0.00279,0.00420,0.00698])\n", "ye = np.array([0.0,0.000658,0.00158,0.00421,0.00763,0.0112,0.01855,0.0342,0.0513,0.0775,0.121,0.212])\n", "yop = np.array([0.02,0.04,0.07,0.13,0.20])\n", "xop = np.zeros(len(yop))\n", "Gy = np.zeros(len(yop))\n", "Gx = np.zeros(len(yop))\n", "V = np.zeros(len(yop))\n", "L = np.zeros(len(yop))\n", "kyda = np.zeros(len(yop))\n", "kxda = np.zeros(len(yop))\n", "xi = np.array([0.00046,0.00103,0.00185,0.00355,0.00565])\n", "yi = np.array([0.0090,0.0235,0.0476,0.1015,0.1685])\n", "d1y = 1.-yop\n", "dyyi = yop-yi\n", "d1yyilm = ((1.-yop)-(1.-yi))/log((1.-yop)/(1.-yi))\n", "\n", "#Calcualations\n", "def funkxda(gx):\n", " return 0.152*gx**0.82\n", "\n", "def funkyda(gx,gy):\n", " return 0.0594*gx**0.25*gy**0.7\n", "\n", "k1 = (Ld*x2/(1.-x2)+Vd*(y1/(1.-y1)-y2/(1.-y2)))/Ld\n", "x1 = k1/(1.+k1)\n", "\n", "for j in range(len(yop)):\n", " k1 = (Ld*x1/(1.-x1)+Vd*(-y1/(1.-y1)+yop[j]/(1.-yop[j])))/Ld\n", " xop[j] = k1/(1+k1)\n", " Gy[j] = (Vd*29.+Vd*yop[j]*64.1/(1.-yop[j]))/AT\n", " Gx[j] = (Ld*18.+Ld*xop[j]*64.1/(1.-xop[j]))/AT\n", " V[j] = Vd/(1.-yop[j])\n", " L[j] = Ld/(1.-xop[j])\n", " kxda[j] = funkxda(Gx[j])\n", " kyda[j] = funkyda(Gx[j],Gy[j])\n", "\n", "fyop = V/((kyda*AT/d1yyilm)*d1y*dyyi)\n", "Height = integrate.simps(fyop,yop)\n", "\n", "#Results\n", "print \"Height of the tower:\",round(Height,3), \"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Height of the tower: 1.574 m\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.8-1 Page Number 633" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Prediction of Film Coefficients for Ammonia Absorption\n", "\n", "#Variable Declaration\n", "T = 303 #Temperature of the tower in K\n", "dp = .0254 #Diameter of the ring m\n", "P = 101325 #Total pressure in Pa\n", "Gx = 2.543 #Flowrate in kg/s.m2\n", "Gy = 0.339 #Flowrate in kg/s.m2 \n", "m = 1.2\n", "mua = 1.86e-5 #Viscosity of air in Pa.s\n", "rhoa = 1.168 #Density of air in kg/m3\n", "DAB = 2.379e-5 #Diffusivity of NH3 in water , m2/s\n", "alpha = 0.557 #Constant in correlation for gas phase mass transfer coefficient\n", "beta = 0.32 #Constant in correlation for gas phase mass transfer coefficient\n", "gama = -0.51 #Constant in correlation for gas phase mass transfer coefficient\n", "muw15 = 1.1404e-3 #Viscosity of water at 15\u00b0C\n", "muw30 = 0.8007e-3 #Viscosity of water at 30\u00b0C\n", "DABw15 = 1.77e-9 #Diffusivity of NH3 in water at 15\u00b0C\n", "rhow = 996. #Desity of water in kg/m3\n", "theta = 2.35e-3 #Constant in correlation for liquid phase mass transfer coefficient\n", "eta = 0.22 #Constant in correlation for liquid phase mass transfer coefficient\n", "#Calcualations\n", "V = Gy/(29.0)\n", "L = Gx/18.0\n", "Sca = mua/(rhoa*DAB)\n", "HG = alpha*Gy**beta*Gx**gama*Sca**0.5\n", "DABw = muw15*303/(muw30*288)*DABw15\n", "Scw = muw30/(rhow*DABw)\n", "HL = theta*(Gx/muw30)**eta*Scw**0.5\n", "kyda = V/HG\n", "kxda = L/HL\n", "Kyda = 1./(1./kyda + m/kxda)\n", "ResGf = (1./kyda)/(1./Kyda)*100\n", "\n", "#Results\n", "print \"Predicted film coefficients are as follows \"\n", "print \"Gas phase film cofficient \",round(kyda,4),\"kmol/(s.m3.mol frac)\"\n", "print \"Liquid phase film cofficient \",round(kxda,3),\"kmol/(s.m3.mol frac)\"\n", "print \"Overall Gas phase film cofficient \",round(Kyda,4),\"kmol/(s.m3.mol frac)\"\n", "print \"Percentage resistance in gas film is \",round(ResGf,1), \"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Predicted film coefficients are as follows \n", "Gas phase film cofficient 0.0584 kmol/(s.m3.mol frac)\n", "Liquid phase film cofficient 0.586 kmol/(s.m3.mol frac)\n", "Overall Gas phase film cofficient 0.0521 kmol/(s.m3.mol frac)\n", "Percentage resistance in gas film is 89.3 %\n" ] } ], "prompt_number": 25 } ], "metadata": {} } ] }