{ "metadata": { "name": "", "signature": "sha256:c536e76d90eae6f1eede1cdd9e694d9c8eb0678157f5d1a96e0f9e1b8f802232" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 15 - Sampling, Conversion, Modulation and Multiplexing" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 496" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Determine the errors due to Rs and Rd\n", "#Ex15.1\n", "Vs=1.#Source voltage(in volts)\n", "Rs=100.#Source resistance(in ohm)\n", "Rl=10.#Load resistance(in kilo ohm)\n", "Rd=30.#Drain resistance(in ohm)\n", "Vgs=10.#Gate source voltage(in volts)\n", "V1=-(Vs+Vgs+1.)\n", "Id=Vs/(Rs+Rd+Rl)\n", "e1=(Id*Rs)*100./(Vs)\n", "e2=(Id*Rd)*100./(Vs)\n", "print '%s %.2f' %('Errors due to Rs(in %)=',e1)\n", "print '%s %.2f' %('Errors due to Rd(in %)=',e2)\n", "#Calclation error in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Errors due to Rs(in %)= 71.43\n", "Errors due to Rd(in %)= 21.43\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 501" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Determine capacitance and minimum acquisition time\n", "#Ex15.2\n", "Vs=1.#Supply voltage(in volts)\n", "a=0.25#Accuracy(in %)\n", "t=500.#Holding time(in micro sec)\n", "Ib=500.#Maximum base current(in nA)\n", "Rd=30.#Drain Resistance(in ohm)\n", "v=Vs*0.1/100.\n", "C=Ib*t*10.**(-9.)/v\n", "T=7.*C*Rd\n", "print '%s %.2f' %('Required capacitance(in micro farad)=',C,)\n", "print '%s %.1f' %('Required acquisition time(in micro sec)=',T)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Required capacitance(in micro farad)= 0.25\n", "Required acquisition time(in micro sec)= 52.5\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 502" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Caption:Determine the error due to capacitance\n", "#Ex15.3\n", "Vgs=10.#Gate source voltage(in volts)\n", "C=10.5#Capacitance(in pF)\n", "Vs=1.#Supply voltage(in volts)\n", "C1=0.25#Capacitance(in micro farad)\n", "V1=-(Vs+Vgs+1.)\n", "Vgsm=Vs-(V1)\n", "Q=C*Vgsm\n", "Vo=Q/C1\n", "e=Vo*10.**(-6.)*100./Vs\n", "print '%s %.2f' %('Error due to capacitance(in %)=',e)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Error due to capacitance(in %)= 0.05\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 505" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#caption:Calculate the output voltage\n", "#Ex15.4\n", "Vie=1.#Input voltage for resistor Re(in volts)\n", "Vid=0#Input voltage for resistor Rd(in volts)\n", "Vic=1.#Input voltage for resistor Rc(in volts)\n", "Vib=1.#Input voltag for resistor Rb(in volts)\n", "Via=0#Input voltage for resistor Ra(in volts)\n", "R=16.#Input Resistor(in kilo ohm)\n", "re=1.#Resistor(in kilo ohm)\n", "rd=2.#Resistor(in kilo ohm)\n", "rc=4.#Resistor(in kilo ohm)\n", "rb=8.#Resistor(in kilo ohm)\n", "ra=16.#Resistor(in kilo ohm)\n", "Vo=R*((Vie/re)+(Vid/rd)+(Vic/rc)+(Vib/rb)+(Via/ra))\n", "print '%s %.f' %('Output voltage(in volts)=',Vo)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output voltage(in volts)= 22\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }