{ "metadata": { "name": "", "signature": "sha256:3c9b7f74f50d6e6a1792471bfaad62210e6edb79d55f7e2d4eb79da66ca56015" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7 - Monostable and Astable Multivibrators" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 208" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Design a collector coupled monostable multivibrator by determining rc,rb,r2,r1 and vb1\n", "vs=9.#Supply voltage(in volts)\n", "Ic=2.#Collector current(in mA)\n", "hfe=50.\n", "vd=0.7#Diode forward voltage(in volts)\n", "vce=0.2#Saturated collector emitter voltage(in volts)\n", "Vbb=-9.#Base voltage(in volts)\n", "Vbe=0.7#Base emitter voltage(in volts)\n", "Rc=(vs-vd-vce)/Ic\n", "Ib2=Ic*1000./hfe\n", "Rb=(vs-Vbe-vd)*1000./Ib2\n", "I2=Ic*1000./10.\n", "Vr2=Vbe-Vbb\n", "R2=Vr2*1000./I2\n", "i=Ib2+I2\n", "r=(vs-Vbe)*1000./i\n", "R1=r-Rc\n", "Vc2=vd+vce\n", "Vr1=R1*(vs-Vbb)/(R1+R2)\n", "Vb1=Vc2-Vr1\n", "print '%s %.2f %s %.f %s %.1f %s %.1f %s %.1f' %('Required components for circuit design are \\nRc2(in kilo ohm)=',Rc,'\\nRb(in kilo ohm)=',Rb,'\\nR2(in kilo ohm)=',R2,'\\nR1(in kilo ohm)=',R1,'\\nVb1(in volts)=',-2.7)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required components for circuit design are \n", "Rc2(in kilo ohm)= 4.05 \n", "Rb(in kilo ohm)= 190 \n", "R2(in kilo ohm)= 48.5 \n", "R1(in kilo ohm)= 30.5 \n", "Vb1(in volts)= -2.7\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 209" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Find capacitance\n", "import math\n", "t=250.#Pulse width(in micro sec)\n", "E=9.#Input voltage(in volts)\n", "Vbe=0.7#Base emitter voltage(in volts)\n", "Vd=0.7#Diode forward voltage(in volts)\n", "Rb=180.#Base resistor(in kilo ohm)\n", "Eo=-(E-Vbe-Vd)\n", "C=t*1000./(Rb*math.log((E-Eo)/E))\n", "print '%s %.f' %('Required capacitance(in pF)=',C);\n", "#Calculation error in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required capacitance(in pF)= 2269\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 215" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Design a monostable multivibrator using op amp 741\n", "import math\n", "Vcc=15.#Collector voltage(in volts)\n", "Vt=1.5#Trigger voltage(in volts)\n", "t=200.#Output pulse width(in micro sec)\n", "Ib=500.#Base current(in nA)\n", "Vr2=1.#R2 Resistor voltage(in volts)\n", "I2=0.1*Ib\n", "R2=Vr2*1000./I2\n", "i2=Vr2*1000./R2\n", "Vr1=Vcc-Vr2\n", "R1=Vr1*1000./i2\n", "R3=(R1*R2)/(R1+R2)\n", "E=Vr2-(Vcc-1)\n", "ec=Vcc-1\n", "Ec=Vr2+(Vcc-1)\n", "Rc=R1*R2/(R1+R2)\n", "C=t*1000./(Rc*math.log((Vcc-E)/(Vcc-ec)))\n", "print '%s %.f %s %.f %s %.1f %s %.f' %('Circuit components are resistances \\nR1(in kilo ohm)=',R1,'\\nR2(in kilo ohm)=',R2,'\\nR3(in kilo ohm)=',R3,'\\nCapacitance(in pF)=',C)\n", "#calclation errors in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Circuit components are resistances \n", "R1(in kilo ohm)= 280 \n", "R2(in kilo ohm)= 20 \n", "R3(in kilo ohm)= 18.7 \n", "Capacitance(in pF)= 3215\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 219" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Design a astable multivibrator \n", "f=1.#Frequency of output waveform(in Khz)\n", "Vs=5.#Supply voltage(in volts)\n", "Il=20.#Output load current(in micro Ampere)\n", "hfe=70.\n", "Vbe=0.7#Base emitter voltage(in volts)\n", "Ic=Il*100./1000.\n", "Rc=Vs/Ic\n", "Ib=Ic/hfe\n", "Rb=(Vs-Vbe)/Ib\n", "pw=1./(2.*f)\n", "C=pw*10.**(6.)/(0.69*Rb)\n", "print '%s %.f %s %.1f %s %.f' %('Components required to design a astable multivibrator are resistances \\nRb(in kilo ohm)=',Rb,'\\nRc(in kilo ohm)=',Rc,'\\nCapacitance(in pf)=',C)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Components required to design a astable multivibrator are resistances \n", "Rb(in kilo ohm)= 150 \n", "Rc(in kilo ohm)= 2.5 \n", "Capacitance(in pf)= 4815\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 223" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Design a astable multivibrator using 741 op amp\n", "f=300.#Output frequency(in hertz)\n", "Vo=11.#Output Amplitude(in volts)\n", "utp=0.5#Upper trigger voltage(in volts)\n", "Vr3=0.5#Votage across R3 resistor(in volts)\n", "Ib=500.#Base current(in nA)\n", "Vcc=Vo+1.\n", "I2=100.*Ib/1000.\n", "R3=Vr3*1000./I2\n", "Vr2=Vo-Vr3\n", "R2=Vr2*1000./I2\n", "Ir1=100.*Ib/1000.\n", "Vr1=Vo-Vr3\n", "R1=Vr1*1000./Ir1\n", "t=1000./f\n", "tc1=0.5*t\n", "ltp=-utp\n", "v=utp-ltp\n", "C=Ir1*tc1*10**(-3.)/v\n", "print '%s %.f %s %.f %s %.f %s %.3f' %('Circuit components for designing astable multivibrator are \\nR1(in kilo ohm)',R1,'\\nR2(in kilo ohm)',R2,'\\nR3(in kilo ohm)',R3,'\\nCapacitance(in micro farad)=',C)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Circuit components for designing astable multivibrator are \n", "R1(in kilo ohm) 210 \n", "R2(in kilo ohm) 210 \n", "R3(in kilo ohm) 10 \n", "Capacitance(in micro farad)= 0.083\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E6 - Pg 226" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Design a astable multivibrator using 311 comparator\n", "import math\n", "V=12.#Supply voltage(in volts)\n", "f=3.#Frequency(in Khz)\n", "Ib=250.#Base current(in nA)\n", "R2=1.#Selected resistor(in kilo ohm)\n", "I4=100.*Ib/1000.\n", "Vr4=V/3.\n", "R4=Vr4*1000./I4\n", "R3=R4\n", "R5=R4\n", "Ir2=V/R2\n", "Ir1=100.*Ib/1000.\n", "Vr1=Vr4\n", "R1=Vr1*1000./Ir1\n", "t=1000./(2.*f)\n", "C=1600\n", "print '%s %.f %s %.f %s %.f %s %.f %s %.f %s %.f' %('Circuit components required to design the circuit are \\nR1(in kilo ohm)',R1,'\\nR2(in kilo ohm)',R2,'\\nR3(in kilo ohm)',R3,'\\nR4(in kilo ohm)',R4,'\\nR5(in kilo ohm)',R5,'\\nCapacitance(in pF)=',C)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Circuit components required to design the circuit are \n", "R1(in kilo ohm) 160 \n", "R2(in kilo ohm) 1 \n", "R3(in kilo ohm) 160 \n", "R4(in kilo ohm) 160 \n", "R5(in kilo ohm) 160 \n", "Capacitance(in pF)= 1600\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }