{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1 : Introduction to Solid State Electronics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1, Page No. 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# ne in the doped silicon\n", "\n", "import math\n", "#Variable declaration\n", "ni=1.5*10**16 # in m^-3\n", "nh=4.5*10**22 # in m^-3\n", "\n", "#Calculations\n", "ne=ni**2/nh\n", "\n", "#Result\n", "print(\" ne in the doped silicon is,(m^-3) = %.f * 10^9\"%(ne/10**9))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " ne in the doped silicon is,(m^-3) = 5 * 10^9\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2, Page No. 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# resistivity\n", "\n", "import math\n", "#Variable declaration\n", "\n", "ne=8.0*10**19 # in m^-3\n", "nh=5.0*10**18 # in m^-3\n", "mu_e=2.3 # in m^2/V-s\n", "mu_h=.01 # in m^2/V-s\n", "e=1.6*10**-19 # in V\n", "\n", "#Calculations\n", "p=1/(e*((ne*mu_e)+(nh*mu_h)));\n", "\n", "#Result\n", "print(\"(b) the resistivity,p(ohm-m)= %.1f * 10^-2\"%(p*10**2))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(b) the resistivity,p(ohm-m)= 3.4 * 10^-2\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3, Page No. 17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Density\n", "\n", "import math\n", "#Variable declaration\n", "\n", "sigma=500.0 # in ohm^-1 m^-1\n", "mu_e=0.39 # m^2/V-s\n", "e=1.6*10**-19 # in V\n", "\n", "#Calculations\n", "ne=sigma/(e*mu_e);\n", "\n", "#Result\n", "print(\"number density of donor,ne(m^-3) = %.2f * 10^21\"%(ne*10**-21))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "number density of donor,ne(m^-3) = 8.01 * 10^21\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4, Page No. 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Density\n", "\n", "import math\n", "#Variable declaration\n", "\n", "e=1.6*10**-19 # in V\n", "Pp=10**-2 # p-type silicon in ohm-m\n", "Pn=10**-2 # n-type silicon in ohm-m\n", "mu_p=0.048 # holes mobilities in m^2/V-s\n", "mu_n=0.135 # electrons mobilities in m^2/V-s\n", "\n", "#Calculations\n", "Na=1/(e*mu_p*Pp);\n", "Nd=1/(e*mu_n*Pn);\n", "\n", "#Result\n", "print(\"(i). the density of impurity,Na (m^-3) = %.1f * 10^22\"%(Na*10**-22))\n", "print(\"(ii). the density of impurity,Nd (m^-3) = %.2f * 10^21\"%(Nd*10**-21))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i). the density of impurity,Na (m^-3) = 1.3 * 10^22\n", "(ii). the density of impurity,Nd (m^-3) = 4.63 * 10^21\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5, Page No. 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Resistivity\n", "\n", "import math\n", "#Variable declaration\n", "e=1.6*10**-19 # in V\n", "n=2.5*10**19 # m^3\n", "p=n\n", "ni=n\n", "mu_p=0.17 # holes mobilities in m^2/V-s\n", "mu_n=0.36 # electrons mobilities in m^2/V-s\n", "\n", "#Calculations\n", "sgint=e*(ni*(mu_p+mu_n)) #electrical conductivity in mho/metre\n", "pint=1/sgint #resistivity in ohm-meter\n", "print(\"electrical conductivity is ,(mho/metre)= %.2f\"%sgint)\n", "print(\"resistivity is ,(ohm-metre)= %.2f\"%pint)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "electrical conductivity is ,(mho/metre)= 2.12\n", "resistivity is ,(ohm-metre)= 0.47\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6, Page No. 18" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Conductivity\n", "\n", "import math\n", "#Variable declaration\n", "\n", "e=1.6*10**-19 # in V\n", "ni=1.5*10**16 # in m^3\n", "mu_p=0.13 # holes mobilities in m^2/V-s\n", "mu_n=0.05 # electrons mobilities in m^2/V-s\n", "siat=10.0**8 # number of silicon atoms\n", "ta=5.0*10**28 # silicon atoms in atoms/m^3\n", "mu_n2=0.13 # electrons mobilities in m^2/V-s\n", "siat2=10.0**8 # number of silicon atoms\n", "ta2=5.0*10**28 # silicon atoms in atoms/m^3\n", "mu_p2=0.05 # holes mobilities in m^2/V-s\n", "\n", "#Calculations\n", "sgint=e*(ni*(mu_p+mu_n)) # electrical conductivity in mho/m\n", "Nd=ta/siat # in atoms/m^3\n", "p= ni**2/Nd # holes concentration in holes/m^3\n", "n=Nd\n", "sntype=e*n*mu_n2 # in mho/m\n", "Na=ta2/siat2 # in atoms/m^3\n", "n= ni**2/Na # holes concentration in holes/m^3\n", "sptype=e*Na*mu_p2 # in mho/m\n", "\n", "#Calculations\n", "print(\"(i) electrical conductivity is ,(mhos/m) = %.2f * 10^-4\"%(sgint*10**4))\n", "print(\"(ii) holes concentration is, (holes/m^3) = %.1f *10^11\"%(p*10**-11))\n", "print(\"(ii) conductivity is ,(mho/m) = %.1f\"%sntype)\n", "print(\"(iii) electron concentration is, (holes/m^3)= %.1f * 10^11\"%(n/10**11))\n", "print(\"(iii) conductivity is ,(mho/m) = %.1f\"%sptype)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) electrical conductivity is ,(mhos/m) = 4.32 * 10^-4\n", "(ii) holes concentration is, (holes/m^3) = 4.5 *10^11\n", "(ii) conductivity is ,(mho/m) = 10.4\n", "(iii) electron concentration is, (holes/m^3)= 4.5 * 10^11\n", "(iii) conductivity is ,(mho/m) = 4.0\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7, Page No. 19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi Level\n", "\n", "import math\n", "#Variable declaration\n", "#Nd1=Nc*exp^-(Ec-Ef1)/kT ...Formula Used\n", "Nc=1.0 #assume\n", "kT=0.03 #eV\n", "EcEf1=0.5 #position of Fermi level in V\n", "Nd=1.0 #assume\n", "Nd1=3*Nd #After tripling the donor concentration\n", "\n", "#Calculation\n", "EcEf2=(EcEf1-(kT*(math.log(Nd1/Nd))))\n", "print(\"new position of Fermi-level is %.3f eV below conduction band\"%(math.ceil(EcEf2*1000)/1000))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "new position of Fermi-level is 0.468 eV below conduction band\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8, Page No. 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# density\n", "\n", "import math\n", "#Variable declaration\n", "e=1.6*10**-19 # in V\n", "Pp=10**-1 # p-type silicon in ohm-m\n", "Pn=10**-1 # n-type silicon in ohm-m\n", "mu_h=0.05 # holes mobilities in m^2/V-s\n", "mu_e=0.13 # electrons mobilities in m^2/V-s\n", "\n", "#Calculations\n", "Na=1/(e*mu_h*Pp);\n", "Nd=1/(e*mu_e*Pn);\n", "\n", "#Result\n", "print(\"(i). the density of impurity,Na (m^-3) = %.2f * 10^21\"%(Na/10**21))\n", "print(\"(ii). the density of impurity,Nd (m^-3) = %.1f * 10^20\"%(Nd/10**20))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i). the density of impurity,Na (m^-3) = 1.25 * 10^21\n", "(ii). the density of impurity,Nd (m^-3) = 4.8 * 10^20\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9, Page No. 20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# current\n", "\n", "import math\n", "#Variable declaration\n", "e=1.6*10**-19 # in V\n", "Pp=10**-1 # p-type silicon in ohm-m\n", "Pn=10**-1 # n-type silicon in ohm-m\n", "mu_hsi=0.048 # holes mobilities in m^2/V-s\n", "mu_esi=0.135 # electrons mobilities in m^2/V-s\n", "nisi=1.5*10**16 # in m^-3\n", "nesi=nisi\n", "nhsi=nisi\n", "mu_hge=0.19 # holes mobilities in m^2/V-s\n", "mu_ege=0.39 # electrons mobilities in m^2/V-s\n", "A=1*10**-4 # area in m^2\n", "nige=2.4*10**19 # in m^-3\n", "V=2.0 # in V\n", "l=0.1 # in m\n", "\n", "#Calculations\n", "Isi= e*A*(V/l)*((nesi*mu_esi)+(nhsi*mu_hsi))\n", "#Current for silicon is calculated wrong in the textbook\n", "nege=nige\n", "nhge=nige\n", "Ige= e*A*(V/l)*((nege*mu_ege)+(nhge*mu_hge))\n", "\n", "#Result\n", "print(\"Total current for silicon is,(A) = %f\"%Isi)\n", "print(\"Total current for germanium is,(A)= %.2f * 10^-3\"%(math.ceil(Ige*10**5)/100))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Total current for silicon is,(A) = 0.000001\n", "Total current for germanium is,(A)= 4.46 * 10^-3\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.10, Page No. 21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# hole concentration and conductivity\n", "\n", "import math\n", "#Variable declaration\n", "nh=2*10**21 # acceptor atoms in atoms/m^3\n", "mu_h=0.17 # mobility of holes in m^2/V-s\n", "e=1.6*10**-19 # in C\n", "\n", "#Calculations\n", "Na=nh\n", "sigma=nh*mu_h*e;\n", "\n", "#Result\n", "print(\"hole concentration,Na(atoms/m^3) = %.1f * 10^21\"%(Na/10**21))\n", "print(\"conductivity,(ohm^-1-m^-1) = %.1f\"%sigma)\n", "#conductivity is calculated wrong in the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hole concentration,Na(atoms/m^3) = 2.0 * 10^21\n", "conductivity,(ohm^-1-m^-1) = 54.4\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.11, Page No. 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# donor concentration\n", "\n", "import math\n", "#Variable declaration\n", "p=0.15 # in ohm-m\n", "mu_e=0.39 # mobility of electron in m^2/V-s\n", "e=1.6*10**-19 # in C\n", "\n", "#Calculations\n", "Na=1/(e*mu_e*p);\n", "\n", "#Result\n", "print(\"The value of donor concentration,Na(m^-3) = %.2f * 10^20\"%(Na/10**20))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of donor concentration,Na(m^-3) = 1.07 * 10^20\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.12, Page No. 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# resistivity\n", "\n", "import math\n", "#Variable declaration\n", "mu_n=0.13 # in m^2/V-s\n", "mu_p=0.05 # in m^2/V-s\n", "ni=1.5*10**16 # in m^-3\n", "e=1.6*10**-19 # in C\n", "\n", "#Calculations\n", "p=1/((e*ni)*(mu_n+mu_p));\n", "\n", "#Result\n", "print(\"The resistivity,p(ohm-m) = %.1f\"%p)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resistivity,p(ohm-m) = 2314.8\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.13, Page No. 37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# current\n", "\n", "import math\n", "#Variable declaration\n", "e=1.6*10**-19 # electron charge in coulombs\n", "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", "T=300.0 # in Kelvin\n", "I=240.0 # in mA\n", "eta=2.0\n", "Ve=0.8 # in V\n", "V=0.7 # in V\n", "\n", "\n", "#Calculations\n", "Vt=(k*T)/e # in V\n", "Id=I*math.e**((V-Ve)/(eta*Vt)) #in mA\n", "Ir=(I/((math.e**(Ve/(eta*Vt)))-1))*10**6\n", "\n", "\n", "#Result\n", "print(\"(i) Current is ,(mA) = %.f\"%(round(Id)))\n", "print(\"(ii) reverse saturation current is ,(nA) = %.f\"%(round(Ir)))\n", "#reverse saturation current is calculated wrong in the textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Current is ,(mA) = 35\n", "(ii) reverse saturation current is ,(nA) = 46\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.14, Page No. 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# diode current and voltage\n", "\n", "import math\n", "#Variable declaration\n", "e=1.6*10**-19 # electron charge in coulombs\n", "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", "T=300.0 # in Kelvin\n", "Ir1=10**-10 # in A\n", "Ir2=10**-12 # in A \n", "V211=0.5 # in V\n", "\n", "#Calculations\n", "Vt=(k*T)/e\n", "Vt = math.ceil(Vt*1000)/1000\n", "V21=((Vt)*math.log10(Ir1/Ir2))*2.3026\n", "V21 = math.floor(V21*10000)/10000\n", "V2=(1.0/2)*(V21+V211)\n", "V1=(1.0/2)*(V211-V21)\n", "I1=Ir2*math.e**(V2/Vt)*10**6\n", "I2=I1\n", "\n", "#Result\n", "print(\"diode voltage V2 is ,(V) = %.5f\"%V2)\n", "print(\"diode voltage V1 is ,(V) = %.5f\"%V1)\n", "print(\"diode current is,(micro-A) = %.4f\"%I1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diode voltage V2 is ,(V) = 0.30985\n", "diode voltage V1 is ,(V) = 0.19015\n", "diode current is,(micro-A) = 0.1498\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.15, Page No. 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# voltage\n", "\n", "import math\n", "#Variable declaration\n", "e=1.6*10**-19 # electron charge in coulombs\n", "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", "T=300.0 # in Kelvin\n", "Ir1=10**-12 # in A\n", "Ir2=10**-10 # in A\n", "It=2.0 # mA\n", "\n", "#Calculations\n", "I21=Ir2/Ir1\n", "Vt=(k*T)/e # in V\n", "Vt = math.ceil(Vt*1000)/1000\n", "I1=It/(1+I21)*10**3 # in micro-A\n", "I2=It*10**3-I1 # in micro-A\n", "I1=I2/I21 # in micro-A\n", "x=((I1*10**-6)/Ir1)\n", "V=Vt*math.log10(x)*2.3026\n", "\n", "#Result\n", "print(\"diode voltage is ,(V) = %.3f\"%V)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diode voltage is ,(V) = 0.437\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.16, Page No. 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# voltage\n", "\n", "import math\n", "#Variable declaration\n", "T=27.0 # degree Celsius\n", "Tk=273+T # in Kelvin\n", "e=1.6*10**-19 # electron charge in coulombs\n", "k=1.38*10**-23 # Boltzmann constant in m^2-kg/s^2-K^-1\n", "J=10**4 # in Amp/m^2\n", "Jo=200.0 #in mA/m^2\n", "\n", "#Calculations\n", "x=(J/(Jo*10**-3))\n", "Ve=((math.log(x))*k*Tk)/e\n", "\n", "#Result\n", "print(\"voltage to be applied is ,(V) = %.2f\"%Ve)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "voltage to be applied is ,(V) = 0.28\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.17, Page No. 40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# resistance\n", "\n", "import math\n", "#Variable declaration\n", "V=3.0 # in V\n", "I=55.0 # in mA\n", "V2=26.0 # in mV\n", "\n", "\n", "#Calculations\n", "Rdc=V/(I*10**-3) # in ohm\n", "Rac=V2/I # in ohm\n", "\n", "#Result\n", "print(\"static resistance is ,(ohm) = %.1f\"%Rdc)\n", "print(\"dynamic resistance is ,(ohm) = %.2f\"%Rac)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "static resistance is ,(ohm) = 54.5\n", "dynamic resistance is ,(ohm) = 0.47\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.18, Page No. 40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# resistance\n", "\n", "import math\n", "#Variable declaration\n", "k=1.38*10**-23 # constant\n", "T=27+273.0 # in K\n", "eta=2.0\n", "e=1.6*10**-19 # in C\n", "Vt=(k*T/e) # in V\n", "V=0.5 # in V\n", "Ir=10**-6 # in A\n", "\n", "#Calculations\n", "I=(Ir*10**3*(math.e**(V/(eta*Vt))-1))\n", "R_dc=V*10**3/I;\n", "R_ac=(eta*k*T)/(e*I*10**-3);\n", "\n", "#Result\n", "print(\"static resistance,R_dc(ohm) = %.1f\"%R_dc)\n", "print(\"Dynamic resistance,R_ac(ohm) = %.1f\"%R_ac)\n", "#answer is wrong in textbook" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "static resistance,R_dc(ohm) = 31.8\n", "Dynamic resistance,R_ac(ohm) = 3.3\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.19, Page No. 40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# resistance\n", "\n", "import math\n", "#Variable declaration\n", "V=1.2 # in V\n", "Vk=0.7 # in V\n", "I_F=100.0 # in mA\n", "V_R=10.0 # in V\n", "I_R=1.0 # in micro-A\n", "I=5.0 # in mA\n", "eta=2\n", "\n", "#Calculations\n", "R_B=(V-Vk)/(I_F*10**-3)\n", "R_R=V_R/I_R\n", "R_ac=eta*26/I\n", "\n", "#Result\n", "print(\"the bulk resistance,R_B(ohm) = %.f\"%R_B)\n", "print(\"the reverse resistance,R_R(M-ohm) = %.f\"%R_R)\n", "print(\"ac resistance,R_ac(ohm) = %.1f\"%R_ac)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the bulk resistance,R_B(ohm) = 5\n", "the reverse resistance,R_R(M-ohm) = 10\n", "ac resistance,R_ac(ohm) = 10.4\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.20, Page No. 41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# capacitance\n", "\n", "import math\n", "#Variable declaration\n", "epsilon_0=8.85*10**-12 # in farada/m\n", "K=12.0 # constant for silicon\n", "A=1*10**-8 # in m^2\n", "W=5*10**-7 # in m\n", "\n", "#Calculations\n", "epsilon=epsilon_0*K\n", "Ct=epsilon*A*10**14/W;\n", "\n", "#Result\n", "print(\"the transition capacitance,Ct(PF) = %.1f\"%Ct)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the transition capacitance,Ct(PF) = 212.4\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.21, Page No. 41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# resistance\n", "\n", "import math\n", "#Variable declaration\n", "V=0.2 # in V\n", "I=1.0 # in micro-A\n", "\n", "#Calculations\n", "R_dc=V*10**3/I\n", "R_ac=26/(I*10**3);\n", "\n", "#Result\n", "print(\"The static resistance,R_ac(k-ohm) = %.f\"%R_dc)\n", "print(\"the dynamic resistance,R_ac(ohm) = %.3f\"%R_ac)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The static resistance,R_ac(k-ohm) = 200\n", "the dynamic resistance,R_ac(ohm) = 0.026\n" ] } ], "prompt_number": 55 } ], "metadata": {} } ] }