{ "metadata": { "name": "", "signature": "sha256:768e5620d31d4b5603faf8e19db8db3178570776ab6e28491caaf3d036876dc4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter5-Uniaxial Deformations" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of variables\n", "#find the depth of clay bed \n", "l=20. ##cm\n", "dL=1. ##m\n", "dl=0.004 ##cm\n", "##calculations\n", "L=l*dL/dl ##m\n", "##results\n", "print'%s %.2f %s'%('The depth of the clay bed is ',L,' m')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The depth of the clay bed is 5000.00 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg140" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of variables\n", "#find the total extension of the rod and draw the force and extension diagrams\n", "A=1. ##unit area\n", "E=2.*10**6 ##kg/cm^2\n", "## calculations\n", "db=3000.*90./(A*E)\n", "dc=db+5000.*60./(A*E)\n", "dd=dc+4000.*30./(A*E)\n", "##results\n", "print'%s %.2e %s %.2e %s %.2e %s '%('The extension of the rod in part AB is ',db,' cm'and'in part BC is ',dc,' cm'and' \\n and in part CD is ',dd,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The extension of the rod in part AB is 1.35e-01 in part BC is 2.85e-01 \n", " and in part CD is 3.45e-01 cm \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of variables\n", "#findthe extension under its own weight\n", "A=3. ##cm^2\n", "L=18. ##m\n", "E= 2*10**6 ##kg/cm^2\n", "r=7833. ##kg/m^3\n", "##calculations\n", "e=r*(L*100)**2./(2*E*10**6)\n", "## results\n", "print'%s %.4f %s'%('The elongation is ',e,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The elongation is 0.0063 cm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg142" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of variables\n", "#find the extension under a concertrated load of 3 tonne at the bottom\n", "## linked to 5_3\n", "P=3 ##tonne\n", "E=2*10**6 ##kg/cm^2\n", "d_0= 1. ##cm\n", "d_l=2.8 ##cm\n", "## calculations\n", "e=4*P*1000.*d_l*10**3/(d_l**2*math.pi*E*(1-((d_l-d_0)/d_l)))\n", "##results\n", "print'%s %.2f %s'%('The total elongation is ',e,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total elongation is 1.91 cm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-145" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of variables\n", "import numpy\n", "from numpy import linalg\n", "import scipy as Sci\n", "from scipy import linalg\n", "P=10 ##tonne\n", "import numpy as np\n", "E=2*10**6 ##kg/cm^2\n", "## calculations\n", "## We have to solve linear system Ax=B\n", "A=numpy.matrix([[1, 1, 1, 0], [3, 1, -3, 0],[-2, 2, 0, -E],[0, -1, 2, -E]])\n", "B=numpy.matrix([[P*10**3],[0],[0],[0]])\n", "x=numpy.dot(np.linalg.inv(A),B)\n", "W1=x[0,0]/1000.\n", "W2=x[1,0]/1000.\n", "W3=x[2,0]/1000.\n", "th=x[3,0]\n", "##results\n", "print'%s %.2f %s %.2f %s %.2f %s '%('The load taken by each rod is',W1,' tonne'and'',W2,' tonne'and'',W3,'tonne')\n", "print'%s %.3e %s'%('\\n and the slope is theta = ',th,' radians') \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The load taken by each rod is 2.33 4.00 3.67 tonne \n", "\n", " and the slope is theta = 1.667e-03 radians\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "## initialization of variables\n", "#calculate the safe load taken by the column\n", "b=30. ## cm\n", "h=30. ##cm\n", "n=6.\n", "A=36. ##cm^2\n", "ss_s=1500. ##kg/cm^2\n", "ss_c=60. ##kg/cm^2\n", "Er=15. ## Elasticity ratio\n", "## calculations\n", "L=A*Er*ss_c+(b*h-A)*ss_c\n", "## results\n", "print'%s %.2f %s'%('The safe load is ',L,'.kg')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The safe load is 84240.00 .kg\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#find the stress in steel and concerete after redisturbution of stress in steel and cncerete\n", "## initiaization of variables\n", "import math\n", "gs_b=10. ##cm\n", "gs_h=10. ##cm\n", "d_b=2. ##cm\n", "d_h=2. ##cm\n", "As= 1. ##cm^2\n", "s=10000. ##kg/cm^2\n", "## part (a)\n", "Es=2*10**6 ##kg/cm^2\n", "Ec=2*10**5 ##kg/cm^2\n", "## calculations\n", "e=s/Es\n", "Ac=gs_b*gs_h-(d_b*d_h)\n", "e_c=e*Es*As/(Ec*Ac+Es*As)\n", "s_c=Ec*e_c\n", "e_s=e-e_c\n", "s_s=Es*e_s\n", "## results\n", "print'%s %.2f %s %.2f %s '%('part (a) \\n The stress in steel and concrete are respectively ',s_s,''and '',s_c,' kg/cm^2')\n", "## part(b)\n", "P=8000. ##kg\n", "## calculations\n", "e_c=(e*Es*As-P)/(Ec*Ac+Es*As)\n", "e_s=e-e_c\n", "s_c=Ec*e_c\n", "s_s=Es*e_s\n", "## results\n", "print'%s %.2f %s %.2f %s'%('\\n part (b) \\n The stress in steel and concrete are respectively ',s_s,''and '',s_c,'kg/cm^2')\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part (a) \n", " The stress in steel and concrete are respectively 9056.60 94.34 kg/cm^2 \n", "\n", " part (b) \n", " The stress in steel and concrete are respectively 9811.32 18.87 kg/cm^2\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg151" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##calculate temperature which sleeve must be heated if the room temperature is 10c\n", "#and pressure and find axial force necessary to separate the two room temperature and the temperature at which sleeve will easily come off\n", "## initialization\n", "import math\n", "d=10 ##cm\n", "D=9.99 ##cm\n", "t=3 ##mm\n", "E=1.0*10**6 ##kg/cm^2\n", "a=2.02*10**-5 ## degree/celcius\n", "## part(a)\n", "Tr=10. ##degree C\n", "T=(d-D)/D*1/a\n", "print'%s %.2f %s'%('part(a) \\n The sleeve must be heated to ',T+Tr,' degree C or more for this purpose')\n", "\n", "##part(b)\n", "s_th=a*T*E\n", "p=s_th*t*2./(d*10.)\n", "print'%s %.2f %s'%('\\n part(b) \\n The pressure developed between the rod and sleeve is',p,' kg/cm^2')\n", "\n", "## part(c)\n", "f=0.2\n", "o=10. ## overlap: cm\n", "A=math.pi*d*o\n", "F=f*p*A\n", "print'%s %.2f %s'%('\\n part (c) \\n The axial force required is ',F,' kg')\n", "\n", "##part (d)\n", "## linked to part c\n", "T2=20. ##degree C\n", "a2=1.17*10**-5 ## /degree C\n", "Ts=(a-a2)*(T2-Tr)*E\n", "Ts=s_th-Ts\n", "p2=p*Ts/s_th\n", "F2=F*Ts/s_th\n", "print'%s %.2f %s'%('\\n part(d)\\n The pressure developed between the rod and sleeve is',p2,' kg/cm^2')\n", "print'%s %.2f %s'%('\\n The axial force required is ',F2,' kg')\n", "##part(e)\n", "T3=Tr+(s_th/((a-a2)*10**6))\n", "print'%s %.2f %s'%('\\n part(e) \\n The temperature at which the sleeve comes off easily is ',T3,' C')\n", "\n", "print('calculations in the text: rounding off errors')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part(a) \n", " The sleeve must be heated to 59.55 degree C or more for this purpose\n", "\n", " part(b) \n", " The pressure developed between the rod and sleeve is 60.06 kg/cm^2\n", "\n", " part (c) \n", " The axial force required is 3773.68 kg\n", "\n", " part(d)\n", " The pressure developed between the rod and sleeve is 54.96 kg/cm^2\n", "\n", " The axial force required is 3453.24 kg\n", "\n", " part(e) \n", " The temperature at which the sleeve comes off easily is 127.76 C\n", "calculations in the text: rounding off errors\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of variables\n", "#calculate the radius of curvature of this strip at temperautre of 93.3\n", "T1=37.8 ## degre C\n", "t=0.355 ##mm\n", "T2=93.3 ## degree C\n", "L=2 ##cm\n", "m=1\n", "n=1.53\n", "a=1.86*10**-5\n", "##calculations\n", "R=2*t*(3*(1+m)**2.+(1+m*n)*(m**2+(m*n)**-1))\n", "R=R/(6.*a*(T2-T1)*(1+m**2)) ## mm\n", "R=R/10.\n", "D=L**2./(8.*R)\n", "## results\n", "print'%s %.2f %s'%('The radius of curvature is ',R,' cm')\n", "print'%s %.4f %s'%('\\n The deflection is',D ,' cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radius of curvature is 92.76 cm\n", "\n", " The deflection is 0.0054 cm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg155" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "## initialization of variables\n", "#find the energy stored in bolt\n", "L=5. ##cm\n", "D=1.8 ##cm\n", "l=2.5 ##cm\n", "d=1.5 ##cm\n", "F=1 ##tonne\n", "E=2.1*10**6 ##kg/cm^2\n", "## calculations\n", "s1=F*1000.*4./(D**2*math.pi)\n", "s2=F*1000.*4./(d**2*math.pi)\n", "U1=1/2.*s1**2./E\n", "U1=U1*L*D**2*math.pi/4.\n", "U2=1/2.*s2**2./E\n", "U2=U2*l*d**2*math.pi/4.\n", "U=U1+U2\n", "## results\n", "print'%s %.1f %s'%('The energy stored in the bolt is ',U,' kg-cm')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy stored in the bolt is 0.8 kg-cm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg159" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "## initialization of variables\n", "#calculate which of the two ways will give stronger joint\n", "t=16. ##mm\n", "Pt=1500. ##kg/cm^2\n", "Ps=1025. ##kg/cm^2\n", "Pb=2360. ##kg/cm^2\n", "\n", "##part (a)\n", "p=6. ##cm\n", "r=24. ##mm\n", "d=r/10.+0.15\n", "Ft=t*(p-d)*Pt/10.\n", "Fs=math.pi*d**2*Ps/4.\n", "Fb=d*t*Pb\n", "x=min(Ft,Fs,Fb)\n", "effA=x*100./(p*t/10.*Pt)\n", "\n", "##part (b)\n", "p=9. ##cm\n", "r=30. ##mm\n", "d=r/10.+0.2\n", "Ft=t*(p-d)*Pt/10.\n", "Fs=math.pi*d**2*Ps/4.\n", "Fb=d*t*Pb\n", "x=min(Ft,Fs,Fb)\n", "effB=x*100./(p*t/10.*Pt)\n", "\n", "## results\n", "print'%s %.2f %s %.2f %s '%('The efficiencies corresponding to cases a and b are ',effA,'' and '',effB,'')\n", "print('\\n Hence part b is better than part a')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The efficiencies corresponding to cases a and b are 36.35 38.16 \n", "\n", " Hence part b is better than part a\n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }