{ "metadata": { "name": "chapter 10.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10:Theory of Failures" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No.10.10.1,Page No.401" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "P_e=300 #N/mm**2 #Elastic Limit in tension\n", "FOS=3 #Factor of safety\n", "mu=0.3 #Poissoin's ratio\n", "P=12*10**3 #N Pull \n", "Q=6*10**3 #N #Shear force\n", "\n", "#Calculations\n", "\n", "#Let d be the diameter of the shaft\n", "\n", "#Direct stress\n", "#P_x=P*(pi*4**-1*d**3)**-1\n", "#After substituting values and further simplifying we get\n", "#P_x=48*10**3\n", "\n", "#Now shear stress at the centre of bolt\n", "#q=4*3**-1*q_av\n", "#After substituting values and further simplifying we get\n", "#q=32*10**3*(pi*d**2)**-1\n", "\n", "#Principal stresses are\n", "#P1=P_x*2**-1+((P_x*2**-1)**2+q**2)**0.5\n", "#After substituting values and further simplifying we get\n", "#p1=20371.833*(d**2)**-1\n", "\n", "#P2=P_x*2**-1-((P_x*2**-1)**2+q**2)**0.5\n", "#After substituting values and further simplifying we get\n", "#P2=-5092.984*(d**2)**-1\n", "\n", "#q_max=((P_x*2**-1)**2+q**2)**0.5\n", "\n", "#From Max Principal stress theory\n", "#Permissible stress in Tension\n", "P1=100 #N/mm**2 \n", "d=(20371.833*P1**-1)**0.5\n", "\n", "#Max strain theory\n", "#e_max=P1*E**-1-mu*P2*E**-1\n", "#After substituting values and further simplifying we get\n", "#e_max=21899.728*(d**2*E)**-1\n", "\n", "#According to this theory,the design condition is\n", "#e_max=P_e*(E*FOS)**-1\n", "#After substituting values and further simplifying we get\n", "d2=(21899.728*3*300**-1)**0.5 #mm\n", "\n", "#Max shear stress theory\n", "#e_max=shear stress at elastic*(FOS)**-1\n", "#After substituting values and further simplifying we get\n", "d3=(12732.421*6*300**-1)**0.5 #mm\n", "\n", "#Result\n", "print\"Diameter of Bolt by:Max Principal stress theory\",round(d,2),\"mm\"\n", "print\" :Max strain theory\",round(d2,2),\"mm\"\n", "print\" :Max shear stress theory\",round(d3,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter of Bolt by:Max Principal stress theory 14.27 mm\n", " :Max strain theory 14.8 mm\n", " :Max shear stress theory 15.96 mm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No.10.10.2.Page No.402" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "M=40*10**6 #N-mm #Bending moment\n", "T=10*10**6 #N-mm #TOrque\n", "mu=0.25 #Poissoin's ratio\n", "P_e=200 #N/mm**2 #Stress at Elastic Limit\n", "FOS=2\n", "\n", "#Calculations\n", "\n", "#Let d be the diameter of the shaft\n", "\n", "#Principal stresses are given by\n", "\n", "#P1=16*(pi*d**3)**-1*(M+(M**2+T**2)**0.5)\n", "#After substituting values and further simplifying we get\n", "#P1=4.13706*10**8*(d**3)**-1 ............................(1)\n", "\n", "#P2=16*(pi*d**3)**-1*(M-(M**2+T**2)**0.5)\n", "#After substituting values and further simplifying we get\n", "#P2=-6269718*(pi*d**3)**-1 ..............................(2)\n", "\n", "#q_max=(P1-P2)*2**-1\n", "#After substituting values and further simplifying we get\n", "#q_max=2.09988*10**8*(d**3)**-1\n", "\n", "#Max Principal stress theory\n", "#P1=P_e*(FOS)**-1\n", "#After substituting values and further simplifying we get\n", "d=(4.13706*10**8*2*200**-1)**0.33333 #mm \n", "\n", "#Max shear stress theory\n", "#q_max=shear stress at elastic limit*(FOS)**-1\n", "#After substituting values and further simplifying we get\n", "d2=(2.09988*10**8*4*200**-1)**0.33333\n", "\n", "#Max strain energy theory\n", "#P_3=0\n", "#P1**2+P2**2-2*mu*P1*P2=P_e**2*(FOS)**-1\n", "#After substituting values and further simplifying we get\n", "d3=(8.62444*10**12)**0.166666\n", "\n", "#Result\n", "print\"Diameter of shaft according to:MAx Principal stress theory\",round(d,2),\"mm\"\n", "print\" :Max shear stress theory\",round(d2,2),\"mm\"\n", "print\" :Max strain energy theory\",round(d3,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter of shaft according to:MAx Principal stress theory 160.52 mm\n", " :Max shear stress theory 161.33 mm\n", " :Max strain energy theory 143.2 mm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No.10.10.3,Page No.403" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "\n", "#Initilization of Variables\n", "\n", "f_x=40 #N/mm**2 #Internal Fliud Pressure\n", "d1=200 #mm #Internal Diameter\n", "r1=d1*2**-1 #mm #Radius\n", "q=300 #N/mm**2 #Tensile stress\n", "\n", "#Calculations\n", "\n", "#From Lame's Equation we have,\n", "\n", "#Hoop Stress\n", "#f_x=b*(x**2)**-1+a ..........................(1)\n", "\n", "#Radial Pressure\n", "#p_x=b*(x**2)**-1-a .........................(2)\n", "\n", "#the boundary conditions are\n", "x=d1*2**-1 #mm \n", "#After sub values in equation 1 and further simplifying we get\n", "#40=b*100**-1-a ..........................(3)\n", "\n", "#Max Principal stress theory\n", "#q*(FOS)**-1=b*100**2+a ..................(4)\n", "#After sub values in above equation and further simplifying we get\n", "\n", "#From Equation 3 and 4 we get\n", "a=80*2**-1\n", "#Sub value of a in equation 3 we get\n", "b=(f_x+a)*100**2\n", "\n", "#At outer edge where x=r_0 pressure is zero\n", "r_0=(b*a**-1)**0.5 #mm\n", "\n", "#thickness\n", "t=r_0-r1 #mm\n", "\n", "#Max shear stress theory\n", "P1=b*(100**2)**-1+a #Max hoop stress\n", "P2=-40 #pressure at int radius (since P2 is compressive)\n", "\n", "#Max shear stress\n", "q_max=(P1-P2)*2**-1\n", "\n", "#According max shear theory the design condition is\n", "#q_max=P_e*2**-1*(FOS)**-1\n", "#After sub values in equation we get and further simplifying we get\n", "#80=b*(100**2)**-1+a\n", "#After sub values in equation 1 and 3 and further simplifying we get\n", "b2=120*100**2*2**-1\n", "\n", "#from equation(3)\n", "a2=120*2**-1-a\n", "\n", "#At outer radius r_0,radial pressure=0\n", "r_02=(b2*a2**-1)**0.5\n", "\n", "#thickness\n", "t2=r_02-r1\n", "\n", "#Result\n", "print\"Thickness of metal by:Max Principal stress theory\",round(t,2),\"mm\"\n", "print\" :Max shear stress thoery\",round(t2,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thickness of metal by:Max Principal stress theory 41.42 mm\n", " :Max shear stress thoery 73.21 mm\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }