{ "metadata": { "name": "", "signature": "sha256:1d0b1f24c9d10ade871ede95388991dbd93c7a64d0a0c3e5beb35a6a045b6a61" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3:Principal Stresses and Strains" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 3.8,page no.98" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "sigma1=100 #Major principal stress in N/sq.mm\n", "sigma2=-60 #Minor principal stress in N/sq.mm\n", "theta=90-50 #Angle of inclination in degrees\n", "\n", "#Calculation\n", "sigman=round(((sigma1+sigma2)/2)+(((sigma1-sigma2)/2)*math.cos(math.radians(2*theta))),2)\n", "sigmat=round((sigma1-sigma2)/2*(math.sin(math.radians(2*theta))),3)\n", "sigmaR=round(math.sqrt(sigman**2+sigmat**2),3)\n", "sigmat_max=int((sigma1-sigma2)/2)\n", "\n", "#Result\n", "print \"Normal stress =\",sigman,\"N/mm^2\"\n", "print \"Shear stress =\",sigmat,\"N/mm^2\"\n", "print \"Resultant stress =\",sigmaR,\"N/mm^2\"\n", "print \"Maximum shear stress =\",sigmat_max,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Normal stress = 33.89 N/mm^2\n", "Shear stress = 78.785 N/mm^2\n", "Resultant stress = 85.765 N/mm^2\n", "Maximum shear stress = 80 N/mm^2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 3.9,page no.99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "sigma1=100 #Major principal stress in N/sq.mm\n", "sigma2=-40 #Minor principal stress in N/sq.mm\n", "theta=90-60 #Angle of inclination in degrees\n", "\n", "#Calculation\n", "sigman=((sigma1+sigma2)/2)+(((sigma1-sigma2)/2)*math.cos(math.radians(2*theta)))\n", "sigmat=round((sigma1-sigma2)/2*(math.sin(math.radians(2*theta))),2)\n", "sigmaR=round(math.sqrt(sigman**2+sigmat**2),1)\n", "sigmat_max=int((sigma1-sigma2)/2)\n", "phi=int(math.degrees(math.atan(sigmat/sigman)))\n", "\n", "#Result\n", "print \"Resultant stress in magnitude =\",sigmaR,\"N/mm^2\"\n", "print \"Direction of resultant stress =\",phi,\"degrees\"\n", "print \"Maximum shear stress =\",sigmat_max,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resultant stress in magnitude = 88.9 N/mm^2\n", "Direction of resultant stress = 43 degrees\n", "Maximum shear stress = 70 N/mm^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 3.13,page no.111" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "sigma1=120 #Major tensile stress in N/sq.mm\n", "sigma2=-90 #Minor compressive stress in N/sq.mm\n", "sigma_gp=150 #Greatest principal stress in N/sq.mm\n", "\n", "#Calculation\n", " #case(a):Magnitude of the shearing stresses on the two planes\n", "tau=round(math.sqrt(((sigma_gp-((sigma1+sigma2)/2))**2)-(((sigma1-sigma2)/2)**2)),3)\n", " #case(b):Maximum shear stress at the point\n", "sigmat_max=int((math.sqrt((sigma1-sigma2)**2+(4*tau**2)))/2)\n", "\n", "#Result\n", "print \"Shear stress on the two planes =\",tau,\"N/mm^2\"\n", "print \"Maximum shear stress at the point =\",sigmat_max,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shear stress on the two planes = 84.853 N/mm^2\n", "Maximum shear stress at the point = 135 N/mm^2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 3.16,page no.115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given\n", "#Variable declaration\n", "sigma1=600 #Major tensile stress in N/sq.mm\n", "sigma2=300 #Minor tensile stress in N/sq.mm\n", "tau=450 #Shear stress in N/sq.mm\n", "theta1=45 #Angle of inclination in degrees\n", "theta2=135 #Angle of inclination in degrees\n", "\n", "#Calculation\n", "sigman1=int(((sigma1+sigma2)/2)+(((sigma1-sigma2)/2)*math.cos(math.radians(2*theta1)))+(tau*math.sin(math.radians(2*theta1)))) \n", "sigman2=int(((sigma1+sigma2)/2)+(((sigma1-sigma2)/2)*math.cos(math.radians(2*theta2)))+(tau*math.sin(math.radians(2*theta2)))) \n", "sigmat1=int(round((sigma1-sigma2)/2*(math.sin(math.radians(2*theta1)))-(tau*math.cos(math.radians(2*theta1))),0))\n", "sigmat2=int(round((sigma1-sigma2)/2*(math.sin(math.radians(2*theta2)))-(tau*math.cos(math.radians(2*theta2))),0)) \n", "\n", "#Result\n", "print \"Normal stress(when theta is 45 degrees)=\",sigman1,\"N/mm^2\"\n", "print \"Normal stress(when theta is 135 degrees)=\",sigman2,\"N/mm^2\" \n", "print \"Tangential stress(when theta is 45 degrees)=\",sigmat1,\"N/mm^2\"\n", "print \"Tangential stress(when theta is 135 degrees)=\",sigmat2,\"N/mm^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Normal stress(when theta is 45 degrees)= 900 N/mm^2\n", "Normal stress(when theta is 135 degrees)= 0 N/mm^2\n", "Tangential stress(when theta is 45 degrees)= 150 N/mm^2\n", "Tangential stress(when theta is 135 degrees)= -150 N/mm^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }