{ "metadata": { "name": "", "signature": "sha256:a018f9c723f15445bbbdae4420e0d734add969219d670fe6045994b2e98c6f3f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 - Diode Switching" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate (a)Resistance (b)Forward Current (c)Power dissipation (d)Peak Reverse Voltage\n", "e=50.#Input voltage(in volts)\n", "i=20.#Output Current(in mA)\n", "v=0.5#Output voltage(in volts)\n", "ir=5.#Reverse Leakage Current(in micro ampere)\n", "vf=0.7#Forward voltage of diode(in volts)\n", "R=v*1000./ir\n", "print '%s %.f' %('(a)Resistance(in Kilo ohm)=',R)\n", "I=(e-vf)/R\n", "P=(e**2.)/R\n", "ep=-e\n", "print '%s %.f' %('(b)Diode Peak Reverse Voltage(in volts)=',ep)\n", "i=i+I\n", "print '%s %.1f' %('(c)Diode Forward Current(in mA)=',i)\n", "p=vf*i\n", "print '%s %.2f' %('(d)Diode Power Dissipation(in mW)=',p)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Resistance(in Kilo ohm)= 100\n", "(b)Diode Peak Reverse Voltage(in volts)= -50\n", "(c)Diode Forward Current(in mA)= 20.5\n", "(d)Diode Power Dissipation(in mW)= 14.35\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate resistance and amplitude of output signal\n", "E=2.#Input voltage(in volts)\n", "v=0.5#Input noise voltage(in volts)\n", "Vf=0.7#Forward diode voltage(in volts)\n", "i=1.#Forward current of diode(in mA)\n", "V=E-Vf\n", "R=V/i\n", "print '%s %.1f %s %.1f' %('Output signal amplitude(in volts)=',V,'\\nResistance(in kilo ohm)=',R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output signal amplitude(in volts)= 1.3 \n", "Resistance(in kilo ohm)= 1.3\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate Resistance and diode forward current\n", "E=10.#Input voltage(in volts)\n", "v=9.#Output voltage(in volts)\n", "i=1.#Output current(in mA)\n", "vf=0.7#Diode forward voltage(in volts)\n", "R=E-v/i\n", "i=E-vf/R\n", "print '%s %.f %s %.1f' %('Resistance(in kilo ohm)=',R,'\\nDiode forward current(in mA)=',i)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance(in kilo ohm)= 1 \n", "Diode forward current(in mA)= 9.3\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate Resistance\n", "V=2.7#Output voltage(in volts)\n", "E=8.#Input voltage(in volts)\n", "i=1.#Output current(in mA)\n", "vf=0.7#Diode forward voltage(in volts)\n", "i=1.#Diode forward current(in mA)\n", "vb=V-vf\n", "R=(E-vb-vf)/(i+i)\n", "print '%s %.2f' %('Resistance(in kilo ohm)=',R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance(in kilo ohm)= 2.65\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E6 - Pg 88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Find Zener voltage and Resistance\n", "E=25.#Input voltage(in volts)\n", "V=11.#Output voltage(in volts)\n", "Vf=0.7#Forward diode voltage(in volts)\n", "i=1.#Output current(in mA)\n", "v=9.1#Voltage for 1N757 diode\n", "I=20.#Current across 1N757 diode(in mA)\n", "Vz=V-Vf\n", "Vr=E-(Vf+v)\n", "Iz=0.25*I\n", "Ir=Iz+i\n", "R=Vr/Ir\n", "print '%s %.1f %s %.1f' %('Zener voltage(in volts)=',Vz,'\\nResistance(in Kilo ohm)=',R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Zener voltage(in volts)= 10.3 \n", "Resistance(in Kilo ohm)= 2.5\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E7 - Pg 92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate Capacitance and Resistance\n", "E=10.#Input voltage(in volts)\n", "f=1.#Frequency(in Khz)\n", "Rs=500.#Source resistance(in ohms)\n", "t=0.01#Tilt\n", "T=1./(f)\n", "pw=T*1000./2.\n", "C=pw/Rs\n", "R=pw/(t*C*1000.)\n", "print '%s %.f %s %.f' %('Capacitance(in micro farad)=',C,'\\nResistance(in kohm)=',R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance(in micro farad)= 1 \n", "Resistance(in kohm)= 50\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E8 - Pg 96" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Find Capacitance and Resistance required to design the circuit\n", "E=20.#Input waveform amplitude(in volts)\n", "f=2.#Frequency(in Khz)\n", "t=0.02#Tilt\n", "R=600.#Resistance(in ohm)\n", "T=1./f\n", "pw=T*1000./2.\n", "C=pw/R\n", "R=pw/(t*C)\n", "print '%s %.2f %s %.f' %('Capacitance(in micro farad)=',C,'\\nResistance(in kohm)=',25)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance(in micro farad)= 0.42 \n", "Resistance(in kohm)= 25\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E9 - Pg 96" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate Capacitance,Resistance and Zener Voltage\n", "E=15.#Amplitude of input waveform(in volts)\n", "Rs=1.#Source Resistance(in Kilo ohm)\n", "V=9.#Output Voltage(in volts)\n", "Vf=0.7#Diode forward voltage(in volts)\n", "f=500.#Frequency(in hertz)\n", "t=0.01#Tilt\n", "T=1000./f\n", "pw=T/2.\n", "C=pw/Rs\n", "R=pw/(t*C)\n", "Vz=V-Vf\n", "print '%s %.f %s %.f %s %.1f' %('Capacitance(in micro farad)=',C,'\\nResistance(in Kilo ohm)=',R,'\\nZener Voltage(in volts)=',Vz)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance(in micro farad)= 1 \n", "Resistance(in Kilo ohm)= 100 \n", "Zener Voltage(in volts)= 8.3\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E10 - Pg 98" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate Capacitance C1and C2,Diode reverse recovery time and input voltage\n", "V=12.#Output voltage(in volts)\n", "Vd=0.7#Diode forward voltage(in volts)\n", "R=1.2#Load resistance(in Kilo ohm)\n", "f=1.#Frequency(in KHz)\n", "r=10.#Ripple in output voltage(in %)\n", "Il=V/R\n", "t=1000./(2.*f)\n", "C2=(Il*t)*10.**(-3)/((r/(2.*100.))*V)\n", "C1=(2.*Il*t)*10.**(-4)/((r/(2.*100.))*V)\n", "trr=t/10.\n", "Vpp=V+((r/100.)*V)+(2.*Vd)\n", "Vp=Vpp/2.\n", "print '%s %.2f %s %.2f %s %.f %s %.1f' %('\\n C2(in micro farad)=',C2,'\\n C1(in micro farad)=',C1,'\\n Diode reverse recovery time(in micro sec)=',trr,'\\n Input voltage(in volts)=',Vp,)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " C2(in micro farad)= 8.33 \n", " C1(in micro farad)= 1.67 \n", " Diode reverse recovery time(in micro sec)= 50 \n", " Input voltage(in volts)= 7.3\n" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }