{ "metadata": { "name": "", "signature": "sha256:425f92ebc94b7b662d737292c7c739a2d9f7bf01d4a0a5239c1380861a6af3a7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6: Electron theory of Metals" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.1, Page number 6.5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "rho_s = 10.5*10**3 #density of silver(kg/m^3)\n", "Na = 6.02*10**26 #Avogadro's number\n", "Ma = 107.9 #atomic weight of silver\n", "sigma = 6.8*10**7 #conductivity(/ohm-m)\n", "e = 1.6*10**-19 #charge of an electron(C)\n", "\n", "#Calculations\n", "n = (rho_s*Na)/Ma\n", "u = sigma/(n*e)\n", "\n", "#Results\n", "print \"Density of electrons =\",round((n/1E+28),2),\"*10^28\"\n", "print \"Mobility of electrons =\",round((u/1E-2),3),\"*10^-2 m^2/V-s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Density of electrons = 5.86 *10^28\n", "Mobility of electrons = 0.725 *10^-2 m^2/V-s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2, Page number 6.6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "den = 8.92*10**3 #density(kg/m^3)\n", "rho = 1.73*10**-8 #resistivity of copper(ohm-m)\n", "Ma = 63.5 #atomic weight\n", "e = 1.6*10**-19 #charge of an electron(C)\n", "Na = 6.02*10**26 #Avogadro's number\n", "m = 9.1*10**-31 #mass of an electron(kg)\n", "\n", "#Calculations\n", "n = (den*Na)/Ma\n", "u = 1/(rho*n*e)\n", "tou = m/(n*e**2*rho)\n", "\n", "#Results\n", "print \"Mobility of electrons =\",round((u/1E-2),3),\"*10^-2 m/V-s\"\n", "print \"Average time of collision of electrons =\",round((tou/1E-14),2),\"*10^-14 s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mobility of electrons = 0.427 *10^-2 m/V-s\n", "Average time of collision of electrons = 2.43 *10^-14 s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3, Page number 6.7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "P = 1.54*10**-8 #resistivity(ohm-m)\n", "n = 5.8*10**28 #no. of electrons per m^3\n", "m = 9.108*10**-31 #mass of an elecron(kg)\n", "e = 1.602*10**-19 #charge of an electron(C)\n", "\n", "#Calculations\n", "tou = m/(n*e**2*P)\n", "\n", "#Result\n", "print \"The relaxation time of conducton of electrons is\",round((tou/1E-14),2),\"*10^-14 s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relaxation time of conducton of electrons is 3.97 *10^-14 s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4, Page number 6.8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Varaible declaration\n", "R = 0.06 #resistance(ohms)\n", "D = 5 #length of wire(m)\n", "I = 15 #current(A)\n", "p = 2.7*10**-8 #resistivity of aluminium(ohm-m)\n", "Ma = 26.98 #atomic weight\n", "Na = 6.025*10**26 #Avogadro's number\n", "rho_s = 2.7*10**3 #sensity(kg/m^3)\n", "\n", "#Calculations\n", "#Since each free atom atom contains 3 electrons, therefore,\n", "n = (3*rho_s*Na)/Ma\n", "\n", "#For mobility\n", "u = 1/(n*e*p)\n", "\n", "#For drift velocity\n", "E = (I*R)/D\n", "vd = u*E\n", "\n", "#Results\n", "print \"Free electron concentration =\",round((n/1E+29),4),\"*10^29 electrons/m^2\"\n", "print \"Mobility of electrons =\",round((u/1E-3),3),\"*10^-3 m/V-s\"\n", "print \"Drift velocity of electrons =\",round((vd/1E-3),3),\"*10^-3 m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Free electron concentration = 1.8088 *10^29 electrons/m^2\n", "Mobility of electrons = 1.278 *10^-3 m/V-s\n", "Drift velocity of electrons = 0.23 *10^-3 m/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5, Page number 6.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "L = 0.1*10**-9 #length of each side of box(m)\n", "h = 6.62*10**-34 #Planck's constant(J-s)\n", "m = 9.1*10**-31 #mass of electron(kg)\n", "#For lowest energy,\n", "nx = 1\n", "ny = 1\n", "nz = 1\n", "\n", "#Calculations\n", "E1 = (((h**2)*(nx**2+ny**2+nz**2))/(8*m*L**2))//(1.6*10**-19)\n", "\n", "#Result\n", "print \"The lowest energy of electron is\",round(E1,2),\"eV\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lowest energy of electron is 112.0 eV\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exmple 6.6, Page number 6.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "'''Fermi equation\n", "F(E) = 1\n", " ---------------\n", " 1+exp((E-Ef)/kT)\n", "Given, E-Ef = kT\n", "therefore,\n", "F(E) = 1\n", " --------\n", " 1+exp(1)\n", "'''\n", "\n", "#Calculation\n", "Fe = 1./(1.+math.exp(1.))\n", "\n", "#Result\n", "print \"F(E) =\",round(Fe,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "F(E) = 0.269\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.7, Page number 6.13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#Variable declaration\n", "Fe = 10./100. #probability\n", "Ef = 5.5 #Fermi energy(eV)\n", "k = 1.38*10**-23\n", " \n", "#Calculations\n", "'''Fermi equation\n", "F(E) = 1\n", " ---------------\n", " 1+exp((E-Ef)/kT)\n", "'''\n", "E = Ef+(Ef/100)\n", "E_Ef = (E - Ef)*1.6*10**-19 #(J)\n", "\n", "#Let x be E-Ef/k\n", "x = E_Ef/k\n", "T = x/math.log(-(1-(1/Fe)))\n", "\n", "#Result\n", "print \"Temperature =\",round(T,2),\"K\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature = 290.22 K\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.8, Page number 6.16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "#Variable declaration\n", "Fe = 1./100. #probability\n", "Ef = 0.5 #Fermi energy(eV)\n", "k = 1.38*10**-23\n", " \n", "#Calculations\n", "'''Fermi equation\n", "F(E) = 1\n", " ---------------\n", " 1+exp((E-Ef)/kT)\n", "'''\n", "\n", "E = Ef+0.5\n", "E_Ef = (E - Ef)*1.6*10**-19 #(J)\n", "\n", "#Let x be E-Ef/k\n", "x = E_Ef/k\n", "T = x/math.log(-(1-(1/Fe)))\n", "\n", "#Result\n", "print \"Temperature =\",round(T),\"K\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature = 1262.0 K\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }