{ "metadata": { "name": "", "signature": "sha256:b4117c20c65c9d0e0ed117019f9f9b853eec6f9bf1a68fc9915ad4bb5eef3755" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Superconductivity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1,Page number 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "\n", "H_c0 = 0.0803; # Critical field at absolute zero, Tesla\n", "T_c = 7.19; # Transition temperature of specimen lead, Kelvin\n", "T = 5.0; # Temperature at which destruction of superconductivity is to be found, Kelvin\n", "H_c = H_c0*(1.0-(T/T_c)**2); # Critical field required to destroy superconductivity, Tesla\n", "print\"Critical field required to destroy superconductivity = \",round(H_c,4),\"T\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical field required to destroy superconductivity = 0.0415 T\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2,Page number 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "H0 = 1970.0; # Critical field at absolute zero, Oe\n", "T_c = 9.25; # Transition temperature of specimen Nb, Kelvin\n", "T = 4.0; # Temperature at which destruction of superconductivity is to be found, Kelvin\n", "H_c = H0*(1.0-(T/T_c)**2); # Limiting magnetic field, Oe\n", "print\"Limiting magnetic field of Nb to serve as superconductor = \",round(H_c),\"Oe\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Limiting magnetic field of Nb to serve as superconductor = 1602.0 Oe\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3,Page number 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "\n", "T_1 = 14.0; # Temperature, K\n", "T_2 = 13.0; # Temperature, K\n", "H_c1 = 1.4*10**5; # Critical field at T_1, K\n", "H_c2 = 4.2*10**5; # Critical field at T_2, K#As H_c1/H_c2 = (T_c**2-T_1**2)/(T_c**2-T_2**2), solving for T_c\n", "T_c = sqrt((H_c2/H_c1*T_1**2 - T_2**2)/2); # The superconducting transition temperature of a specimen, K\n", "print\"Transition temperature of a specimen = \",round(T_c,4),\"K\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transition temperature of a specimen = 14.4741 K\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4,Page number 280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, J/eV\n", "E_g = 3.4*10**-4; # Energy gap of aluminium, eV\n", "v_F = 2.02*10**8; # Fermi velocity of aluminium, cm/sec\n", "h_bar = 1.05*10**-34; # Planck's constant\n", "L = h_bar*v_F/(2*E_g*e); # Coherence Length of aluminium, cm\n", "\n", "print\"The coherence length of aluminium = \",\"{0:.3e}\".format(L),\"cm\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The coherence length of aluminium = 1.949e-04 cm\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6,Page number 284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "h = 6.6*10**-34; # Planck's constant, Js\n", "e = 1.6*10**-19; # Energy eqivalent of 1 eV, eV/J\n", "k = 0.86*10**-4; # Boltzmann constant, eV/K\n", "T_c = 0.56; # Critical temperature for superconducting Zr, K\n", "E_g = 3.52*k*T_c; # Energy gap of aluminium, J\n", "c = 3*10**8; # Speed of light, m/s\n", "lamda = h*c/(E_g*e); # Wavelength of photon required to break a Cooper pair, m\n", "\n", "print\"The wavelength of photon required to break a Cooper pair = \",\"{0:.3e}\".format(lamda),\"m\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of photon required to break a Cooper pair = 7.300e-03 m\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7,Page number 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "\n", "Lamda_0 = 390.0; # Penetration depth at absolute zero, angstorm\n", "T_c = 7.0; # Transition temperature of Pb, K\n", "T = 2.0; # Givn temperature, K\n", "Lamda = Lamda_0*(1.0-(T/T_c)**2)**(-1.0/2); # London penetration depth in Pb at 2K, angstorm \n", "print\"The London penetration depth in Pb at 2K = \",round(Lamda,4),\"angstorm\";\n", "print\"The London penetration depth at T = T_c becomes Inf\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The London penetration depth in Pb at 2K = 406.9644 angstorm\n", "The London penetration depth at T = T_c becomes Inf\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8,Page number 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given data\n", "\n", "M = (199.5, 200.7, 202.0, 203.3); # Isotopic mass of Hg, amu\n", "T_c = (4.185, 4.173, 4.159, 4.146); # Critical temperature of Hg, kelvin\n", "alpha = 0.5; # Trial value of Isotopic exponent\n", "# Accroding to isotopic effect, T_c = K*M**(-alpha), solving for K\n", "K = T_c[1]/M[1]**(-alpha); # Isoptopic coefficent \n", "Tc = zeros(3); \n", "for i in xrange(len(Tc)):\n", " Tc[i] = K*M[i+1]**(-alpha)\n", " print\"Tc[\",i,\"] = \",round(Tc[i],4);\n", "if T_c[1]-Tc[0]<0.001 and T_c[2]-Tc[1]<0.001 and T_c[3]-Tc[2]<0.001 :\n", " print\"The isotopic exponent in Isotopic effect of Hg =\",alpha;\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tc[ 0 ] = 4.173\n", "Tc[ 1 ] = 4.1596\n", "Tc[ 2 ] = 4.1462\n", "The isotopic exponent in Isotopic effect of Hg = 0.5\n" ] } ], "prompt_number": 78 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9,Page number 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#GIven Data\n", "M_1 = 202.0; # Mass of first isotope of mercury, amu\n", "M_2 = 199.0; # Mass of second isotope of mercury, amu\n", "T_c1 = 4.153; # Transition temperature of first isotope of mercury, K \n", "#As T_c1/T_c2 = (M_2/M_1)**1/2, solving for T_c2\n", "T_c2 = sqrt(M_1/M_2)*T_c1; \n", "print\"The transition temperature of isotope of Hg whose mass number is \",M_2,\"=\",round(T_c2,4),\"K\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The transition temperature of isotope of Hg whose mass number is 199.0 = 4.1842 K\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.10,Page number 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "\n", "alpha = 0.5; # Isotopic exponent of Osmium\n", "T_c = 0.655; # Transition temperature of Osmium, K \n", "M = 190.2; # Mass of Osmium, amu\n", "K = T_c*M**alpha; # K is the constant of proportionality\n", "\n", "print\"The value of constant of proportionality =\",round(K,4);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of constant of proportionality = 9.0333\n" ] } ], "prompt_number": 48 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.11,Page number 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "k = 1.38*10**-23; # Boltzmann constant, J/mol/K\n", "e = 1.6*10**-19; # Energy equivalent of 1 eV, eV/J\n", "Theta_D = 96; # Debye temperature, kelvin\n", "N0 = 0.3678; # Density of states at Fermi energy\n", "V = 1.0; # Volume of the material, metre cube\n", "T_c = 1.14*Theta_D*exp(-1.0/(N0*V)); # Critical temperature of the material, K\n", "Delta_0 = k*Theta_D/sinh(1.0/(N0*V)); # Energy gap at absolute zero, J\n", "print\"The transition temperature of a material = \",round(T_c,3),\"K\";\n", "print\"The energy gap of a material = \",\"{0:.3e}\".format(Delta_0/e),\"eV\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The transition temperature of a material = 7.217 K\n", "The energy gap of a material = 1.097e-03 eV\n" ] } ], "prompt_number": 52 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.12,Page number 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "Theta_D = 350.0; # Debye temperature, kelvin\n", "Lamda = 0.828; # Electron-phonon coupling constant\n", "mu_prime = 0.1373; # Reduced mass of a superconductor, amu\n", "T_c = Theta_D/1.45*exp(-1.04*(1+Lamda)/(Lamda-mu_prime*(1+0.62*Lamda)); #Transition temperature of superconductor using McMillan formula,K\n", "\n", "print\"The transition temperature of the superconductor using McMillan formula = \",round(T_c,3),\"K\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The transition temperature of the superconductor using McMillan formula = 11.258 K\n" ] } ], "prompt_number": 55 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.13,Page number 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "Theta_D = 350; # Debye temperature, kelvin\n", "Lamda = 0.641; # Electron-phonon coupling constant\n", "mu_prime = 0.143; # Reduced mass of a superconductor, amu\n", "T_c = Theta_D/1.45*exp(-1.04*(1+Lamda)/(Lamda-mu_prime*(1+0.62*Lamda)));#Transition temperature of superconductor using McMillan formula,K\n", "\n", "print\"The superconducting transition temperature of a superconductor using McMillan formula = \",round(T_c,4),\"K\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The superconducting transition temperature of a superconductor using McMillan formula = 5.0426 K\n" ] } ], "prompt_number": 58 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.15,Page number 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "Theta_D = 490; # Debye temperature, Kelvin\n", "Lamda = 0.8; # wavelength of a superconductor, angstorm\n", "mu_prime = 0.13; # Reduced mass of a superconductor, amu\n", "T_c = Theta_D/1.45*exp(-1.04*(1+Lamda)/(Lamda-mu_prime*(1+0.62*Lamda)));\n", "print\"The superconducting transition temperature of a borocarbide superconductor =\",round(T_c,4),\"K\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The superconducting transition temperature of a borocarbide superconductor = 15.3526 K\n" ] } ], "prompt_number": 60 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.16,Page number 314" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "T_c = 16.5; # Transition temperature of a superconductor, K\n", "Lamda = [0.7, 0.8, 0.9, 1.0] # Electron-phonon coupling constants at different Tc values \n", "Theta_D = 503.0; # Debye temperature, kelvin\n", "mu_prime = 0.13; # Reduced mass of a superconductor, amu\n", "Tc = [0.0, 0.0, 0.0, 0.0];\n", "print\"_____________________\";\n", "print\"Lamda Tc\";\n", "print\"_____________________\";\n", "for i in xrange(len(Lamda)):\n", " Tc[i] = Theta_D/1.45*exp(-1.04*(1+Lamda[i])/(Lamda[i]-mu_prime*(1+0.62*Lamda[i]))); \n", " if abs(Tc[i] - 16.5) < 1.0 :\n", " best_Lvalue = Lamda[i];\n", " print\"\",Lamda[i],\" \",round(Tc[i],3),\"K\";\n", "print\"_____________________\";\n", "print\"The best electron-phonon coupling constant should be slightly above \", best_Lvalue;\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "_____________________\n", "Lamda Tc\n", "_____________________\n", " 0.7 11.095 K\n", " 0.8 15.76 K\n", " 0.9 20.407 K\n", " 1.0 24.881 K\n", "_____________________\n", "The best electron-phonon coupling constant should be slightly above 0.8\n" ] } ], "prompt_number": 81 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.17,Page number 317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Given Data\n", "T_c = 39.4; # Transition temperature of a superconductor, K\n", "Lamda = 1; # Electron-phonon coupling constant for a superconductor\n", "mu_prime= 0.15; # Reduced mass of a superconductor, amu\n", "# As T_c = Theta_D/1.45*exp(-1.04*(1+Lamda)/(Lamda-mu_prime*(1+0.62*Lamda))), solving for Theta_D\n", "Theta_D = T_c*1.45*exp(1.04*(1+Lamda)/(Lamda-mu_prime*(1+0.62*Lamda)));\n", "\n", "print\"The Debye temperature of a BCS superconductor = \",round(Theta_D,3),\"K\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Debye temperature of a BCS superconductor = 891.6 K\n" ] } ], "prompt_number": 62 } ], "metadata": {} } ] }