{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10 : Material Balance with Chemical Reaction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1 pageno : 329" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "mair = 500. #kg\n", "mCO2 = 55. #kg\n", "mCO = 15. #kg\n", "\n", "#C3H8 + 5O2 = 3CO2 + 4H20\n", "MCO2 = 44 \n", "MCO = 28 \n", "\n", "# Calculation \n", "NCO2 = mCO2 / MCO2 \n", "NCO = mCO / MCO \n", "Mair = 29 \n", "Nair = mair / Mair \n", "#carbon balance gives,\n", "F = (NCO2 + NCO)/3 \n", "MC3H8 = 44.064 \n", "mC3H8 = MC3H8 * F \n", "\n", "# Result\n", "print \"(a)mass of propane burnt = %.2f\"%mC3H8,\"kg\"\n", "\n", "#one mole of propane requres 5 moles of oxygen for combustion\n", "NO2 = F * 5 \n", "Nairt = NO2 * 100 /21. #theoretical air required\n", "Pexcess = (Nair - Nairt) * 100 / Nairt \n", "print \"(b)The percent excess air = %.2f\"%Pexcess,\"%\"\n", "\n", "#C3H8 + 7/2 * O2 = 3CO + 4H2O\n", "NH2O = F * 4 \n", "#Taking oxygen balance, unburned oxygen is calculated,\n", "#O2 supplied = O2 present in form of CO2, CO and H2O + unburned O2\n", "Nunburnt = Nair * 21. / 100 - NCO2 - NCO/2 - NH2O/2. \n", "NN2 = Nair * 79 / 100. \n", "Ntotal = NCO2 + NCO + NH2O + NN2 + Nunburnt \n", "PCO2 = NCO2 * 100 / Ntotal \n", "PCO = NCO *100/ Ntotal \n", "PH2O = NH2O *100/ Ntotal \n", "PN2 = NN2 *100/ Ntotal \n", "PO2 = Nunburnt *100 / Ntotal \n", "\n", "print \"(c)Percent composition of CO2 = %.2f\"%PCO2,\"%\"\n", "print \"Percent composition of CO = %.2f\"%PCO,\"%\"\n", "print \"Percent composition of H2O = %.2f\"%PH2O,\"%\"\n", "print \"Percent composition of N2 = %.2f\"%PN2,\"%\"\n", "print \"Percent composition of O2 = %.2f\"%PO2,\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)mass of propane burnt = 26.23 kg\n", "(b)The percent excess air = 21.66 %\n", "(c)Percent composition of CO2 = 6.68 %\n", "Percent composition of CO = 2.86 %\n", "Percent composition of H2O = 12.73 %\n", "Percent composition of N2 = 72.84 %\n", "Percent composition of O2 = 4.88 %\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2 pageno : 331" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "Nflue = 100. #kmol\n", "NCO2 = 14.84 \n", "NCO = 1.65 \n", "NO2 = 5.16 \n", "NN2 = 78.35 \n", "PCF = 85. #PERCENT CARBON IN FEED\n", "PIF = 15. #PERCENT INERT IN FEED\n", "\n", "# Calculation \n", "#F - amount of coke charged, W - mass of coke left,W = 0.05F\n", "NCflue = NCO2 + NCO \n", "MC = 12. \n", "mC = MC * NCflue \n", "\n", "#carbon balance gives, F * PCF / 100 = W * PCF + mC \n", "F = mC / ( PCF / 100 - 0.05*PCF / 100) \n", "#let A kmol air supplied, taking N2 balance,\n", "Nair = NN2 * 100/79. \n", "NO2supplied = Nair - NN2 \n", "Ntheoretical = F * PCF / (100 * MC) \n", "Pexcess = ( NO2supplied - Ntheoretical ) * 100 / ( Ntheoretical ) \n", "\n", "# Result\n", "print \"(a)Percentage excess air = %.2f\"%Pexcess,\"%\"\n", "mair = Nair * 29 \n", "m = mair / F #air supplied per kg of coke charged\n", "print \"(b)air supplied per kg of coke charged = %.2f\"%m,\"kg\"\n", "P = 100. #kPa\n", "T = 500. #K\n", "V = Nflue *22.4143*101.325 * T / (F * P * 273.15) \n", "print \"(c)volume of flue gas per kg of coke = %.2f\"%V,\"m**3\"\n", "W = 0.05*F \n", "mCr = W * PCF/100. #carbon in refuse\n", "mir = F * (1-PCF/100.) #inert in refuse\n", "mr = mCr + mir \n", "C = mCr * 100 / mr \n", "I = mir *100/ mr \n", "print \"(d)Carbon = %.2f\"%C,\"%\"\n", "print \"Inert = %.2f\"%I,\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Percentage excess air = 19.99 %\n", "(b)air supplied per kg of coke charged = 11.74 kg\n", "(c)volume of flue gas per kg of coke = 16.96 m**3\n", "(d)Carbon = 22.08 %\n", "Inert = 77.92 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3 pageno : 333" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "Nflue = 100. #kmol\n", "NCO2 = 9. \n", "NCO = 2. \n", "NO2 = 3. \n", "NN2 = 86. \n", "NCflue = NCO2 + NCO \n", "MC = 12. \n", "mC = MC * NCflue \n", "\n", "# Calculation \n", "#let A kmol air supplied, taking N2 balance,\n", "Nair = NN2 * 100/79. \n", "NO2supplied = Nair - NN2 \n", "\n", "# if CO in the flue gas was to be completely converted to CO2, \n", "#then, the moles of oxygen present in the flue gas would be 3-1 =2kmol\n", "Noexcess = NO2 - NCO/2. \n", "Pexcess = Noexcess * 100. / ( NO2supplied - Noexcess) \n", "\n", "# Result\n", "print \"(a)Percentage excess air = %.2f\"%Pexcess,\"%\"\n", "NwaterO = NO2supplied - NCO2 - NCO/2 - NO2 \n", "NH2 = NwaterO*2 \n", "mH2 = NH2 * 2 \n", "xCF = 0.7\n", "R = mC / mH2 \n", "print \"(b)Ratio of carbon to hydrogen in the fuel = %.2f\"%R\n", "#let x be the amount of moisture in the feed, n it is \n", "#given that 70% is carbon,therefore,\n", "#0.7 = 3.32 / ( 1 + 3.32 + x )\n", "x = R / xCF - 1 - R \n", "mH = x * 2.016 / 18.016 \n", "mHtotal = mH + mH2 \n", "Rtotal = mC / mHtotal \n", "print \"(c)Ratio of carbon to total hydrogen in the fuel = %.2f\"%Rtotal\n", "ntotal = R + 1 +x \n", "PH2 = 1*100./ntotal \n", "PH2O = x * 100. / ntotal \n", "print \"(d)percentage of combustible hydrogen in the fuel = %.2f\"%PH2,\"%\"\n", "print \"percentage of moisture in the fuel = %.2f\"%PH2O,\"%\"\n", "nH2Ototal = (PH2O + PH2 * 18.016 / 2.016)/100 \n", "print \"(e)The mass of moisture in the flue gas per kg of fuel burned = %.3f\"%nH2Ototal,\"kg\"\n", "\n", "# note : answer may vary because of rounding error\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Percentage excess air = 9.59 %\n", "(b)Ratio of carbon to hydrogen in the fuel = 3.35\n", "(c)Ratio of carbon to total hydrogen in the fuel = 3.34\n", "(d)percentage of combustible hydrogen in the fuel = 20.92 %\n", "percentage of moisture in the fuel = 9.08 %\n", "(e)The mass of moisture in the flue gas per kg of fuel burned = 1.960 kg\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4 pageno : 335" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "Nflue = 100. #kmoles\n", "NCO2 = 9.05 \n", "NCO = 1.34 \n", "NO2 = 9.98 \n", "NN2 = 79.63 \n", "PCO2F = 9.2 #% ( Feed )\n", "PCOF = 21.3 #%\n", "PH2F = 18. #%\n", "PCH4F = 2.5 #%\n", "PN2F = 49. #%\n", "\n", "\n", "# Calculation \n", "#Taking carbon balance, \n", "F = (NCO2 + NCO )/ ( (PCO2F + PCOF + PCH4F)/100.) \n", "\n", "#Nitrogen balance gives,\n", "Nair = (NN2 - F*PN2F/(100) )* 100 / 79. \n", "R = Nair/F \n", "\n", "# Result\n", "print \"(a)molar Ratio of air to fuel = %.2f\"%R\n", "Oexcess = NO2 - NCO / 2 \n", "Pexcess = Oexcess *100/ (Nair*21./100 - Oexcess) \n", "print \"(b)Percent excess of air = %d\"%Pexcess,\"%\"\n", "NN2F = F * PN2F / 100 \n", "PN2F = NN2F *100/ NN2 \n", "print \"(c)Percent of nitrogen in the flue gas that came from fuel = %.2f\"%PN2F,\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)molar Ratio of air to fuel = 2.58\n", "(b)Percent excess of air = 120 %\n", "(c)Percent of nitrogen in the flue gas that came from fuel = 19.37 %\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5 pageno : 337" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "Nflue = 100. #kmole\n", "NCO2 = 16.4 \n", "NCO = 0.4 \n", "NO2 = 2.3 \n", "NN2 = 80.9 \n", "PCF = 80.5 #% ( Feed )\n", "PO = 5.0 #%\n", "PHF = 4.6 #%\n", "PN = 1.1 #%\n", "Pash = 8.8 #%\n", "\n", "# Calculation \n", "#Taking Carbon balance,\n", "W = (NCO2 + NCO)*12. / (PCF / 100) \n", "mCO2 = NCO2 * 44 \n", "mCO = NCO * 32 \n", "mO2 = NO2 * 28 \n", "mN2 = NN2 * 28.014 \n", "mtotal = mCO2 + mCO + mO2 + mN2 \n", "Mdryflue = mtotal * 100/ W \n", "\n", "# Result\n", "print \"(a)The weight of dry gaseous products formed per 100 kg of coal fired = %.2f\"%Mdryflue,\"kg\"\n", "#taking nitrogen balance,\n", "x = (mN2 - W*PN/100)/28.014 \n", "Noxygen = x * 21 / 79. \n", "Nrequired = W * (PCF /12 + PHF/(2*2.016) - PO/32)/100 \n", "Pexcess = (Noxygen - Nrequired)*100/Nrequired \n", "print \"(b)Percent excess air supplied for combustion = %.2f\"%Pexcess,\"%\"\n", "\n", "\n", "# note: answer may vary because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The weight of dry gaseous products formed per 100 kg of coal fired = 1223.92 kg\n", "(b)Percent excess air supplied for combustion = 11.49 %\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6 pageno : 338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "mcoal = 100. #kg\n", "mC = 63. #kg\n", "mH = 12. #kg\n", "mO = 16. #kg\n", "mash = 9. #kg\n", "mfixC = 39. #kg\n", "mH2O = 10. #kg\n", "\n", "# Calculation \n", "mCvolatile = mC - mfixC \n", "mHH2O = mH2O *2.016/18.016 #(mass of hydrogen in moisture)\n", "mHvolatile = mH - mHH2O \n", "mOH2O = mH2O - mHH2O \n", "mOvolatile = mO - mOH2O \n", "mtvolatile = mCvolatile + mHvolatile + mOvolatile \n", "PC = mCvolatile * 100 / mtvolatile \n", "PH = mHvolatile * 100 / mtvolatile \n", "PO = mOvolatile * 100 / mtvolatile \n", "\n", "# Result\n", "print \"(a)percent carbon in volatile matter = %.2f\"%PC,\"%\"\n", "print \" percent hydrogen in volatile matter = %.2f\"%PH,\"%\"\n", "print \" percent oxygen in volatile matter = %.2f\"%PO,\"%\"\n", "\n", "PCflue = 10.8 #%\n", "Pvflue = 9.0 #%\n", "Pashflue = 80.2 #%\n", "\n", "#taking ash balance, Wis the weight of the refuse,\n", "W = mash *100. / Pashflue \n", "mvflue = Pvflue * W /100. \n", "mCflue = W * PCflue / 100 \n", "Ctflue = mCflue + mvflue * PC / 100 #total carbon in flue\n", "Htflue = mvflue * PH / 100 \n", "Otflue = mvflue * PO / 100 \n", "PCflue = Ctflue *100/W \n", "PHflue = Htflue *100/W \n", "POflue = Otflue *100/W \n", "\n", "print \"(b)percent Carbon in refuse = %.2f\"%PCflue,\"%\"\n", "print \" percent Hydrogen in refuse = %.2f\"%PHflue,\"%\"\n", "print \" percent Oxygen in refuse = %.2f\"%POflue,\"%\"\n", "print \" percent Ash in refuse = %.2f\"%Pashflue,\"%\"\n", "\n", "Coalburnt = mcoal - W \n", "NCburnt = (mC - Ctflue)/12 \n", "NHburnt = (mH - Htflue)/2.016 \n", "NOburnt = (mO - Otflue)/32 \n", "PCO2 = 80. #Percentage of carbon burnt\n", "NCO2 = PCO2 * NCburnt / 100. \n", "NCO = ( 1 - PCO2/100. )*NCburnt \n", "Vair = 1000. #m**3\n", "Nair = Vair / 22.4143 \n", "NN2 = Nair * 79 / 100. \n", "NO2 = Nair * 21 / 100. \n", "Ocompounds = NCO2 + NCO/2 + NHburnt/2 #Oxygen present in CO2,CO and H2O\n", "\n", "#Oxygen balance gives free oxygen as,\n", "Ofree = NO2 + mO/32 - Otflue/32 - Ocompounds \n", "Ntotal = NN2 + Ofree + NCO2 + NCO #dry basis\n", "PCO21 = NCO2 *100/Ntotal \n", "PCO1 = NCO * 100/Ntotal \n", "PO21 = Ofree * 100/Ntotal \n", "PN21 = NN2 * 100/Ntotal \n", "print \"(c)percent CO2 in flue = %.2f\"%PCO21,\"%\"\n", "print \" percent CO in flue = %.2f\"%PCO1,\"%\"\n", "print \" percent O2 in flue = %.2f\"%PO21,\"%\"\n", "print \" percent N2 in flue = %.2f\"%PN21,\"%\"\n", "NOrequired = mC/12 + mH/(2.016*2) - mO/32 \n", "Oexcess = NO2 - NOrequired \n", "Pexcess = Oexcess * 100 / NOrequired \n", "print \"(d)Percent excess air supplied = %.2f\"%Pexcess,\"%\"\n", "NH2Oflue = NHburnt \n", "mH2O = NH2Oflue * 18.016 \n", "m = mH2O * 100/Ntotal \n", "print \"(e)mass of water vapour per 100 moles of dry flue gas = %.2f\"%\\\n", "m,\"g water vapour / 100kmol dry flue gas\"\n", "\n", "# note: answer may vary because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)percent carbon in volatile matter = 57.14 %\n", " percent hydrogen in volatile matter = 25.91 %\n", " percent oxygen in volatile matter = 16.95 %\n", "(b)percent Carbon in refuse = 15.94 %\n", " percent Hydrogen in refuse = 2.33 %\n", " percent Oxygen in refuse = 1.53 %\n", " percent Ash in refuse = 80.20 %\n", "(c)percent CO2 in flue = 9.55 %\n", " percent CO in flue = 2.39 %\n", " percent O2 in flue = 5.53 %\n", " percent N2 in flue = 82.53 %\n", "(d)Percent excess air supplied = 21.26 %\n", "(e)mass of water vapour per 100 moles of dry flue gas = 245.62 g water vapour / 100kmol dry flue gas\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7 pageno : 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "Pexcess = 20. #%\n", "PSO3 = 5. #% ( Percent of sulphur burnt to SO3 )\n", "\n", "#S + O2 = SO2\n", "N = 1. #kmol sulphur\n", "Orequired = N #kmol\n", "\n", "# Calculation \n", "Osupplied = Orequired * ( 1 + Pexcess/100) \n", "Nsupplied = Osupplied * 79/21. \n", "NSO2 = (1-PSO3/100)*N \n", "NSO3 = PSO3 * N /100. \n", "Oconsumed = NSO2 + 3/2. * PSO3/100 \n", "Oremaining = Osupplied - Oconsumed \n", "Ntotal = NSO2 + NSO3 + Oremaining + Nsupplied \n", "PSO2 = NSO2 * 100 / Ntotal \n", "PSO3 = NSO3 * 100 / Ntotal \n", "PO2 = Oremaining * 100 / Ntotal \n", "PN2 = Nsupplied * 100 / Ntotal \n", "\n", "# Result\n", "print \"Percent SO2 in burner gas = %.2f\"%PSO2,\"%\"\n", "print \"Percent SO3 in burner gas = %.2f\"%PSO3,\"%\"\n", "print \"Percent O2 in burner gas = %.2f\"%PO2,\"%\"\n", "print \"Percent N2 in burner gas = %.2f\"%PN2,\"%\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percent SO2 in burner gas = 16.70 %\n", "Percent SO3 in burner gas = 0.88 %\n", "Percent O2 in burner gas = 3.08 %\n", "Percent N2 in burner gas = 79.35 %\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.8 pageno : 343" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "Nburner = 100. #kmol\n", "NSO2b = 9.5 #kmol\n", "NO2b = 7. #kmol\n", "\n", "# Calculation \n", "NN2 = Nburner - NSO2b - NO2b \n", "NOsupplied = NN2 * 21 / 79. #Oxygen supplied\n", "\n", "#4FeS2 + 11O2 = 2Fe2O3 + 8SO2\n", "#4FeS2 + 15O2 = 2Fe2O3 + 8SO3\n", "NOtotal = NO2b + NSO2b + NSO2b * 3 / 8. \n", "NOunaccounted = NOsupplied - NOtotal \n", "NSO31 = NOunaccounted * 8 /15 \n", "NStotal = NSO2b + NSO31 \n", "mS = NStotal * 32.064 \n", "Pburnt = 50. #% ( percentage of pyrites burnt )\n", "mFeS2 = mS * 100/ Pburnt \n", "\n", "# Result\n", "print \"(a)Total pyrites burnt = %.2f\"%mFeS2,\"kg\"\n", "NFeS2 = NStotal / 2 \n", "MFeS2 = 119.975 \n", "mFeS21 = MFeS2 * NFeS2 \n", "mgangue = mFeS2 - mFeS21 \n", "NFe2O3 = NFeS2 * Pburnt / 100 \n", "MFe2O3 = 159.694 \n", "mFe2O3 = MFe2O3 * NFe2O3 \n", "PSO3c = 2.5 #% ( percentage sulphur as SO3 in cinder )\n", "mc = 100. #kg ( basis )\n", "NSO3 = PSO3c / 32.064 \n", "mSO3 = NSO3 * 80.064 \n", "mremaining = mc - mSO3 # ( Fe2O3 + gangue )\n", "\n", "#x be the weight of the cinder \n", "x = (mFe2O3 + mgangue)*100/mremaining \n", "print \"(b)weight of cinder produced = %.f\"%x,\"kg\"\n", "Slost = x * NSO3 / 100 \n", "PSlost = Slost *100/ NStotal \n", "print \"(c)Percent of total S lost in the cinder = %.2f\"%PSlost,\"%\"\n", "mSO3c = mSO3 * x / 100 \n", "NSO3b = NSO31 - Slost \n", "P = NSO3b * 100 / NStotal \n", "print \"(d)Percentage of S charged that is present as SO3 in the burner gas = %.2f\"%P,\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Total pyrites burnt = 682.19 kg\n", "(b)weight of cinder produced = 500 kg\n", "(c)Percent of total S lost in the cinder = 3.66 %\n", "(d)Percentage of S charged that is present as SO3 in the burner gas = 7.03 %\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.9 pageno : 345" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "Ncgas = 100. #kmol ( basis - SO3 free converter gas )\n", "NSO2 = 4.5 #kmol\n", "NO2 = 7.5 #kmol\n", "NN2 = 88.0 #kmol\n", "\n", "\n", "# Calculation \n", "NOsupplied = NN2 * 21./ 79 \n", "NOconverter = NO2 + NSO2 \n", "NOconsumed = NOsupplied - NOconverter #(Oxygen consumed for SO3)\n", "NSO3c = NOconsumed / 1.5 \n", "NStotal = NSO3c + NSO2 \n", "Nbgas = 100. #kmol ( basis - SO3 free burner gas )\n", "NSO21 = 15. #%\n", "NO21 = 5. #%\n", "NN21 = 80. #%\n", "NOburner = NO21 + NSO21 \n", "NOsupplied1 = NN21 * 21. / 79. \n", "NOconsumed1 = NOsupplied1 - NOburner #(Oxygen consumed for SO3)\n", "NSO3b = NOconsumed1 / 1.5 \n", "NStotal1 = NSO3b + NSO21 \n", "mS = 100. #kg ( basis - sulphur charged )\n", "Pburned = 95. #%\n", "mburned = mS * Pburned / 100. \n", "Nburned = mburned / 32.064 \n", "\n", "#let x be the SO3 free burner gas produced, then sulphur balance gives,\n", "x = Nburned * Nbgas / NStotal1 \n", "NSO2b = NSO21 * x / 100 \n", "NO2b = NO21 * x / 100 \n", "NN2b = NN21 * x / 100 \n", "Ntotalb = NSO2b + NO2b + NN2b \n", "NSO3b1 = NSO3b * x / 100 \n", "\n", "#let y be the no. of converter gas produced\n", "y = Nburned * Ncgas / NStotal \n", "NSO2c = NSO2 * y / 100 \n", "NO2c = NO2 * y / 100 \n", "NN2c = NN2 * y / 100 \n", "Ntotalc = NSO2c + NO2c + NN2c \n", "NSO3c1 = NSO3c * y / 100 \n", "Nairsec = (NN2c - NN2b ) * 100 / 79. \n", "P = 100. #kPa\n", "T = 300. #K\n", "V = Nairsec * 22.414 * 101.3 * T / (P * 273.15) \n", "\n", "# Result\n", "print \"(a)The volume of secondary air at 100kPa and 300K = %.1f\"%V,\"m**3/h\"\n", "NSabsorbed = 95. #%\n", "mSO3abs = NSabsorbed * NSO3c1 * 80.064 / 100 \n", "\n", "#let z be the amount of 98% H2SO4, therefore , 100% H2SO4 produced = z + mSO3abs\n", "# taking SO3 balance\n", "z = (mSO3abs - mSO3abs * 80.064 / 98.08) / ( 80.064 / 98.08 - 0.98 * 80.064/98.08) \n", "print \"(b)98%% H2SO4 required per hour = %.1f\"%z,\"kg\"\n", "w = z + mSO3abs \n", "print \"(c)100%% H2SO4 produced per hour = %.1f\"%w,\"kg\"\n", "\n", "# note: answer may vary because of rounding error\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The volume of secondary air at 100kPa and 300K = 208.2 m**3/h\n", "(b)98% H2SO4 required per hour = 1592.1 kg\n", "(c)100% H2SO4 produced per hour = 1733.6 kg\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.10 pageno : 349" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "mlime = 5. #kg\n", "mcoke = 1. #kg\n", "PCaCO3l = 84.5 #%\n", "PMgCO3l = 11.5 #%\n", "\n", "# Calculation \n", "NCaCO3l = PCaCO3l * mlime / (100.09*100) \n", "NMgCO3l = PMgCO3l * mlime / (84.312*100) \n", "mInertsl = mlime * ( 100 - PCaCO3l - PMgCO3l ) / 100 \n", "PCc = 76. #%\n", "Pashc = 21. #%\n", "Pwaterc = 3. #%\n", "NCc = mcoke * PCc /(100*12) \n", "Nwaterc = mcoke * Pwaterc / ( 100 * 18.016 ) \n", "mash = Pashc * mcoke / 100 \n", "\n", "#CaCO3 + C + O2 = CaO + 2CO2\n", "#MgCO3 + C + O2 = MgO + 2CO2\n", "PCaCO3conv = 95. #(Percent calcination of CaCO3)\n", "PMgCO3conv = 90. #(Percent calcination of MgCO3)\n", "NCaO = PCaCO3conv * NCaCO3l / 100. \n", "mCaO = NCaO * 56.08 \n", "NMgO = PMgCO3conv * NMgCO3l / 100. \n", "mMgO = NMgO * 40.312 \n", "mCaCO3 = (NCaCO3l * (1-PCaCO3conv/100)*100.09) \n", "mMgCO3 = (NMgCO3l * (1-PMgCO3conv/100)*84.312) \n", "mtotal = mCaO + mMgO + mCaCO3 + mMgCO3 + mInertsl + mash \n", "PCaO = mCaO * 100 / mtotal \n", "\n", "# Result\n", "print \"The weight percent of CaO in the product leaving the kiln = %.2f\"%PCaO,\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The weight percent of CaO in the product leaving the kiln = 70.83 %\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.11 pageno : 350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "R = 100. #kg ( basis - residue )\n", "MCaSO4 = 136.144 \n", "MMgSO4 = 120.376 \n", "mCaSO4r = 9. #kg\n", "mMgSO4r = 5. #kg\n", "mH2SO4r = 1.2 #kg\n", "minertr = 0.5 #kg\n", "mCO2r = 0.2 #kg\n", "mH2O = 84.10 #kg\n", "\n", "\n", "# Calculation \n", "NCaSO4 = mCaSO4r / MCaSO4 \n", "NMgSO4 = mMgSO4r / MMgSO4 \n", "\n", "#CaCO3 + H2SO4 = CaSO4 + H2O + CO2\n", "#MgSO4 + H2SO4 = MgSO4 + H2O + CO2\n", "\n", "mCaCO3 = NCaSO4 * 100.08 \n", "mMgCO3 = NMgSO4 * 84.312 \n", "mtotallime = minertr + mCaCO3 + mMgCO3 \n", "PCaCO3 = mCaCO3 * 100/ mtotallime \n", "PMgCO3 = mMgCO3 *100/ mtotallime \n", "Pinerts = minertr *100/ mtotallime \n", "\n", "# Result\n", "print \"(a)Percentage of CaCO3 in limestone = %.2f\"%PCaCO3,\"%\"\n", "print \" Percentage of MgCO3 in limestone = %.2f\"%PMgCO3,\"%\"\n", "print \" Percentage of inerts in limestone = %.2f\"%Pinerts,\"%\"\n", "\n", "NH2SO4 = NCaSO4 + NMgSO4 \n", "mH2SO4 = NH2SO4 * 98.08 \n", "Pexcess = mH2SO4r * 100 / ( mH2SO4) \n", "print \"(b)The percentage excess of acid used = %.2f\"%Pexcess,\"%\"\n", "\n", "macidt = mH2SO4 + mH2SO4r \n", "Pacidic = 12. #%\n", "mwaterin = macidt * (100 - Pacidic)/ Pacidic \n", "mwaterr = (NCaSO4 + NMgSO4)*18.016 \n", "mwatert = mwaterin + mwaterr \n", "mvaporized = mwatert - mH2O \n", "m = mvaporized * 100/mtotallime #water vaporized per 100kg of limestone\n", "print \"(c)the mass of water vaporized per 100kg of limestone = %.2f\"%m,\"kg\"\n", "mCO2pr = (NCaSO4 + NMgSO4)*44 \n", "mCO2rel = mCO2pr - mCO2r \n", "m1 = mCO2rel * 100 / mtotallime #CO2 per 100kg of limestone\n", "print \"(d)the mass of CO2 per 100kg of limestone = %.2f\"%m1,\"kg\"\n", "\n", "# note : answer may vary because of rounding error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Percentage of CaCO3 in limestone = 62.31 %\n", " Percentage of MgCO3 in limestone = 32.98 %\n", " Percentage of inerts in limestone = 4.71 %\n", "(b)The percentage excess of acid used = 11.37 %\n", "(c)the mass of water vaporized per 100kg of limestone = 38.25 kg\n", "(d)the mass of CO2 per 100kg of limestone = 42.72 kg\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.12 pageno : 353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "macid = 1000. #kg ( basis - dilute phosphoric acid )\n", "Mphacid = 97.998 \n", "P = 1.25 #% ( dilute % )\n", "\n", "# Calculation \n", "mphacid = macid * P /100 \n", "Nphacid = mphacid / Mphacid \n", "\n", "#1mole of phosphoric acid - 1mole of trisodium phosphate\n", "NTSP = Nphacid \n", "MTSP = 380.166 \n", "mTSP = NTSP * MTSP \n", "\n", "# Result\n", "print \"(a)Maximum weight of TSP obtained = %.2f\"%mTSP,\"kg\"\n", "NCO2 = NTSP \n", "Pwater = 6.27 #kPa\n", "\n", "#since gas is saturated with water vapour, vapour pressure = partial pressure\n", "Nwater = NCO2 * Pwater / ( 100 - Pwater ) \n", "Ntotal = Nwater + NCO2 \n", "P = 100. #kPa\n", "T = 310. #K\n", "V = Ntotal * 101.3 * T *22.4143 / ( P * 273.15 ) \n", "print \"(b)Volume of CO2 = %.2f\"%V,\"m**3\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Maximum weight of TSP obtained = 48.49 kg\n", "(b)Volume of CO2 = 3.51 m**3\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.13 pageno : 353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "mTSPd = 1000. #kg ( basis - 20% dilute TSP )\n", "P = 20. #%\n", "\n", "# Calculation \n", "mTSP = mTSPd * P / 100 \n", "NTSP = mTSP / 163.974 \n", "msodaashd = NTSP * 106 \n", "mphacidd = NTSP * 97.998 \n", "mNaOHd = NTSP * 40.008 \n", "Pphacid = 85. #% (85% solution phosphoric acid)\n", "PNaOH = 50. #% (50% solution NaOH)\n", "\n", "#let x be the water in soda ash,\n", "#taking water balance,\n", "x = (mTSPd - mTSP) - mNaOHd * PNaOH /(100 - PNaOH) - mphacidd * (100 - Pphacid) / Pphacid \n", "msodaash = msodaashd + x \n", "C = msodaashd *100 / msodaash \n", "\n", "# Result\n", "print \"(a)Concentration of soda ash solution = %.2f\"%C,\"%\"\n", "mphacid = mphacidd * 100 / Pphacid \n", "R = msodaash / mphacid \n", "print \"(b)Weight ratio in which soda ash and commercial phosphoric acid are mixed = %.2f\"%R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Concentration of soda ash solution = 15.04 %\n", "(b)Weight ratio in which soda ash and commercial phosphoric acid are mixed = 6.11\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.14 pageno : 355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "m = 1000. #kg ( basis - pig iron produced )\n", "\n", "#let x be the iron ore charged and y be the amount of flux added and z be the weight of slag produced\n", "PFepg = 95. #% ( Fe% in product )\n", "PCpg = 4. #%\n", "PSipg = 1. #%\n", "PFech = 85. #% (Fe% in feed )\n", "mcoke = 1000. #kg\n", "PCcoke = 90. #%\n", "PSicoke = 10. #%\n", "PSislag = 60. #%\n", "PSiflux = 5. #%\n", "PCaCO3fx = 90. #%\n", "PMgCO3fx = 5. #%\n", "PCMslag = 40. #% \n", "\n", "# Calculation \n", "#iron balance gives,\n", "x = PFepg * m *159.694 / ( PFech * 111.694) \n", "#silicon balance gives,\n", "#x*(100 - PFech)*28.086/(100*60.086)+mcoke*Psicoke*28.086/(100*60.086)+y*PSiflux*28.086/(100*60.086) = 10 + z*Psislag*28.086 / ( 100*60.086 )\n", "#taking (CaO + MgO) balance\n", "#y * ((PCaCO3fx)*56.88/(100*100.88)+(PMgCO3fx*40.312/(100*84.312))=z*PCMslag/100\n", "#solving above 2 equations , we get\n", "y = 403.31 \n", "\n", "# Result\n", "print \"the amount of flux required to produce 1000kg of pig iron = \",y,\"kg\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the amount of flux required to produce 1000kg of pig iron = 403.31 kg\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.15 pageno : 357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "N = 100. #mol(basis - scrubber)\n", "NNOs = 2.4 #mol\n", "NN2s = 92. #mol\n", "NO2s = 5.6 #mol\n", "PNOs = 20. #% ( Percentage NO leaving scrubber)\n", "\n", "# Calculation \n", "NNOreac = NNOs * 100 / PNOs \n", "#let x mol of nitroge be produced in the reaction, then the amount of N2 present in the air = NN2s - x mol - (1)\n", "#4NH3 + 5O2 = 4NO + 6H2O\n", "#4NH3 + 3O2 = 2N2 + 6H2O\n", "#4moles of NO - 5 moles of O2, 2moles of N2 - 3 moles of O2\n", "#Total oxygen used up, O = NNOreac * 5/4 + x*3/2\n", "#total oxygen supplied, NOtotal= (O) + NO2s\n", "#Nitrogen associated with O2 supplied NN2 = NOtotal*79/21 - (2)\n", "#comparing 1 and 2,\n", "x = 2.1835 \n", "#12moles NO requires 12moles ammonia, 1 mole N2 requires 2 mole ammonia\n", "Nammonia = x*2 + NNOreac \n", "Oreq = Nammonia * 5 / 4 \n", "Osupp = NNOreac * 5/4 + x*3/2 + NO2s \n", "Pexcess = (Osupp - Oreq)*100/Oreq \n", "\n", "# Result\n", "print \"(a)Percentage excess oxygen = %.1f\"%Pexcess,\"%\"\n", "fr = x * 2 / Nammonia \n", "print \"Fraction of ammonia taking part in side reaction = %.3f\"%fr\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Percentage excess oxygen = 16.7 %\n", "Fraction of ammonia taking part in side reaction = 0.267\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.16 pageno : 359" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "m = 100. #kg (basis sodium nitrate reacted)\n", "NNaNO3 = m/85\n", " \n", "# Calculation \n", "#2NaNO3 + H2SO4 = 2HNO3 + Na2SO4\n", "mh2so4 = NNaNO3 * 98.08/2 \n", "mhno3 = NNaNO3*63.008 \n", "mna2so4 = NNaNO3 * 142.064 /2 \n", "Phno3 = 2. #%(percent nitric acid remaining in the cake)\n", "mhno3cake = mhno3 * Phno3 / 100 \n", "Ph2so4 = 35. #%\n", "Pwater = 1.5 #%\n", "mtotal = (mna2so4 + mhno3cake)*100/(100 - Ph2so4 - Pwater) \n", "mwater = Pwater * mtotal / 100 \n", "mh2so4c = Ph2so4 * mtotal / 100 \n", "Pna2so4 = mna2so4 *100/mtotal \n", "Phno3c = mhno3cake * 100 / mtotal \n", "\n", "# Result\n", "print \"(a)Mass of Na2SO4 in the cake = %.3f\"%mna2so4,\"kg\"\n", "print \"Mass of H2SO4 in the cake = %.3f\"%mh2so4c,\"kg\"\n", "print \"Mass of HNO3 in the cake = %.4f\"%mhno3,\"kg\"\n", "print \"Mass of water in the cake = %.3f\"%mwater,\"kg\"\n", "print \"Percentage of Na2SO4 in the cake = %.3f\"%Pna2so4,\"%\"\n", "print \"Percentage of H2SO4 in the cake = %.2f\"%Ph2so4,\"%\"\n", "print \"Percentage of HNO3 in the cake = %.2f\"%Phno3c,\"%\"\n", "print \"Percentage of water in the cake = %.2f\"%Pwater,\"%\"\n", "\n", "mh2so4req = mh2so4 + mh2so4c \n", "P = 95. #% (95% dilute sulphuric acid)\n", "w = mh2so4req * 100 / P \n", "print \"(b)Weight of 95%% sulphuric acid required = %.2f\"%w,\"kg\"\n", "mnitric = mhno3 - mhno3cake \n", "print \"(c)weight of nitric acid product obtained = %.2f\"%mnitric,\"kg\"\n", "mwaterd = w*(1-P/100)-mwater \n", "print \"(d)the water vapour tha tis distilled from the nitre cake = %.3f\"%mwaterd,\"kg\"\n", "\n", "\n", "# Note : The value of HNO3 is taken wrongly in the textbook while calculating mass of HNO3" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Mass of Na2SO4 in the cake = 83.567 kg\n", "Mass of H2SO4 in the cake = 46.878 kg\n", "Mass of HNO3 in the cake = 74.1271 kg\n", "Mass of water in the cake = 2.009 kg\n", "Percentage of Na2SO4 in the cake = 62.393 %\n", "Percentage of H2SO4 in the cake = 35.00 %\n", "Percentage of HNO3 in the cake = 1.11 %\n", "Percentage of water in the cake = 1.50 %\n", "(b)Weight of 95% sulphuric acid required = 110.08 kg\n", "(c)weight of nitric acid product obtained = 72.64 kg\n", "(d)the water vapour tha tis distilled from the nitre cake = 3.495 kg\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.17 pageno : 361" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "m = 50. #kg ( basis - mass of brine charged )\n", "#let x be the amount of NaCl in the brine\n", "Pelect = 50. #% ( electrolyzed )\n", "\n", "#2NaCl + 2H2O = 2NaOH + Cl2 + H2\n", "#amount of NaCl reacted =x*Pelect/(100*58.45)kmol=x*Pelect/100kg ( 1 )\n", "#amount of water reacted = x * Pelect * 18.016 / ( 100 * 58.45 )kg ( 2 )\n", "#Gases produced, Cl2 = x * Pelect / (100 * 58.45 * 2 )kmol = x * Pelect *71/ (100 * 58.45 * 2 )kg ( 3 )\n", "#H2 = x * Pelect / (100 * 58.45 * 2 )kmol = x * Pelect *2.016/ (100 * 58.45 * 2 )kg ( 4 )\n", "Nwater = 0.03 #mol water vapour/mol of gas\n", "\n", "# Calculation \n", "#water vapour present = Nwater * 2*(Cl2 + H2)kmol = Nwater * 2*(Cl2 + H2)*18.016 kg ( 5 )\n", "#NaoH = x * Pelect * 40.008/ (100 * 58.45 )kg ( 6 )\n", "#water = water in brine - water reacted - water present in gas ( 7 )\n", "#= (m - Pelect/100) - water reacted ( 2 ) - water present in the gas( 5 )\n", "#Total weight of solution = NaCl ( 1 ) + NaOH ( 6 ) + Water ( 7 )\n", "#since NaOH is 10 percent of the total weight, we have NaOH = 0.1 * total weight, from these we get, \n", "x = 0.1 * 50 / (0.1* 0.3165 + 0.3422 ) \n", "NaOH = x * Pelect * 40.008/ (100 * 58.45 ) \n", "NaCl = x * Pelect / 100 \n", "water = 34.5032 #kg\n", "Pevap = 50. #NaOh percentage in solution leaving evaporator\n", "\n", "#taking NaOH balance\n", "mevap = NaOH * 100 / Pevap \n", "\n", "# Result\n", "print \"(a)amount of 50%% NaOH solution produced = %.4f\"%mevap,\"kg\"\n", "Cl2 = x * Pelect *71/ (100 * 58.45 * 2 ) #kg\n", "H2 = x * Pelect *2.016/ (100 * 58.45 * 2 ) #kg\n", "print \"(b)Chlorine produced = %.4f\"%Cl2,\"kg\"\n", "print \" Hydrogen produced = %.4f\"%H2,\"kg\"\n", "Pleav = 1.5 #% NaCl leaving the evaporator\n", "NaClleav = mevap * Pleav / 100 \n", "mcrystal = NaCl - NaClleav \n", "print \"(c)Amount of NaCl crystallized = %.4f\"%mcrystal,\"kg/h\"\n", "mwaterleav = mevap - NaOH - NaClleav \n", "Mwaterevap = water - mwaterleav \n", "print \"(d)Weight of water evaporated = %.4f\"%Mwaterevap,\"kg\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)amount of 50% NaOH solution produced = 9.1545 kg\n", "(b)Chlorine produced = 4.0615 kg\n", " Hydrogen produced = 0.1153 kg\n", "(c)Amount of NaCl crystallized = 6.5499 kg/h\n", "(d)Weight of water evaporated = 30.0633 kg\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.18 pageno : 364" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "m = 100. #mol ( basis reactore exit gas )\n", "#CH3OH + O2 = HCOOH + H2O\n", "#CH3OH + O2 / 2 = HCHO + H2O\n", "Nn2 = 64.49 #mol\n", "No2 = 13.88 #mol\n", "Nh2o = 5.31 #mol\n", "Nch3oh = 11.02 #mol\n", "Nhcho = 4.08 #mol\n", "Nhcooh = 1.22 #mol\n", "\n", "# Calculation \n", "#x be the moles of methanol reacted, taking C balance, we get,\n", "x = Nch3oh + Nhcho + Nhcooh \n", "Pconv = Nhcho * 100 / x \n", "\n", "# Result\n", "print \"(a)Percent conversion of formaldehyde = \",Pconv,\"%\"\n", "Nair = Nn2 * 100 / 79. \n", "R = Nair / x \n", "print \"(b)Ratio of air to methanol in the feed = %d\"%R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Percent conversion of formaldehyde = 25.0 %\n", "(b)Ratio of air to methanol in the feed = 5\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.19 pageno : 367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "NA = 100. #mol ( basi - 100 mol A in the fresh feed )\n", "Pconv = 95. #%\n", "\n", "# Calculation \n", "NApro = NA * (100 - Pconv)/100 \n", "\n", "#A = 2B + C \n", "NB = NA * Pconv * 2 / 100 \n", "NC = NA * Pconv/100 \n", "PAent = 0.5 #%\n", "NAent = NApro * 100 / PAent \n", "PBrec = 1. #%\n", "NBent = NB * 100 / (100 - PBrec) \n", "m = (NAent - NApro + NA) \n", "conv = ((NAent - NApro + NA) - NAent)*100/(NAent - NApro + NA) \n", "\n", "# Result\n", "print \"(a)single pass converion = %.2f\"%conv,\"%\"\n", "Nrecycled = (NAent - NApro) + (NBent - NB) \n", "R = Nrecycled/NA \n", "print \"(b)recycle ratio = %.2f\"%R\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)single pass converion = 8.68 %\n", "(b)recycle ratio = 9.97\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.20 pageno : 368" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "m = 100. #kg ( basis - sucrose solution as fresh feed )\n", "\n", "#R - recycle reactor exit, \n", "#let x be the weight fraction of sucrose and y be the weight fracton of inversion sugar in the recycle stream, \n", "#for combined stream fraction of Glucose + fructose = 0.04\n", "#z be the weight fraction of sucrose in the combined stream entering the reactor\n", "Psfeed = 25. #% percent sucrose in fresh feed\n", "\n", "#sucrose balance gives, 25 + R*x = (100+R)* z (A)\n", "#Glucose + fructose balance, R * y = (100 + R )*0.04 (B)\n", "Sucrosecon = 71.7 #% sucrose consumed\n", "\n", "\n", "# Calculation \n", "#sucrose balance around the reactor,(100+R)z=0.717*(100+R)z+(100+R)x (C)\n", "#From (C) , x = 0.283*z (D)\n", "#Amount converted to Glucose + fructose = 0.717 ( 100 + R )* z \n", "# = 0.717 ( 100 + R )* z * 360.192 / 342.176 kg\n", "#Glucose and fructose balance around the reactor,\n", "#(100+R)*0.04 + 0.717(100+R)*z*360.192/342.176 = (100+R)*y (E)\n", "#Solving (E), y = 0.04 + 0.7548*z (F)\n", "#Solving, (A), (B), (C) and (F)\n", "x = 0.06 \n", "y = 0.2 \n", "z = 0.212 \n", "R = 25 \n", "\n", "# Result\n", "print \"(a)Recycle flow = \",R,\"kg\"\n", "print \"(b)Combined concentration of Glucose and Fructose in the recycle stream = \",y*100,\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Recycle flow = 25 kg\n", "(b)Combined concentration of Glucose and Fructose in the recycle stream = 20.0 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.21 pageno : 370" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "N = 1. #mol ( basis - combined feed )\n", "\n", "#F - moles of fresh feed\n", "Pinert = 0.5 #%\n", "Pconv = 60. #%\n", "P1inert = 2. #%\n", "\n", "# Calculation \n", "NA1 = N * ( 1- P1inert/100. ) \n", "NA2 = NA1 * ( 1 - Pconv / 100. ) \n", "NB2 = NA1 - NA2 \n", "N1inert = N * P1inert / 100. \n", "N2inert = N1inert \n", "\n", "#Let R be the moles recycled and P be the moles purged\n", "#W = R + P\n", "W = NA2 + N2inert # (A)\n", "PWinert = N2inert * 100/ ( NA2 + N2inert) \n", "\n", "#component A balance, A fresh feed = A purge stream + A recycle stream\n", "#F * 0.9 = P * 0.9515 + 0.588 (B)\n", "#inert balance at the point where fresh feed is mixed with the recycle,\n", "#F*0.005 + R*0.0485 = 1* 0.02 (C)\n", "#Solving (A),(B) and (C)\n", "F = 0.6552 #mol\n", "P = 0.0671 #mol\n", "R = 0.3448 #mol\n", "\n", "# Result\n", "print \"(a)moles of recycle stream = \",R,\"mol\"\n", "print \"(b)moles of purge stream = \",P,\"mol\"\n", "NAconv = NA1 - NA2 \n", "NAf = F * (1 - Pinert / 100.) \n", "Conv = NAconv *100./ NAf \n", "print \"(c)Overall conversion = %.1f\"%Conv,\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)moles of recycle stream = 0.3448 mol\n", "(b)moles of purge stream = 0.0671 mol\n", "(c)Overall conversion = 90.2 %\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.22 pageno : 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# variables \n", "N = 100. #moles ( Basis - Fresh feed )\n", "Pconv = 20. #%\n", "xco = 0.33 \n", "xh2 = 0.665 \n", "xch4 = 0.005 \n", "\n", "#R - recycle stream, P - purge stream\n", "#x - mole fraction of CO in recycle stream , \n", "xch4r = 0.03\n", "\n", "# Calculation \n", "#CO = x, H2 = 1 - xch4r - CO = 0.97- x \n", "#methane balance over the entire system, \n", "P = xch4 * N / xch4r \n", "#taking caron balance, 33.5 = M + P ( 0.03 + x )\n", "#Hydrogen balance, 66.5 + 2*0.5 = 2M + P(2*0.03 + 0.97 - x) \n", "#substituting P, M + 16.67x = 33.0 and 2M - 16.67x = 50.33\n", "M = (33.0 + 50.33)/3 \n", "x = ((xco + xch4)*N - M ) / P - xch4r \n", "\n", "#methanol balance,(xco*N+Rx) * Poncv/100 = M\n", "R = (M*100 / Pconv - (xco*N))/x \n", "\n", "# Result \n", "print \"(a)moles of recycle stream = %.1f\"%R,\"mol\"\n", "print \"(b)moles of purge stream = %.2f\"%P,\"mol\"\n", "H2 = 1 - xch4r - x \n", "print \"(c)CH4 in purge stream = \",xch4r*100,\"%\"\n", "print \"CO in purge stream = \",x*100,\"%\"\n", "print \"hydrogen in purge stream = \",H2*100,\"%\"\n", "print \"(d)Methanol produced = %.2f\"%M,\"mol\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)moles of recycle stream = 337.9 mol\n", "(b)moles of purge stream = 16.67 mol\n", "(c)CH4 in purge stream = 3.0 %\n", "CO in purge stream = 31.34 %\n", "hydrogen in purge stream = 65.66 %\n", "(d)Methanol produced = 27.78 mol\n" ] } ], "prompt_number": 26 } ], "metadata": {} } ] }