{ "metadata": { "name": "", "signature": "sha256:08a19915ea28ff1c8eacb09b86820e50e5a6bce0905af69520d3a90c0261cd74" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4:Strain Energy and Impact Loading" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.1,page no.145" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "P=60*10**3 #Load in N\n", "d=4*10 #diameter in mm\n", "L=5*10**3 #Length of rod in mm\n", "E=2e5 #Young's Modulus in N/sq.mm\n", "\n", "\n", "#Calculation\n", "A=(math.pi/4)*d**2 #Area in sq.mm\n", "V=int(A*L) #Volume of rod in cubic.mm\n", "#case (ii):stress in the rod\n", "sigma=round(P/A,3) #stress in N/sq.mm\n", "\n", "#case (i):stretch in the rod\n", "x=round((sigma/E)*L,2) #stretch or extension in mm\n", "\n", "#case (iii):strain energy absorbed by the rod\n", "U=round((sigma**2/(2*E)*V),-1)*1e-3 #strain energy absorbed by the rod in Nm\n", "\n", "\n", "#Result\n", "print \"stress in the rod =\",sigma,\"N/mm^2\"\n", "print \"stretch in the rod =\",x,\"mm\"\n", "print \"strain energy absorbed by the rod =\",U,\"N-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "stress in the rod = 47.746 N/mm^2\n", "stretch in the rod = 1.19 mm\n", "strain energy absorbed by the rod = 35.81 N-m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.3,page no.146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "#Variable declaration\n", "A=10*10**2 #Area of bar in sq.mm\n", "L=3*10**3 #Length of bar in mm\n", "x=1.5 #Extension due to suddenly applied load in mm\n", "E=2e5 #Young's Modulus in N/sq.mm\n", "\n", "#Calculation\n", "sigma=int(x*E/L) #Instantaneous stress due to sudden load in N/sq.mm \n", "P=int((sigma*A)/2*1e-3) #Suddenly applied load in kN\n", "\n", "#Result\n", "print \"Instantaneous stress produced by a sudden load =\",sigma,\"N/mm^2\"\n", "print \"Suddenly applied load =\",P,\"kN\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Instantaneous stress produced by a sudden load = 100 N/mm^2\n", "Suddenly applied load = 50 kN\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.4,page no.147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "L=2*10**3 #Length in mm\n", "d=50 #Diameter in mm\n", "P=100*10**3 #Suddenly applied load in N\n", "E=200e3 #Young's Modulus in N/sq.mm\n", "\n", "#Calculation\n", "A=(math.pi/4)*d**2 #Area in sq.mm\n", "sigma=round(2*P/A,2) #Instantaneous stress induced in N/sq.mm\n", "dL=(sigma*L)/E #Elongation in mm\n", "\n", "#Result\n", "print \"Instantaneous stress induced =\",sigma,\"N/mm^2\"\n", "print \"Instantaneous elongation =\",dL,\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Instantaneous stress induced = 101.86 N/mm^2\n", "Instantaneous elongation = 1.0186 mm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.5,page no.147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "#Variable declaration\n", "A=700 #Area in sq.mm\n", "L=1.5*10**3 #Length of a metal bar in mm\n", "sigma=160 #Stress at elastic limit in N/sq.mm\n", "E=2e5 #Young's Modulus in N/sq.mm\n", "\n", "\n", "#Calculation\n", "V=A*L #Volume of bar in sq.mm\n", "Pr=(sigma**2/(2*E)*V)*1e-3 #Proof resilience in N-m\n", "P=int(sigma*A/2*1e-3) #Suddenly applied load in kN\n", "P1=int(sigma*A*1e-3) #gradually applied load in kN\n", "\n", "#Result\n", "print \"Proof resilience =\",Pr,\"N-m\"\n", "print \"Suddenly applied load =\",P,\"kN\"\n", "print \"Gradually applied load =\",P1,\"kN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Proof resilience = 67.2 N-m\n", "Suddenly applied load = 56 kN\n", "Gradually applied load = 112 kN\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.9,page no.154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "P=10*10**3 #Falling weight in N\n", "h=30 #Falling height in mm\n", "L=4*10**3 #Length of bar in mm\n", "A=1000 #Area of bar in sq.m\n", "E=2.1e5 #Young's modulus in N/sq.mm\n", "\n", "#Calculation\n", "sigma=float(str((P/A)*(1+(math.sqrt(1+((2*E*A*h)/(P*L))))))[:5])\n", "delL=round(sigma*L/E,3)\n", "\n", "#Result \n", "print \"Instantaneous elongation due to falling weight =\",delL,\"mm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Instantaneous elongation due to falling weight = 3.575 mm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.10,page no.155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Given\n", "#Variable declaration\n", "P=100 #Impact load in N\n", "h=2*10 #Height in mm\n", "L=1.5*1000 #Length of bar in mm\n", "A=1.5*100 #Area of bar in sq.mm\n", "E=2e5 #Modulus of elasticity in N/sq.mm\n", "\n", "#Calculation\n", "V=A*L #Volume in mm^3\n", "#case(i):Maximum instantaneous stress induced in the vertical bar\n", "sigma=round((P/A)*(1+(math.sqrt(1+((2*E*A*h)/(P*L))))),2)\n", "#case(ii):Maximum instantaneous elongation\n", "delL=round(sigma*L/E,3)\n", "#case(iii):Strain energy stored in the vertical rod\n", "U=round(sigma**2/(2*E)*V*1e-3,3)\n", "\n", "#Result\n", "print \"NOTE:The answer in the book for instantaneous stress is incorrect.The correct answer is,\"\n", "print \"Maximum instantaneous stress =\",sigma,\"N/mm^2\"\n", "print \"Maximum instantaneous elongation =\",delL,\"mm\"\n", "print \"Strain energy =\",U,\"N-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "NOTE:The answer in the book for instantaneous stress is incorrect.The correct answer is,\n", "Maximum instantaneous stress = 60.3 N/mm^2\n", "Maximum instantaneous elongation = 0.452 mm\n", "Strain energy = 2.045 N-m\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.11,page no.155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Given\n", "#Variable declaration\n", "delL=2.1 #Instantaneous extension in mm\n", "L=3*10**3 #Length of bar in mm\n", "A=5*100 #Area of bar in mm\n", "h=4*10 #Height in mm\n", "E=2e5 #Modulus of elasticity in N/sq.mm\n", "\n", "#Calculation\n", "V=A*L #Volume of bar in mm^3\n", "\n", "#case(i):Instantaneous stress induced in the vertical bar\n", "sigma=int(E*delL/L) \n", "\n", "#case(ii):Unknown weight\n", "P=round(((sigma**2)/(2*E)*V)/(h+delL),1) \n", "\n", "#Result\n", "print\"Instantaneous stress =\",sigma,\"N/mm^2\"\n", "print\"Unknown weight =\",P,\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Instantaneous stress = 140 N/mm^2\n", "Unknown weight = 1745.8 N\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.13,page no.157" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Given\n", "#Variable declaration\n", "d=12 #Diameter of bar in mm \n", "delL=3 #Increase in length in mm\n", "W=8000 #Steady load in N\n", "P=800 #Falling weight in N\n", "h=8*10 #Vertical distance in mm\n", "E=2e5 #Young's modulus in N/sq.mm\n", "\n", "#Calculation\n", "A=round((math.pi/4)*d**2,1) #Area of bar in sq.mm\n", "L=round(E*A*delL/W,1) #Length of the bar in mm\n", "sigma=round(round(P/A,4)*float(str(1+(math.sqrt(1+round((2*E*A*h)/(P*L),2))))[:7]),4) \n", "sigma=float(str(sigma)[:7]) #Stress produced by the falling weight in N/sq.mm\n", "\n", "#Result\n", "print \"Stress produced by the falling weight =\",sigma,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stress produced by the falling weight = 170.578 N/mm^2\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.14,page no.158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Given\n", "#Variable declaration\n", "d=12.5 #Diameter of the rod in mm\n", "delL=3.2 #Increase in length in mm\n", "W=10*1000 #Steady load in N\n", "P=700 #Falling load in N\n", "h=75 #Falling height in mm\n", "E=2.1e5 #Young's modulus in N/sq.mm\n", "\n", "#Calculation\n", "A=round((math.pi/4)*d**2,2) #Area of rod in sq.mm \n", "L=round(E*A*delL/W,1) #Length of the rod in mm\n", "sigma=round((P/A)*(1+(math.sqrt(1+((2*E*A*h)/(P*L))))),2) #Stress produced by the falling weight in N/mm^2\n", "\n", "#Result\n", "print \"NOTE:The given answer for stress is wrong.The correct answer is,\"\n", "print \"Stress = %.2f N/mm^2\"%sigma" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "NOTE:The given answer for stress is wrong.The correct answer is,\n", "Stress = 153.42 N/mm^2\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.15,page no.159" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "L=1.82*1000 #Length of rod in mm\n", "h1=30 #Height through which load falls in mm\n", "h2=47.5 #Fallen height in mm\n", "sigma=157 #Maximum stress induced in N/sq.mm\n", "E=2.1e5 #Young's modulus in N/sq.mm\n", "\n", "#Calculation\n", "U=sigma**2/(2*E) #Strain energy stored in the rod in N-m\n", "delL=sigma*L/E #Extension of the rod in mm\n", "Tot_dist=h1+delL #Total distance in mm\n", "\n", "#case(i):Stress induced in the rod if the load is applied gradually\n", "sigma1=round((U/Tot_dist)*L,1)\n", "\n", "#case(ii):Maximum stress if the load had fallen from a height of 47.5 mm\n", "sigma2=round((sigma1)*(1+(math.sqrt(1+((2*E*h2)/(sigma1*L))))),2)\n", "\n", "#Result\n", "print \"Stress induced in the rod = %.1f N/mm^2\"%sigma1\n", "print \"NOTE:The given answer for stress(2nd case) in the book is wrong.The correct answer is,\"\n", "print \"Maximum stress if the load has fallen = %.2f N/mm^2\"%sigma2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stress induced in the rod = 3.4 N/mm^2\n", "NOTE:The given answer for stress(2nd case) in the book is wrong.The correct answer is,\n", "Maximum stress if the load has fallen = 196.48 N/mm^2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.17,page no.162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "L=4*10**3 #Length of bar in mm\n", "A=2000 #Area of bar in sq.mm\n", "P1=3000 #Falling weight in N(for 1st case)\n", "h1=20*10 #Height in mm(for 1st case)\n", "P2=30*1000 #Falling weight in N(for 2nd case)\n", "h2=2*10 #Height in mm(for 2nd case)\n", "E=2e5 #Young's modulus in N/sq.mm\n", "\n", "#Calculation\n", "V=A*L #Volume of bar in mm^3\n", "\n", "#case(i):Maximum stress when a 3000N weight falls through a height of 20cm\n", "sigma1=round(((math.sqrt((2*E*P1*h1)/(A*L)))),1)\n", "\n", "#case(ii):Maximum stress when a 30kN weight falls through a height of 2cm\n", "sigma2=round((P2/A)*(1+(math.sqrt(1+((2*E*A*h2)/(P2*L))))),2)\n", "\n", "#Result\n", "print\"Maximum stress induced(when a weight of 3000N falls through a height of 20cm)=\",sigma1,\"N/mm^2\"\n", "print\"Maximum stress induced(when a weight of 30kN falls through a height of 2cm)=\",sigma2,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum stress induced(when a weight of 3000N falls through a height of 20cm)= 173.2 N/mm^2\n", "Maximum stress induced(when a weight of 30kN falls through a height of 2cm)= 188.85 N/mm^2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.18,page no.163" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "#Given \n", "#Variable declaration\n", "A=6.25*100 #Area in sq.mm\n", "W=10*10**3 #Load in N\n", "V=(40/60) #Velocity in m/s\n", "L=10000 #Length of chain unwound in mm\n", "E=2.1e5 #Young's modulus in N/sq.mm\n", "g=9.81 #acceleration due to gravity\n", "\n", "#Calculation\n", "K_E=round(((W/g)*(V**2))/2,1)*1e3 #K.E of the crane in N mm\n", "sigma=round(math.sqrt(K_E*E*2/(A*L)),2) #Stress induced in the chain in N/sq.mm\n", "\n", "#Result\n", "print \"Stress induced in the chain due to sudden stoppage =\",sigma,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stress induced in the chain due to sudden stoppage = 123.37 N/mm^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.19,page no.164" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "W=60*10**3 #Weight in N\n", "V=1 #Velocity in m/s\n", "L=15*10**3 #Free length in mm\n", "A=25*100 #Area in sq.mm\n", "E=2e5 #Young's modulus in N/sq.mm\n", "g=9.81 #acceleration due to gravity\n", "\n", "#Calculation\n", "K_E=((W/g)*(V**2))/2*1e3 #Kinetic Energy of the cage in N mm\n", "sigma=round(math.sqrt(K_E*E*2/(A*L)),2) #Maximum stress in N/sq.mm\n", "\n", "#Result\n", "print\"Maximum stress produced in the rope =\",sigma,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum stress produced in the rope = 180.61 N/mm^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 4.20,page no.166" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "#Variable declaration\n", "tau=50 #Shear stress in N/sq.mm\n", "C=8e4 #Modulus of rigidity in N/sq.mm\n", "\n", "#Calculation\n", "ste=(tau**2)/(2*C) #Strain energy per unit volume in N/sq.mm\n", "\n", "#Result\n", "print\"Strain energy per unit volume =\",ste,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Strain energy per unit volume = 0.015625 N/mm^2\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }