{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6 : Field Effect Transistors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.1, Page No. 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# drain resistance transconductance and amplification factor\n", "\n", "import math\n", "from array import array\n", "#Variable declaration\n", "Vgs=array('d', [0.0, 0.0, 0.3]) #in V\n", "Vds=array('d',[5.0, 10.0, 10.0]) #in V\n", "Id=array('d',[8.0, 8.2, 7.6]) #in mA\n", "\n", "#Calcualtions\n", "dVds=Vds[1]-Vds[0] #in V\n", "dId=Id[1]-Id[0] #in mA\n", "rd=(dVds/dId) #in kilo-ohm\n", "dVgs=Vgs[2]-Vgs[1] #in V\n", "dId1=Id[1]-Id[2] #in mA\n", "gm=dId1/dVgs #in mA/volt\n", "mu=gm*rd #A/V\n", "\n", "#Result\n", "print(\"(i) A.C. Drain resistance is ,(kilo-ohm)= %.f\"%rd)\n", "print(\"(ii) Transconductance is ,(mS) = %.f\"%gm)\n", "print(\"(iii) Amplification factor is , = %.f\"%mu)\n", "#Transconductance and Amplification factor are calculated wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) A.C. Drain resistance is ,(kilo-ohm)= 25\n", "(ii) Transconductance is ,(mS) = 2\n", "(iii) Amplification factor is , = 50\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2, Page No. 184" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# mutual conductance\n", "\n", "import math\n", "#Variable declaration\n", "I1=1.0 # in mA\n", "I2=1.2 # in mA\n", "V1=-3.0 # in V\n", "V2=-2.9 # in V\n", "\n", "#Calculations\n", "del_ID=(I2-I1)\n", "del_VGS=V2-V1 # in V\n", "gm=del_ID/del_VGS\n", "\n", "#Result\n", "print(\"mutual conductance,gm(mS) = %.f\"%gm)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mutual conductance,gm(mS) = 2\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3, Page No. 185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# pinch off voltage\n", "\n", "import math\n", "#Variable declaration\n", "a=5.6*10**-6/2 # channel width in m\n", "epsilon0=8.86*10**-12 # in F/m\n", "epsilon=12*epsilon0 # in F/m\n", "Nd=10**21 # in m^-3\n", "e=1.6*10**-19 # in V\n", "\n", "#Calculations\n", "Vp=e*Nd*a**2/(2*epsilon);\n", "\n", "#Result\n", "print(\"Pinch off voltage,Vp(V) = %.1f\"%Vp)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pinch off voltage,Vp(V) = 5.9\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4, Page No. 185" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# ID gm and gmo\n", "\n", "import math\n", "#Variable declaration\n", "I_DES=8.7 # in mA\n", "V1=-3.0 # in V\n", "V_GS=-1.0 # in V\n", "\n", "\n", "#Calculations\n", "gmo=-(2*I_DES/V1)\n", "ID=I_DES*(1-(V_GS/V1))**2\n", "gm=gmo*(1-(V_GS/V1));\n", "\n", "#Result\n", "print(\"(i). ID(mA) = %.3f\"%(math.floor(ID*1000)/1000))\n", "print(\"(ii). gmo(mS) = %.1f\"%gmo)\n", "print(\"(iii).gm(mA) = %.3f\"%(math.floor(gm*1000)/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i). ID(mA) = 3.866\n", "(ii). gmo(mS) = 5.8\n", "(iii).gm(mA) = 3.866\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5, Page No. 186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Vgs\n", "\n", "import math\n", "#Variable declaration\n", "ID=3.0 # in mA\n", "I_DSS=9.0 # in mA\n", "Vp=-4.5 # in V\n", "\n", "#Calculations\n", "Vgs=-Vp*(math.sqrt(ID/I_DSS)-1)\n", "\n", "\n", "#Result\n", "print(\"Vgs(V) = %.1f\"%Vgs)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vgs(V) = -1.9\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.6, Page No. 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# voltage amplification\n", "\n", "import math\n", "#Variable declaration\n", "gm=3 #Transconductance in mS\n", "rl=10 #load resistance in kilo-ohm\n", "\n", "#Calculations\n", "av=gm*rl\n", "#Result\n", "print(\"the voltage aplification is ,= %.f\"%av)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the voltage aplification is ,= 30\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.7, Page No. 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# output voltage\n", "\n", "import math\n", "#Variable declaration\n", "Rl=20.0 #in kilo-ohm\n", "Rs=1.0 #in kilo-ohm\n", "Rg=1.0 #in M-ohm\n", "Cs=25.0 #in micro-F\n", "mu=20.0 #amplification factor\n", "rd=100.0 #in kilo-ohm\n", "vi=2.0 #in V\n", "f=1.0 #in kilo-Hz\n", "\n", "#Calculations\n", "Xc=((1/(2*math.pi*f*10**3*Cs*10**-6)))\n", "A=((mu*Rl*10**3)/((rd+Rl)*10**3))\n", "Vo=A*vi\n", "\n", "#Result\n", "print(\"amplifier output signal voltage is ,(V)= %.2f\"%(math.floor(Vo*100)/100))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "amplifier output signal voltage is ,(V)= 6.66\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }