{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 12: Lasers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 12.30" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "relative population in laser transition levels is 1.081 *10**30\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=6.626*10**-34; #plancks constant(J s)\n", "c=3*10**8; #velocity of light(m/s)\n", "lamda=6943*10**-10; #wavelength of emission(m)\n", "k=1.38*10**-23; #boltzmann constant\n", "T=300; #temperature(K)\n", "\n", "#Calculation\n", "new=c/lamda; #frequency(Hz)\n", "x=h*new/(k*T);\n", "N1byN2=math.exp(x); #relative population in laser transition levels\n", "\n", "#Result\n", "print \"relative population in laser transition levels is\",round(N1byN2/10**30,3),\"*10**30\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 12.31" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of photons emitted is 7.323 *10**15 photons/second\n", "power density is 2.3 kW/m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=6.626*10**-34; #plancks constant(J s)\n", "P=2.3*10**-3; #output power(W)\n", "t=1; #time(sec)\n", "new=4.74*10**14; #frequency(Hz)\n", "s=1*10**-6; #spot area(m**2)\n", "\n", "#Calculation\n", "n=P*t/(h*new); #number of photons emitted in each second \n", "Pd=P/s; #power density(W/m**2)\n", "\n", "#Result\n", "print \"number of photons emitted is\",round(n/10**15,3),\"*10**15 photons/second\"\n", "print \"power density is\",Pd/10**3,\"kW/m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 12.31" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength of emission is 8628 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h=6.626*10**-34; #plancks constant(J s)\n", "c=3*10**8; #velocity of light(m/s)\n", "Eg=1.44*1.6*10**-19; #band gap(J)\n", "\n", "#Calculation\n", "lamda=h*c/Eg; #wavelength of emission(m)\n", "\n", "#Result\n", "print \"wavelength of emission is\",int(round(lamda*10**10)),\"angstrom\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }