{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 4: Defects in Crystals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 1, Page number 4.14" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "equilibrium concentration of vacancy at 300K is 7.577 *10**5\n", "equilibrium concentration of vacancy at 900K is 6.502 *10**19\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N=6.023*10**26; #avagadro number\n", "T1=1/float('inf'); #temperature 0K(K)\n", "T2=300;\n", "T3=900; #temperature(K)\n", "k=1.38*10**-23; #boltzmann constant \n", "deltaHv=120*10**3*10**3/N; #enthalpy(J/vacancy)\n", "\n", "#Calculation\n", "#n1=N*math.exp(-deltaHv/(k*T1)); #equilibrium concentration of vacancy at 0K\n", "#value of n1 cant be calculated in python, as the denominator is 0 and it shows float division error\n", "n2=N*math.exp(-deltaHv/(k*T2)); #equilibrium concentration of vacancy at 300K \n", "n3=N*math.exp(-deltaHv/(k*T3)); #equilibrium concentration of vacancy at 900K \n", "\n", "#Result\n", "#print \"equilibrium concentration of vacancy at 0K is\",n1\n", "print \"equilibrium concentration of vacancy at 300K is\",round(n2/10**5,3),\"*10**5\"\n", "print \"equilibrium concentration of vacancy at 900K is\",round(n3/10**19,3),\"*10**19\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 2, Page number 4.15" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fraction of vacancies at 1000 is 8.5 *10**-7\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "nbyN1=1*10**-10; #fraction of vacancies\n", "T1=500+273;\n", "T2=1000+273;\n", "\n", "#Calculation\n", "lnx=T1*math.log(nbyN1)/T2;\n", "x=math.exp(lnx); #fraction of vacancies at 1000\n", "\n", "#Result\n", "print \"fraction of vacancies at 1000 is\",round(x*10**7,1),\"*10**-7\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 3, Page number 4.16" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "concentration of schottky defects is 6.42 *10**11 per m**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "d=2.82*10**-10; #interionic distance(m)\n", "T=300; #temperature(K)\n", "k=1.38*10**-23; #boltzmann constant \n", "e=1.6*10**-19; #charge(coulomb)\n", "n=4; #number of molecules\n", "deltaHs=1.971*e; #enthalpy(J)\n", "\n", "#Calculation\n", "V=(2*d)**3; #volume of unit cell(m**3)\n", "N=n/V; #number of ion pairs\n", "x=deltaHs/(2*k*T);\n", "n=N*math.exp(-x); #concentration of schottky defects(per m**3)\n", "\n", "#Result\n", "print \"concentration of schottky defects is\",round(n*10**-11,2),\"*10**11 per m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example number 4, Page number 4.17" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "concentration of schottky defects is 9.23 *10**12 per cm**3\n", "amount of climb down by the dislocations is 0.1846 step or 0.3692 *10**-8 cm\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "N=6.026*10**23; #avagadro number \n", "T=500; #temperature(K)\n", "k=1.38*10**-23; #boltzmann constant \n", "deltaHv=1.6*10**-19; #charge(coulomb)\n", "V=5.55; #molar volume(cm**3)\n", "nv=5*10**7*10**6; #number of vacancies\n", "\n", "#Calculation\n", "n=N*math.exp(-deltaHv/(k*T))/V; #concentration of schottky defects(per m**3)\n", "x=round(n/nv,4); #amount of climb down by the dislocations(step)\n", "xcm=2*x*10**-8; #amount of climb down by the dislocations(cm)\n", "\n", "#Result\n", "print \"concentration of schottky defects is\",round(n/10**12,2),\"*10**12 per cm**3\"\n", "print \"amount of climb down by the dislocations is\",x,\"step or\",xcm*10**8,\"*10**-8 cm\" " ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }