{ "metadata": { "name": "", "signature": "sha256:9125011b4afb20e4bcb070d525e10ee7f4e22999f77038ff5e818f0e6a9e5e7f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9 : Concept of Strain" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1 Page No : 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "length =10 \t\t\t#ft\n", "delta =0.024 \t\t\t#in\n", "\n", "# Calculations\n", "epsilon =delta/(length*12)\n", "\n", "# Results\n", "print \"Axial strain =%.4f in/in\"%(epsilon)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Axial strain =0.0002 in/in\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2 Page No : 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "drop = 5. \t\t\t#in\n", "width = 8. \t\t\t#ft\n", "\n", "# Calculations\n", "deltaMB =math.sqrt((width*12/2)**2 +drop**2) - (width*12/2)\n", "epsilon =deltaMB/(width*12/2)\n", "\n", "# Results\n", "print \"Strain in the wire = %.5f in/in\"%(epsilon)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Strain in the wire = 0.00541 in/in\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 Page no : 198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# variables and Calculations\n", "\n", "E = 30000./0.001\n", "deltaP1 = 66000. # psi\n", "deltault = 116000 # psi\n", "deltarup = 103000 # psi\n", "\n", "Pf = round(deltarup*math.pi/4*0.505**2,-2)\n", "deltarup_ = round(Pf/(math.pi*0.425**2/4),-3)\n", "percent_elongation = (2.375 - 2)/2*100\n", "percent_reduction = ((math.pi*0.505**2/4) - (math.pi*0.425**2/4))/(math.pi*0.505**2/4) * 100\n", "\n", "# Results\n", "print \"E = %.1e psi\"%E\n", "print \"The load of failure Pf = %d lb\"%Pf\n", "print \"Rupture strength : %.d psi\"%deltarup_\n", "print \"Percent elongation = %.1f %%\"%percent_elongation\n", "print \"Percent reduction in area = %.1f %%\"%percent_reduction\n", "\n", "\n", "# note : last answer is wrong in book. please check." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "E = 3.0e+07 psi\n", "The load of failure Pf = 20600 lb\n", "Rupture strength : 145000 psi\n", "Percent elongation = 18.8 %\n", "Percent reduction in area = 29.2 %\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 Page No : 203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "length =15. \t\t\t#in\n", "tension =5000. \t\t\t#lb\n", "UltStress =20000. \t\t\t#psi\n", "delta =0.005 \t\t\t#in\n", "\n", "# Calculations\n", "E =30*10**6 \t\t\t#psi\n", "A1 =tension/UltStress\n", "A2 =tension*length/(delta*E)\n", "if A1 >= A2:\n", " A =A1\n", "else:\n", " A =A2\n", "Dia =math.sqrt(4*A/math.pi)\n", "\n", "# Results\n", "print \"diameter required = %.3f in\"%( Dia)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diameter required = 0.798 in\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5 Page No : 204" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "L1 =5.\n", "L2 =10.\n", "T1 =2.5\n", "T2 =5.\n", "T3 =5.\n", "T4 =5.\n", "T5 =2.5\n", "E =30.*10**6 \t\t\t#psi\n", "outDia =2. \t\t\t#in\n", "\n", "# Calculations # Results\n", "inDia =1./8 \t\t\t#in\n", "RE =(T1+T2+T3+T4+T5)/2 \t\t\t#kips\n", "RA =RE\n", "GH =(RA*L2-T2*L1-T1*L2)/4\n", "print \"Stress in GH =%.1f kips\"%(GH)\n", "A =math.pi*(outDia**2-(outDia-2*inDia)**2)/4\n", "delta =GH*10**3 *(L1*12)/(E*A)\n", "print \" Deformation =%.3f in\"%(delta)\n", "sigma =GH*10**3 /A\n", "print \" Stress =%d psi\"%(round(sigma,-3))\n", "SF =65000/sigma\n", "print \" Factor of safety =%.3f \"%(SF)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stress in GH =12.5 kips\n", " Deformation =0.034 in\n", " Stress =17000 psi\n", " Factor of safety =3.829 \n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6 Page No : 205" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import linalg\n", "\t\t\t\n", "# Variables\n", "Es = 30.*10**6 \t\t\t#psi\n", "As = 1. \t\t\t#in**2\n", "Ea = 10.*10**6 \t\t\t#psi\n", "Aa = 2. \t\t\t#in**2\n", "Ls = 10. \t\t\t#ft\n", "La = 5. \t\t\t#ft\n", "\t\t\t\n", "# Calculations\n", "A =[[(Ls/(Es*As)) ,(-La/(Ea*Aa))],[1 ,1]]\n", "b = [0,1]\n", "c = linalg.solve(A,b)\n", "Fa = c[0]\n", "Fb = c[1]\n", "d = Fb*Ls\n", "\t\t\t\n", "# Results\n", "print 'distance = %.2f ft'%(d)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "distance = 5.71 ft\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7 Page No : 206" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "P =40000. \t\t\t#lb\n", "L =15. \t\t\t#in\n", "delta =0.0032 \t\t\t#in\n", "dia =4. \t\t\t#in\n", "axial =0.0032 \t\t\t#in\n", "lateral =0.00022 \t\t\t#in\n", "\n", "# Calculations # Results\n", "E =P*L/(delta*math.pi*(dia/2)**2)\n", "print \"Modulus of elasticity =%.2f psi\"%(E)\n", "Mu =lateral*L/(axial*dia)\n", "print \"Poisson ratio = %.2f\"%(Mu)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Modulus of elasticity =14920775.91 psi\n", "Poisson ratio = 0.26\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8 Page No : 207" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Variables\n", "alpha =11.2*10**(-6) \t\t\t#in/in/F\n", "E =15*10**6 \t\t\t#psi\n", "L =60. \t\t\t#in\n", "deltaT1 =0.01 \t\t\t#in\n", "T2 =50 \t\t\t#F\n", "\n", "# Calculations # Results\n", "deltaT =deltaT1/(alpha*L)\n", "print \"The temperature increase necessary to cause free end to touch B =%.1f F\"%(deltaT)\n", "sigma =(alpha*L*T2-deltaT1)*E/L\n", "print \"Stress in the rod =%d psi\"%(sigma+1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature increase necessary to cause free end to touch B =14.9 F\n", "Stress in the rod =5900 psi\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "\n", "Example 9.9 Page No : 208" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "weight =25000. \t\t\t#Kg\n", "A =2 \t\t\t #sq.in\n", "alphaS =6.5*10**(-6) \t\t\t#in/in/F\n", "alphaB =11.2*10**(-6) \t\t\t#in/in/F\n", "Es =30*10**6 \t\t\t#psi\n", "Eb =15*10**6 \t\t\t#psi\n", "\n", "# Calculations # Results\n", "deltaT =weight/(Es*A*(alphaB-alphaS))\n", "print \"Net temperature drop =%.1f F\"%(deltaT)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Net temperature drop =88.7 F\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.10 Page No : 209" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "S =5. \t\t\t#in\n", "Al =6. \t\t\t#in\n", "alphaS =6.5*10**(-6) \t\t\t#in/in/F\n", "alphaAl =13.1*10**(-6) \t\t\t#in/in/F\n", "Es =30.*10**6 \t\t\t#psi\n", "EAl =10.*10**6 \t\t\t#psi\n", "As =1. \t\t\t#in**2\n", "AAl =2. \t\t\t#in**2\n", "T =50. \t\t\t#F\n", "dia =1 \t\t\t#in\n", "\n", "# Calculations # Results\n", "P =(alphaS*S*12*T + alphaAl*Al*12*T)/(S*12/(Es*As) + Al*12/(EAl*AAl))\n", "print \"Shearing force = %d lb\"%(round(P,-1))\n", "T =P/(math.pi*(dia/2.)**2)\n", "print \" The shear stress in the pin =%d psi\"%(round(T,-2))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shearing force = 11900 lb\n", " The shear stress in the pin =15200 psi\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.11 Page No : 211" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "edge = 2. \t\t\t#in\n", "height =3. \t\t\t#in\n", "F = 20000. \t\t\t#lb\n", "deltaS = 0.00234 \t\t\t#in\n", "deltaA = 0.00088 \t\t\t#in\n", "\n", "# Calculations # Results\n", "E = F*height/(deltaA*edge*edge)\n", "print \"Modulus of elasticity = %.1e psi\"%(E)\n", "G =F*height/(deltaS*edge*edge)\n", "print \" Modulus of Rigidity = %.1e psi\"%(G)\n", "Mu =E/(2*G) -1\n", "print \" Poisson ratio = %.1f \"%(Mu)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Modulus of elasticity = 1.7e+07 psi\n", " Modulus of Rigidity = 6.4e+06 psi\n", " Poisson ratio = 0.3 \n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }