{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 6: Principles of Quantum Mechanics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 6.22" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "deBroglie wavelength is 0.66 angstrom\n", "spacing between planes is 0.35 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "V=344; #voltage(V)\n", "theta=40; #angle(degrees)\n", "n=1; \n", "\n", "#Calculation\n", "lamda=12.26/math.sqrt(V); #deBroglie wavelength(angstrom)\n", "theta=((180-theta)/2)*math.pi/180; #angle(radian)\n", "d=n*lamda/(2*math.sin(theta)); #spacing between planes(angstrom)\n", "\n", "#Result\n", "print \"deBroglie wavelength is\",round(lamda,2),\"angstrom\"\n", "print \"spacing between planes is\",round(d,2),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 6.22" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "deBroglie wavelength is 0.00286 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "m=1.675*10**-27; #mass(kg)\n", "E=10*10**3*e; #kinetic energy(J)\n", "h=6.625*10**-34; #planks constant(Js)\n", "\n", "#Calculation\n", "v=math.sqrt(2*E/m); #velocity(m/sec)\n", "lamda=h*10**10/(m*v); #deBroglie wavelength(angstrom)\n", "\n", "#Result\n", "print \"deBroglie wavelength is\",round(lamda,5),\"angstrom\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 6.22" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy difference is 1.81 *10**-37 J\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m=9.1*10**-31; #mass(kg)\n", "h=6.63*10**-34; #planks constant(Js)\n", "a=1; #length(m)\n", "nx1=1;\n", "ny1=1;\n", "nz1=1;\n", "nx2=1;\n", "ny2=1;\n", "nz2=2;\n", "\n", "#Calculation\n", "E1=h**2*(nx1**2+ny1**2+nz1**2)/(8*m*a**2); #energy of 1st quantum state(J)\n", "E2=h**2*(nx2**2+ny2**2+nz2**2)/(8*m*a**2); #energy of 2nd quantum state(J)\n", "E=E2-E1; #energy difference(J)\n", "\n", "#Result\n", "print \"energy difference is\",round(E*10**37,2),\"*10**-37 J\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 4, Page number 6.23" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "uncertainity in position of electron is 0.002 m\n", "uncertainity in position of bullet is 0.4 *10**-31 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m1=9.1*10**-31; #mass(kg)\n", "m2=0.05; #mass(kg)\n", "v=300; #velocity(m/sec)\n", "p=0.01/100; #probability\n", "h=6.6*10**-34; #planks constant(Js)\n", "\n", "#Calculation\n", "p1=m1*v; #momentum of electron(kg m/s)\n", "deltap1=p*p1; \n", "deltax1=h/(deltap1*4*math.pi); #uncertainity in position of electron(m)\n", "p2=m2*v; #momentum of bullet(kg m/s)\n", "deltap2=p*p2; \n", "deltax2=h/(deltap2*4*math.pi); #uncertainity in position of bullet(m)\n", "\n", "#Result\n", "print \"uncertainity in position of electron is\",round(deltax1,3),\"m\"\n", "print \"uncertainity in position of bullet is\",round(deltax2*10**31,1),\"*10**-31 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 5, Page number 6.24" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "probability of finding the particle is 0.2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "deltax=10**-10; #uncertainity in position(m)\n", "L=10*10**-10; #width(m)\n", "\n", "#Calculation\n", "p=2*deltax/L; #probability of finding the particle\n", "\n", "#Result\n", "print \"probability of finding the particle is\",p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 6, Page number 6.24" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "deBroglie wavelength is 2.73 *10**-11 m\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "m=9.1*10**-31; #mass(kg)\n", "E=2*10**3*e; #kinetic energy(J)\n", "h=6.6*10**-34; #planks constant(Js)\n", "\n", "#Calculation\n", "p=math.sqrt(2*E*m); #momentum(kg m/s)\n", "lamda=h/p; #deBroglie wavelength(m)\n", "\n", "#Result\n", "print \"deBroglie wavelength is\",round(lamda*10**11,2),\"*10**-11 m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 7, Page number 6.24" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "deBroglie wavelength is 1.807 angstrom\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.602*10**-19; #charge(coulomb)\n", "m=1.676*10**-27; #mass(kg)\n", "h=6.62*10**-34; #planks constant(Js)\n", "E=0.025*e; #kinetic energy(J)\n", "\n", "#Calculation\n", "mv=math.sqrt(2*E*m); #velocity(m/s)\n", "lamda=h*10**10/mv; #deBroglie wavelength(angstrom)\n", "\n", "#Result\n", "print \"deBroglie wavelength is\",round(lamda,3),\"angstrom\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }