{ "metadata": { "name": "S3-C5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": "Uses Of Field Astronomy in surveying" }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.1,Page 174" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\n#printing result in degree minute and seconds respectively\nl1=11.5;\nl2=13.5;\nr1=8.5;\nr2=6.5;\nalpha=3+15.0/60+28.0/3600;\nOB=121+45.0/60+18.0/3600;\nOA=43+25.0/60+20.51/3600;\n\n#calculation\ngamma=(l1+l2)/4-(r1+r2)/4;\ne=gamma*tan(alpha*pi/180)/3600; #correction\nCH=OB-OA-e;\nCH=deg_to_dms(CH);\n\n#result\nprint \"corrected horizontal angle in deg,min,sec respectively\",CH", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "corrected horizontal angle in deg,min,sec respectively [78, 19, 57.35]\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.2,Page 184" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=30+32.0/60+18.0/3600;#latitude\nd=16.0/60+2.85/3600; #diameter of sun\n\n#calculation\nC1=-58.0/3600/tan(alpha*pi/180); \nC2=8.8/3600*cos(alpha*pi/180); \nC3=d; \nCL=alpha+C1+C2+C3;\nCL=deg_to_dms(CL);\n\n#result\nprint \"corrected latutude in deg,min,sec respectively\",CL", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "corrected latutude in deg,min,sec respectively [30, 46, 50.12]\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.3,Page 184" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=40+52.0/60+10.0/3600;#latitude\n\n#calculation\nC1=-58.0/3600/tan(alpha*pi/180);\nCL=alpha+C1;\nCL=deg_to_dms(CL);\n\n#result\nprint \"corrected latutude in deg,min,sec respectively\",CL", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "corrected latutude in deg,min,sec respectively [40, 51, 2.97]\n" } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.4,Page 197" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLMT=21+23.0/60+05.0/3600; #local chronometer time\nLong=65.0+19.0/60; #longitude\nGST=13+15.0/60+20.0/3600;\nRA=9+32.0/60+15.0/3600;\nLong2=82.0+30.0/60; #longitude of India\n\n#calculation\ne1=Long/15*9.8565/3600; #error\nSIT=RA+24-GST+e1; #sidereal time interval after LMM\ne2=SIT*9.8296/3600; #error\nMI=SIT-e2; #mean interval after LMM\nLMT=LMT-(Long2-Long)/15.0;\nCE=MI-LMT;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in hours,min,sec respectively\",CE", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "chronometer error in hours,min,sec respectively [0, 0, 2.56]\n" } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.5,Page 198" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nMST=12+32.0/60+15.0/3600; #mean sidereal time\nRA=15+45.0/60+10.0/3600;\ntheta=55+14.0/60+20.0/3600;#latitude\ndelta=15+24.0/60+30.0/3600;#declination\nalpha=35+44.0/60+10.0/3600;#zenith deistance\n\n#calculation\nc=90-theta;\np=90-delta;\nz=90-alpha;\nH=acos(cos(z*pi/180)/sin(c*pi/180)/sin(p*pi/180)-1/(tan(p*pi/180)*tan(c*pi/180)))\nH=H/15*180/pi;\nLST=RA-H;\nCE=MST-LST;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in hours,min,sec respectively\",CE", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "chronometer error in hours,min,sec respectively [0, 0, 12.94]\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.6,Page 199" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLMTe=6+34.0/60+18.0/3600;# LMT east\nLMTw=8+58.0/60+2.0/3600; # LMT west\nRA=16+11.0/60+25.0/3600;\nLong=125+33.0/60;\nGST=8+25.0/60+14.0/3600;\n\n#calculation\ne1=Long/15*9.8565/3600; #error\nSIT=RA-GST+e1; #sidereal time interval after LMM\ne2=SIT*9.8296/3600;\nMI=SIT-e2; #mean time interval after LMM\nLMTav=(LMTe+LMTw)/2; #mean LMT\nCE=LMTav-MI;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in slower side in hours,min,sec respectively\",CE", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "chronometer error in slower side in hours,min,sec respectively [0, 0, 6.9]\n" } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.7,Page 204" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLMM=15+9.0/60+5.21/3600;# mean LMT\nGMT=10+9.0/60+3.76/3600;\nLong=75.0;#longitude\nalpha=42+30.0/60+42.0/3600;\ntheta=34+48.0/60+12.0/3600;\ndelta=15+36.0/60+48.0/3600;\n\n#calculation\nH=acos(sin(alpha*pi/180)/cos(theta*pi/180)/cos(delta*pi/180)-(tan(delta*pi/180)*tan(theta*pi/180)))\nH=H/15*180/pi;\nGAT=12+H-Long/15;\nLMT=GAT+Long/15-5.0/60-40.0/3600;\nCE=LMM-LMT;\nCE=deg_to_dms(CE);\n\n#result\nprint \"chronometer error in slower side in hours,min,sec respectively\",CE", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "[0, 0, 1.45] chronometer error in slower side in hours,min,sec respectively\n" } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.8,Page 219" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nd=5+1.0/60+50.0/3600;\ndel1=75+14.0/60+20.0/3600;\ndel2=70+12.0/60+30.0/3600;\n\n#calculation\nk=cos(del1*pi/180)/cos(del2*pi/180);\nA2=pi/2-atan((cos(d*pi/180)-k)/sin(d*pi/180));\nA2=A2*180/pi;\nA2=120+15.0/60+10.0/3600-A2;\nCR=360-A2;\nA2=deg_to_dms(A2);\nCR=deg_to_dms(CR);\n\n#result\nprint \"azimuth of angle R in degree,minites,seconds respectively\",A2\nprint \"true bearing of CR in degree,minites,seconds respectively\",CR", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "azimuth of angle R in degree,minites,seconds respectively [100, 27, 40.0]\ntrue bearing of CR in degree,minites,seconds respectively [259, 32, 20.0]\n" } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.9,Page 223" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\na=26.0/60+51.0/3600;\np=56.0/60+5.1/3600;#polar distance\n\n#calculation\nH=acos(a/p);\nA=p*sin(H)/cos(30.75694*pi/180);\nCR=25+35.0/60+40.0/3600-A;\nCR=deg_to_dms(CR);\n\n#result\nprint \"azimuth of angle CR in degree,minites,seconds respectively\",CR", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "azimuth of angle CR in degree,minites,seconds respectively [24, 38, 22.01]\n" } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.10,Page 227 " }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nLong=75.0;#longitude\nGST=11+40.0/60+32.4/3600;\nRA=12+25.0/60+18.35/3600;\nGMT=15+45.0/60+25.3/3600;\ndelta=22+6.0/60+32.5/3600;\n\n#calculation\ne1=Long/15*9.8565/3600;\nLSTofLMM=GST-e1;\nLMT=GMT+Long/15;\nSIT=LMT+LMT*9.8565/3600;#sidereal time interval\nLHA=SIT+LSTofLMM;\nH=RA+24-LHA;\nH=H*15;\nB=atan(tan(delta*pi/180)*tan(H*pi/180));\nB=B*180/pi;\nA=atan(tan(H*pi/180)*cos(B*pi/180)/sin((B-32-15.0/60)*pi/180))\nA=A*180/pi;\nTB=360+A-135-15.0/60-20.0/3600;\nTB=deg_to_dms(TB);\n\n#result\nprint \"true bearing TB in degree,minites,seconds respectively\",TB\nprint \"there is slight difference in the answers due to rounding off error in the book\"", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "true bearing TB in degree,minites,seconds respectively [313, 17, 36.07]\nthere is slight difference in the answers due to rounding off error in the book\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.11,Page 237" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nz=51+47.0/60+18.0/3600;#zenith distance\np=88+57.0/60+57.0/3600;#polar distance\nc=61+27.0/60+55.0/3600;#co-latitude\n\n#calculation\ns=(z+p+c)/2;\nA=2*atan(sqrt(sin((s-z)*pi/180)/sin(s*pi/180)*sin((s-c)*pi/180)/sin((s-p)*pi/180)));\nA=A*180/pi;\nTB=360-A-165-18.0/60-20.0/3600;\nTB=deg_to_dms(TB);\n\n#result\nprint \"true bearing TB in degree,minites,seconds respectively\",TB", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "true bearing TB in degree,minites,seconds respectively [80, 59, 47.52]\n" } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.12,Page 241" }, { "cell_type": "code", "collapsed": false, "input": "#finding latitude\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nz2=90-40-13.0/60-15.0/3600;\ndel2=12+15.0/60+30.0/3600;#declination of star\n\n#calculation\ntheta=z2+del2;\ntheta=deg_to_dms(theta);\n\n#result\nprint \"altitude in degree,minites,seconds respectively\",theta", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "altitude in degree,minites,seconds respectively [62, 2, 15.0]\n" } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.13,Page 244" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha1=30+45.0/60+25.0/3600;\nalpha2=40+48.0/60+30.0/3600;\n\n#calculation\ne1=-58/3600/tan(alpha1*pi/180); #error 1\ne2=-58/3600/tan(alpha2*pi/180); #error 2\ntheta=(alpha1+alpha2+e1+e2)/2;\ntheta=deg_to_dms(theta)\n\n#result\nprint \"latitude in degree,minites,seconds respectively\",theta", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "latitude in degree,minites,seconds respectively [34, 21, 48.1]\n" } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.14,Page 258" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nZP=37+29.0/60+40.0/3600;#colatitde\nZM=56+24.0/60+50.0/3600;#coaltitude\nPM=67+54.0/60+24.0/3600;#codeclination\n\n#calculation\nA1=acos((cos(PM*pi/180)-cos(ZP*pi/180)*cos(ZM*pi/180))/(sin(ZP*pi/180)*sin(ZM*pi/180)));\nA1=A1*180/pi;\nA=360-A1;\nA=deg_to_dms(A);\n\n#result\nprint \"azimuth of sun in degree,minites,seconds respectively\",A", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "azimuth of sun in degree,minites,seconds respectively [262, 53, 12.16]\n" } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.15,Page 259" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\ntheta=54+30.0/60;#latitude\ndelta=62+12.0/60+21.0/3600;#declination\n\n#calculation\nalpha=asin(sin(theta*pi/180)/sin(delta*pi/180));\nA1=acos(tan(theta*pi/180)/tan(alpha));\nA1=A1*180/pi;\nTB=360-A1-65-18.0/60-42.0/3600;\nTB=deg_to_dms(TB);\nalpha=deg_to_dms(alpha*180/pi);\nH=atan(tan(theta*pi/180)/tan(delta*pi/180));\nH=deg_to_dms(H*180/pi);\n\n#result\nprint \"true bearing in degree,minites,seconds respectively\",TB\nprint \"altitude in degree,minites,seconds respectively\",alpha\nprint \"hour angle in degree,minites,seconds respectively\",H", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "true bearing in degree,minites,seconds respectively [241, 16, 19.55]\naltitude in degree,minites,seconds respectively [66, 58, 7.13]\nhour angle in degree,minites,seconds respectively [36, 27, 49.32]\n" } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.16,Page 261" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=44+12.0/60+30.0/3600;\nd=15.0/60+45.86/3600;#diameter correction\nLong=7+20.0/60+15.0/3600;#longitude\n\n#calculation\nalpha=alpha+d-58/3600/tan(alpha)+8.8/3600*cos(alpha);\nGAT=Long/15;\ne2=6.82/3600*GAT;\ndelta=22+18.0/60+12.8/3600+e2;\ntheta=delta+90-alpha;\ntheta=deg_to_dms(theta);\n\n#result\nprint \"altitude in degree,minites,seconds respectively\",theta", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "[67, 49, 51.7] altitude in degree,minites,seconds respectively\n" } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.17,Page 262" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nGMT=16+22.0/60+55.0/3600;\nET=3.0/60+43.0/3600;\nc=90-42-20.0/60;\np=90-18-45.0/60-50.0/60;\nz=90-43-38.0/60;\n\n#calculation\nH=acos(cos(z*pi/180)/sin(c*pi/180)/sin(p*pi/180)-1/tan(c*pi/180)*1/tan(p*pi/180));\nH=H*180/pi;\nLAT=12-H/15;\nLMT=LAT-ET;\nLong=GMT-LMT;\nLong=Long*15;\nLong=deg_to_dms(Long);\n\n#result\nprint \"Longitude in degree,minites,seconds respectively\",Long", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "Longitude in degree,minites,seconds respectively [114, 50, 53.21]\n" } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": "Example 5.18,Page 263" }, { "cell_type": "code", "collapsed": false, "input": "#initialisation of variable\nfrom math import pi,tan,sqrt,sin,cos,acos,atan,asin\ndef deg_to_dms(deg):\n d = int(deg)\n md = abs(deg - d) * 60\n m = int(md)\n sd = (md - m) * 60\n sd=round(sd,2)\n return [d, m, sd]\nalpha=21+35.0/60+30.0/3600;#mean observed altitude\nC=(4.5+5.5-3.5-2.5)/4*15.0/3600;\nc=44+30.0/60;#colatitude\nz=68+26.0/60+34.0/3600;#coaltitude\np=94+4.0/60+15.0/3600;#codeclination\ns=(c+p+z)/2;\n\n#calculation\ncr=-58/3600/tan(alpha);#correction refraction\ncp=8.8/3600*cos(alpha);#correction parallax\nalpha=alpha+C+cr+cp; #corrected altitude\nA=2*atan(sqrt(sin((s-z)*pi/180)/sin(s*pi/180)*sin((s-c)*pi/180)/sin((s-p)*pi/180)));\nA=A*180/pi;\nMh=(121+45.0/60+20.0/3600+122+47.0/60)/2;#mean horizontal angle\nAZ=360-Mh-A;\nAZ=deg_to_dms(AZ);\n\n#result\nprint \"Azimuth from north(clockwise) in degree,minites,seconds respectively\",AZ", "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": "[117, 0, 19.45] Azimuth from north(clockwise) in degree,minites,seconds respectively\n" } ], "prompt_number": 55 } ], "metadata": {} } ] }