{ "metadata": { "name": "", "signature": "sha256:c896524cb6d8dfdd75df5649979d411984ee380fa5c3cbff49f27851e63b1fb4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4:Defects in Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1, Page number 4.6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "k = 1.38*10**-23 #Boltzmann constant(eV/K)\n", "e = 1.6*10**-19 #Electronic charge(C)\n", "T1 = 500 #First temperature for metal(K)\n", "T2 = 1000 #Second temperature for metal(K)\n", "Ev = 1 #Average energy required to create a vacancy in metal(eV)\n", "\n", "#Calculations\n", "x = k/e\n", "#n_500 = N*exp(-Ev/T1*k) ---(1)\n", "#n_1000 = N*exp(-Ev/T2*k) ---(2)\n", "#Dividing (1) by (2), we get the following expression\n", "n = math.exp(Ev/(T2*x))\n", "\n", "#Result\n", "print \"Ratio of vacancies=\",round((n/1E+5),3),\"*10^5\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of vacancies= 1.085 *10^5\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2, Page number 4.7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "n1_by_N = 1.*10**-10 #frequency of vacancy sites at 500 C\n", "T1 = 500.+273. #K\n", "T2 = 1000.+273. #K\n", "\n", "#Calculations\n", "x = math.exp((T1/T2)*math.log(n1_by_N))\n", "\n", "#Result\n", "print \"Frequency of vacancy sites at 1000 C =\",round((x/1E-7),4),\"*10^-7\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of vacancy sites at 1000 C = 8.467 *10^-7\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3, Page number 4.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "r = 2.82*10**-10 #interionic distance(m)\n", "n = 5*10**11 #density of Schottky defect(per m^3)\n", "T = 25+273 #temperature(K)\n", "k = 8.625*10**-5 #Boltzmann constant(/K)\n", "\n", "#Calculations\n", "v = (2*r)**3 #volume of one unit cell(m^3)\n", "N = 4/v #density of ion pairs\n", "Es = 2*k*T*2.303*math.log10(N/n)\n", "\n", "#Result\n", "print \"The average energy required for creation of one Schottky defect is\",round(Es,3),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The average energy required for creation of one Schottky defect is 1.971 eV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4, Page number 4.11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "T1 = 20+273 #K\n", "T2 = 300+273 #K\n", "Ef = 1.4 #average energy for creating a Freknel defect(eV)\n", "k = 8.625*10**-5 #Boltzmann constant(J/K)\n", "N = 1 #For simplicity assume total number of metal ions to be unity\n", "Ni = 1 #For simplicity assume total number of metal ions to be unity\n", "\n", "#Calculations\n", "n1 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T1)) \n", "n2 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T2)) \n", "x = n1/n2\n", "\n", "#Result\n", "print \"The ratio of the number of Frenkel defects is\",round((x/1E-6),2),\"*10^-6 or\",round(((1/x)/1E+5),2),\"*10^5\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of the number of Frenkel defects is 1.32 *10^-6 or 7.56 *10^5\n" ] } ], "prompt_number": 27 } ], "metadata": {} } ] }