{ "metadata": { "name": "", "signature": "sha256:e13354825bf2b4dbe3b80a8d5cababd4cb08909e23bd09123fe19184d491856f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2 - Resistive Capacitive RC Circuits" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate voltage after 8ms\n", "c=1.#Capacitance of capacitor(in micro farad)\n", "vs=6.#Source voltage(in volts)\n", "r=10.#Resistor(in kilo ohm)\n", "vi=-3.#Initial voltage(in volts)\n", "t=8.#Time (in milli sec)\n", "e=vs-((vs-vi)*2.718**(-t/(r*c)))\n", "print '%s %.2f' %('Voltage after 8ms(in volts)=',e)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage after 8ms(in volts)= 1.96\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Determine (a)Ec at 1.5ms (b)Ec at 6ms\n", "r1=1.#Resistor(in kilo ohm)\n", "c1=1.#Capacitance(in micro farad)\n", "e1=10.#Voltage(in volts)\n", "r2=20.#Resistor(in kilo ohm)\n", "c2=0.1#Capacitance(in micro farad)\n", "e2=12.#Voltage(in volts)\n", "t1=r1*c1*0.78\n", "e=e1*1.\n", "ec1=e*t1\n", "t2=r2*c2*0.025\n", "E=e2*1.\n", "ec2=E*t2\n", "print '%s %.1f %s %.1f'%('(a)Ec at 1.5ms(in volts) =',ec1,'\\n(b)Ec at 6ms(in volts) =',ec2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Ec at 1.5ms(in volts) = 7.8 \n", "(b)Ec at 6ms(in volts) = 0.6\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 46" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate Rise time,time for capacitor to charge to required amount and time required for complete charging\n", "V=5.#Voltage source(in volts)\n", "r=39.#Resistor(in kilo ohm)\n", "c=500.#Capacitance of capacitor(in pf)\n", "tr=2.2*r*c*10.**(-3)\n", "t=r*c*10.**(-3)\n", "tc=5*r*c*10.**(-3)\n", "print '%s %.1f %s %.1f %s %.1f' %('Rise time=',tr,'\\ntime for 63.2% charging=',t,'\\nand time required for complete charging(in micro sec)=',tc)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rise time= 42.9 \n", "time for 63.2% charging= 19.5 \n", "and time required for complete charging(in micro sec)= 97.5\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E6 - Pg 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate minimum square wave frequency\n", "C=1.#Coupling capacitor(in micro farad)\n", "R=1.#Input resistance(in Mega ohm)\n", "t=0.01#Tilt\n", "PW=t*R*C\n", "f=1./(2.*PW)\n", "print '%s %.f' %('Frequency required(in hertz)=',f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency required(in hertz)= 50\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E7 - Pg 47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Determine fastest rise time\n", "r=600.#Output resistance(in ohms)\n", "c=30.#Input capacitance(in pf)\n", "tr=2.2*r*c*10.**(-3)\n", "print '%s %.1f' %('Fastest rise time(in ns)=',tr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fastest rise time(in ns)= 39.6\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E8 - Pg 49" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate voltage at 14 ms \n", "Eo=0#Voltage at t=0sec(in volt)\n", "E=20.#Peak voltage(in volts)\n", "r=3.3#Resistance(in kilo ohm)\n", "c=1.#Capacitance(in micro farad)\n", "t1=4.#Time(in ms)\n", "t2=2.#Time(in ms)\n", "e1=E-((E-Eo)*(2.718)**(-t1/(r*c)))\n", "e2=Eo-((Eo-e1)*(2.718)**(-t1/(r*c)))\n", "e3=E-((E-e2)*(2.718)**(-t1/(r*c)))\n", "e3=Eo-((Eo-e3)*(2.718)**(-t2/(r*c)))\n", "print '%s %.2f' %('Voltage at 14ms(in volts)=',e3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage at 14ms(in volts)= 8.34\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E9 - Pg 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Determine max and min voltage at which capacitor voltage will settle\n", "E=20.#Peak voltage(in volts)\n", "t=4.#Time interval(in ms)\n", "r=3.3#Resistance(in kilo ohms)\n", "c=1.#Capacitance(in micro farad)\n", "Emax=E/(1.+(2.718**(-t/(r*c))))\n", "Emin=E-Emax\n", "print '%s %.2f %s %.2f' %('Maximum voltage(in volts)=',Emax, '\\n minimum voltage(in volts)=',Emin)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum voltage(in volts)= 15.41 \n", " minimum voltage(in volts)= 4.59\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E10 - Pg 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate output voltage for (a)10V and 1ms Pw (b)10V and 2ms PW (c)20V and 1ms PW\n", "e1=10.#Voltage applied(in volts)\n", "e0=0#Voltage at t=0sec(in volts)\n", "t1=1.#PW(in ms)\n", "t2=2.#PW(in ms)\n", "e2=20.#Input voltage(in volts)\n", "r=10.#Resistance(in kilo ohm)\n", "c=20.#Capacitance(in micro farad)\n", "eo1=(e1-((e1-e0)*(2.718)**(-t1/(r*c))))*1000\n", "eo2=(e1-((e1-e0)*(2.718)**(-t2/(r*c))))*1000\n", "eo3=(e2-((e2-e0)*(2.718)**(-t1/(r*c))))*1000\n", "print '%s %.f %s %.f %s %.f' %('Output voltage for\\n(a)(in mv)=',eo1,'\\n(b)(in mv)=',eo2,'\\n(c)(in mv)=',eo3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output voltage for\n", "(a)(in mv)= 50 \n", "(b)(in mv)= 99 \n", "(c)(in mv)= 100\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E11 - Pg 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate output voltage for (a)10V and (b)20V\n", "E1=10.#Input voltage(in volts)\n", "E2=20.#Input voltage(in volts)\n", "c=1.#Capacitance(in micro farad)\n", "r=1.#Resistance(in kilo ohm)\n", "t=100.#Pulse width(in ms)\n", "i1=(c*E1*10.**(-6.))/(t*10.**(-3.))\n", "eo1=i1*r*1000.\n", "print '%s %.1f' %('Output voltage for (a)(in volts)=',eo1)\n", "i2=(c*E2*10.**(-6.)/(t*10.**(-3.)))\n", "eo2=i2*r*1000.\n", "print '%s %.1f' %('Output voltage for (b)(in volts)=',eo2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output voltage for (a)(in volts)= 0.1\n", "Output voltage for (b)(in volts)= 0.2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E12 - Pg 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Calculate amplitude of output waveform for (a)Rise time (b)Fall time\n", "r=1.#Resistance(in kilo ohm)\n", "c=100.#Capacitance(in pf)\n", "tr=1.#Rise time(in micro sec)\n", "tf=3.#Fall time(in micro sec)\n", "e1=8.#Change in voltage for rise time(in volts)\n", "e2=-8.#Change in voltage for fall time(in volts)\n", "eo1=r*c*0.001*e1/tr\n", "print '%s %.1f' %('Amplitude of output waveform for (a)Rise time(in volts)=',eo1)\n", "eo2=r*c*0.001*e2/tf\n", "print '%s %.2f' %('Amplitude of output waveform for (b)Fall time(in volts)=',eo2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Amplitude of output waveform for (a)Rise time(in volts)= 0.8\n", "Amplitude of output waveform for (b)Fall time(in volts)= -0.27\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }