{ "metadata": { "name": "chapter 09.ipynb" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9:Columns And Struts" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.1,Page No.377" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "L=5000 #mm #Length of strut\n", "dell=10 #mm #Deflection\n", "W=10 #N #Load\n", "\n", "#Calculations\n", "\n", "#Central Deflection of a simply supported beam with central concentrated load is\n", "#dell=W*L**3*(48*E*I)**-1 \n", "\n", "#Let E*I=X\n", "X=W*L**3*(48*dell)**-1 #mm\n", "\n", "#Euler's Load\n", "#Let Euler's Load be P\n", "P=pi**2*X*(L**2)**-1\n", "\n", "#Result\n", "print\"Critical Load of Bar is\",round(P,2),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical Load of Bar is 1028.08 N\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.2,Page No.377" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "L=2000 #mm #Length of square column\n", "E=12*10**3 #N/mm**2 #Modulus of Elasticity\n", "sigma=12 #N/mm*2 #stress\n", "W1=95*10**3 #N #Load1\n", "W2=200*10**3 #N #Load2\n", "FOS=3\n", "\n", "#Calculations\n", "\n", "#From Euler's Formula\n", "#P=pi**2*E*I*(L**2)**-1 .........(1)\n", "\n", "#Working Load\n", "#W=P*(FOS)**-1\n", "\n", "#Part-1\n", "\n", "#At W1=95*10**3 #N\n", "#W1=P*(3*L**2)**-1\n", "\n", "#Let 'a' be the side of the square\n", "#I=1*12**-1*a**4\n", "\n", "#sub value of I in Equation 1 and further rearranging we get\n", "a=(W1*3*12*L**2*(pi**2*E)**-1)**0.25 #mm\n", "\n", "#From Consideration of direct crushing\n", "#sigma*a**2=W1\n", "#After Reaaranging the above equation we get\n", "a2=(W1*(sigma)**-1)**0.5 #mm\n", "\n", "#required size is 103.67*103.67 i.e a*a\n", "\n", "#Part-2\n", "\n", "#At W2=200*10**3 #N\n", "#W2=P*(3*L**2)**-1\n", "#After substituting values and further Rearranging the above equation we get\n", "a3=(W2*3*12*L**2*(pi**2*E)**-1)**0.25 #mm\n", "\n", "#From consideration of direct compression,size required is\n", "a4=(W2*sigma**-1)**0.5\n", "\n", "#required size is 129.10*129.10 i.e a4*a4\n", "\n", "#Result\n", "print\"For W1 Load Required size is\",round(a*a,2),\"mm**2\"\n", "print\"For W2 Load Required size is\",round(a4*a4,2),\"mm**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "For W1 Load Required size is 10747.38 mm**2\n", "For W1 Load Required size is 16666.67 mm**2\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.3,Page No.378" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "#Flange \n", "b=100 #mm #Width\n", "\n", "D=80 #mm #Overall Depth\n", "t=10 #mm #Thickness of web and flanges\n", "L=3000 #mm #Length of strut\n", "E=200*10**3 #N/mm**2 #Modulus of Elasticity\n", "\n", "#Calculations\n", "\n", "#Let centroid be at depth y_bar from top fibre\n", "y_bar=(b*t*t*2**-1+(D-t)*t*((D-t)*2**-1+t))*(b*t+(D-t)*t)**-1 #mm \n", "\n", "#M.I at x-x axis\n", "I_x=1*12**-1*b*t**3+b*t*(y_bar-t*2**-1)**2+1*12**-1*t*((D-t))**3+t*((D-t))*((((D-t)*2**-1)+t)-y_bar)**2\n", "\n", "#M.I at y-y axis\n", "I_y=1*12**-1*t*b**3+1*12**-1*(D-t)*t**3 #mm**3\n", "\n", "#Least M.I\n", "I=I_y\n", "\n", "#Since both ends are hinged\n", "#Feective Length=Actual Length\n", "L=l=3000 #mm\n", "\n", "#Buckling Load \n", "P=pi**2*E*I*(l**2)**-1*10**-3 #KN\n", "\n", "#Result\n", "print\"The Buckling Load for strut of tee section\",round(P,2),\"KN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Buckling Load for strut of tee section 184.05 KN\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.4,Page No.379" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "D=400 #mm #Overall Depth\n", "\n", "#Flanges\n", "b=300 #mm #Width\n", "t=50 #mm #Thickness\n", "\n", "t2=30 #mm #Web Thickness\n", "\n", "dell=10 #mm #Deflection\n", "w=40 #N/mm #Load\n", "FOS=1.75 #Factor of safety\n", "E=2*10**5 #N/mm**2\n", "\n", "#Calculations\n", "\n", "#M.I at x-x axis\n", "I_x=1*12**-1*(b*D**3-(b-t2)*b**3) #mm**4\n", "\n", "#Central Deflection\n", "#dell=5*w*L**4*(384*E*I)**-1\n", "#After sub values in above equation and further simplifying we get\n", "L=(dell*384*E*I_x*(5*w)**-1)**0.25\n", "\n", "#M.I aty-y axis\n", "I=I_y=1*12**-1*t*b**3+1*12**-1*b*t2**3+1*12**-1*t*b**3 #mm**4\n", "\n", "#Both the Ends of column are hinged\n", "\n", "#Crippling Load\n", "P=pi**2*E*I*(L**2)**-1 #N\n", "\n", "#Safe Load\n", "S=P*(FOS)**-1*10**-3 #N\n", "\n", "#Result\n", "print\"Safe Load if I-section is used as column with both Ends hhinged\",round(S,2),\"KN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Safe Load if I-section is used as column with both Ends hhinged 4123.29 KN\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.5,Page No.381" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "D=200 #mm #External Diameter\n", "t=20 #mm #hickness\n", "d=200-2*t #mm #Internal Diameter\n", "E=1*10**5 #N/mm**2\n", "a=1*(1600)**-1 #Rankine's Constant\n", "L=4.5 #m #Length\n", "sigma=550 #N/mm**2 #Stress\n", "FOS=2.5\n", "\n", "#Calculations\n", "\n", "#Moment of Inertia\n", "I=pi*D**4*64**-1-pi*d**4*64**-1\n", "\n", "#Both Ends are fixed\n", "\n", "#Effective Length\n", "l=1*2**-1*L*10**3 #mm\n", "\n", "#Euler's Critical Load\n", "P_E=pi**2*E*I*(l**2)**-1\n", "\n", "A=pi*4**-1*(D**2-d**2) #mm*2\n", "\n", "k=(I*A**-1)**0.5\n", "\n", "#Rankine's Critical Load\n", "P_R=sigma*A*(1+a*(l*k**-1)**2)**-1\n", "\n", "X=P_E*P_R**-1 \n", "\n", "#Safe Load using Rankine's Formula\n", "S=P_R*(FOS)**-1*10**-3 #KN\n", "\n", "#Result\n", "print\"Safe Load by Rankine's Formula is\",round(S,2),\"KN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Safe Load by Rankine's Formula is 1404.36 KN\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.6,Page No.382" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "L=3000 #mm #Length of column\n", "W=800*10**3 #N #Load\n", "a=1*1600**-1 #Rankine's constant\n", "FOS=4 #Factor of safety\n", "sigma=550 #N/mm**2 #stress\n", "\n", "#Calculations\n", "\n", "#Effective Length\n", "l=L*2**-1 #mm \n", "\n", "#Let d1=outer diameter & d2=inner diameter\n", "#d1=5*8**-1*d2\n", "\n", "#M.I\n", "#I=pi*64**-1*(d1**4-d2**4) #mm**4\n", "\n", "#Area of section\n", "#A=pi4**-1*(d1**2-d2**2) #mm**2\n", "\n", "#k=(I*A**-1) \n", "#substituting values in above equation \n", "#k=1*16**-1*(d1**2-d2**2)\n", "#after simplifying further we get\n", "#k=0.2948119.d1\n", "\n", "#X=l*k**-1\n", "#substituting values in above equation and after simplifying further we get\n", "#X=5087.9898*d1**-1\n", "\n", "#Crtitcal Load\n", "P=W*FOS #N\n", "\n", "#From Rankine's Load\n", "#P2=sigma*A*(1+a*(X)**2)**-1\n", "#substituting values in above equation and after simplifying further we get\n", "#d1**4-12156618*d1**4-1.96691*10**8=0\n", "#Solving Quadratic Equation we get\n", "#d1**2-12156618*d1-196691000=0\n", "a=1\n", "b=-12156.618\n", "c=-196691000\n", "\n", "Y=b**2-4*a*c\n", "\n", "d1_1=((-b+Y**0.5)*(2*a)**-1)**0.5 #mm\n", "d1_2=((-b-Y**0.5)*(2*a)**-1) #mm\n", "\n", "d2=5*8**-1*d1_1\n", "\n", "#Result\n", "print\"Section of cast iron hollow cylindrical column is:d1_1\",round(d1_1,2),\"mm\"\n", "print\" :d2 \",round(d2,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Section of cast iron hollow cylindrical column is:d1_1 146.16 mm\n", " :d2 91.35 mm\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.7,Page No.383" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "#Let X=(P*A**-1) #Average Stress at Failure \n", "Lamda_1=70 #Slenderness Ratio\n", "Lamda_2=170 #Slenderness Ratio\n", "X1=200 #N/mm**2 \n", "X2=69 #N/mm**2 \n", "\n", "#Rectangular section\n", "b=60 #mm #width\n", "t=20 #mm #Thickness\n", "\n", "L=1250 #mm #Length of strut\n", "FOS=4 #Factor of safety\n", "\n", "#Calculations\n", "\n", "#Slenderness ratio\n", "#Lamda=L*k**-1\n", "\n", "#The Rankine's Formula for strut\n", "#P=sigma*A*(1+a*(L*k**-1)**-1\n", "\n", "#From test result 1,\n", "#After sub values in above equation we get and further simplifying we get\n", "#sigma_1=200+980000*a ...................(1)\n", "\n", "#From test result 2,\n", "#After sub values in above equation we get and further simplifying we get\n", "#sigma_2=69+1994100*a ...................(2)\n", "\n", "#Substituting it in equation (1) we get\n", "a=131*1014100**-1 \n", "\n", "#Substituting a in equation 1\n", "sigma_1=200+980000*a #N/mm**2\n", "\n", "#Effective Length \n", "l=1*2**-1*L #mm\n", "\n", "#Least of M.I\n", "I=1*12**-1*b*t**3 #mm**4\n", "\n", "#Area \n", "A=b*t #mm**2 \n", "\n", "k=(I*A**-1)**0.5\n", "\n", "#Slenderness ratio\n", "Lamda=l*k**-1\n", "\n", "#From Rankine's Ratio\n", "P=sigma_1*A*(1+a*(Lamda)**2)**-1\n", "\n", "#Safe Load\n", "S=P*(FOS)**-1*10**-3 #N\n", "\n", "#Result\n", "print\"Constant in the Formula is:a \",round(a,6)\n", "print\" :sigma_1\",round(sigma_1,2)\n", "print\"Safe Load is\",round(S,2),\"KN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Constant in the Formula is:a 0.000129\n", " :sigma_1 326.6\n", "Safe Load is 38.98 KN\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.8,Page No.385" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "D=200 #mm #Depth\n", "b=140 #mm #width\n", "\n", "#Plate\n", "b2=160 #mm #Width\n", "t2=10 #mm #Thickness\n", "\n", "L=l=4000 #mm #Length\n", "FOS=4 #Factor of safety\n", "sigma=315 #N/mm**2 #stress\n", "a2=1*7500**-1 \n", "I_xx=26.245*10**6 #mm**4 #M.I at x-x\n", "I_yy=3.288*10**6 #mm**4 #M.I at y-y\n", "a=3671 #mm**2 #Area\n", "k_x=84.6#mm\n", "k_y=29.9 #mm\n", "\n", "#Calculations\n", "\n", "#Total Area\n", "A=a+2*t2*b2 #mm**2\n", "\n", "#M.I\n", "I=I_yy+2*12**-1*t2*b2**3 #mm**4\n", "\n", "k=(I*A**-1)**0.5 #mm\n", "\n", "#Let X=L*k**-1\n", "X=L*k**-1\n", "\n", "#Appliying Rankine's Formula\n", "P=sigma*A*(1+a2*(X)**2)**-1 #N\n", "\n", "#Safe Load\n", "S=P*(FOS)**-1*10**-3 #KN\n", "\n", "#Result\n", "print\"Safe axial Load is\",round(S,2),\"KN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Safe axial Load is 220.93 KN\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.9,Page No.389" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "E=200*10**3 #N/mm**2 #Modulus of elasticity\n", "sigma=330 #N/mm**2 #Stress\n", "a=1*7500**-1 #Rankine's constant\n", "A=5205 #mm**2 #area of column\n", "I_xx=59.431*10**6 #mm**4 #M.I at x-x axis\n", "I_yy=8.575*10**6 #mm**24#M.I at y-y axis\n", "\n", "#Calculations\n", "\n", "#Total M.I\n", "I=I_xx+I_yy #mm**4\n", "\n", "#Area of compound Section \n", "A2=2*A #mm**2\n", "\n", "k=(I*A2**-1)**0.5 #mm\n", "\n", "#Equating Euler's Load to Rankine's Load we get\n", "#pi**2*E*I*(L**2)**-1=sigma*A*(1+a*(L*k)**2)**-1\n", "#After Substitt=uting values and further simplifying we get\n", "L=(39076198*(1-0.7975432)**-1)**0.5*10**-3 #m\n", "\n", "#Result\n", "print\"Length of column for which Rankine's formula and Euler's Formula give the same result is\",round(L,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Length of column for which Rankine's formula and Euler's Formula give the same result is 13.89 m\n" ] } ], "prompt_number": 47 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9.10,Page No.387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Initilization of Variables\n", "\n", "sigma=326 #N/mm**2 #stress\n", "E=2*10**5 #N/mm**2 #Modulus of Elasticity\n", "FOS=2 #Factor of safety\n", "a=1*7500**-1 #Rankine's constant\n", "D=350 #mm #Overall Depth \n", "\n", "#Cover plates\n", "b1=500 #mm #width\n", "t1=10 #mm #Thickness\n", "\n", "d=220 #mm #Distance between two channels\n", "\n", "L=6000 #mm #Length of column\n", "\n", "A=5366 #mm**2 #Area of Column section \n", "I_xx=100.08*10**6 #mm**4 #M.I of x-x axis\n", "I_yy=4.306*10**6 #mm**4 #M.I of y-y axis\n", "C_yy=23.6 #mm #Centroid at y-y axis\n", "\n", "#Calculations\n", "\n", "#Symmetric axes are the centroidal axes is\n", "\n", "#M.I of Channel at x-x axis\n", "I_xx_1=2*I_xx+2*(1*12**-1*b1*t1**3+b1*t1*(D*2**-1+t1*2**-1)**2)\n", "\n", "#M.I of Channel at y-y axis\n", "I_yy_1=2*(I_yy+A*(d*2**-1+C_yy)**2)+2*12**-1*t1*b1**3\n", "\n", "#As I_yy