{ "metadata": { "name": "", "signature": "sha256:7ce3350f5dcc3b0641adb55040e49ecdbd34a727a892086466c616c0ec4732d8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2-Analysis of Stress(Equlibrium) " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg54" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#find the new stress tensor tau\n", "import numpy\n", "from numpy import linalg\n", "## initialization of variables\n", "\n", "tau=([[200, 100, 0],\n", " [100, 0, 0],\n", " [0 ,0, 500]]) ## some units\n", "theta=60. ## degrees\n", "##calculations\n", "theta1=theta/57.3\n", "a=([[math.cos(theta1), math.sin(theta1), 0],\n", " [-math.sin(theta1), math.cos(theta1), 0],\n", " [0, 0, 1]])\n", "b=numpy.transpose(a)\n", "tau_new=numpy.dot(a,tau)\n", "tau_new1=numpy.dot(tau_new,b)\n", "## Results\n", "print('The new stress tensor is')\n", "print tau_new1" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The new stress tensor is\n", "[[ 136.62361289 -136.59689227 0. ]\n", " [-136.59689227 63.37638711 0. ]\n", " [ 0. 0. 500. ]]" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "find the octahedral at this point\n", "## initialization of variables\n", "import math\n", "sigma_1=100. ##kg*f/cm^2\n", "sigma_2=100. ##kg*f/cm^2\n", "sigma_3=-200. ##kg*f/cm^2\n", "## calculations\n", "tau_oct=1/3.*math.sqrt((sigma_1-sigma_2)**2+(sigma_2-sigma_3)**2+(sigma_3-sigma_1)**2)\n", "## Results\n", "print'%s %.2f %s '%('Octahedra shear stress at the point is=',tau_oct,' kgf/cm^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Octahedra shear stress at the point is= 141.42 kgf/cm^2 \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#check whether the invariants of stress sensor\n", "import numpy\n", "from numpy import linalg\n", "## initialization of variable\n", "tau=numpy.matrix([[200, 100, 0],\n", " [100, 0, 0],\n", " [0, 0, 500]]) ## some units\n", "theta=60. ## degrees\n", "##calculations\n", "theta=theta*math.pi/180.\n", "a=numpy.matrix([[math.cos(theta), math.sin(theta), 0],\n", " [-math.sin(theta), math.cos(theta), 0],\n", " [0, 0, 1]])\n", "b=numpy.transpose(a)\n", "tau_new=numpy.dot(a,tau)\n", "tau_new1=numpy.dot(tau_new,b)\n", "\n", "## stress invariants :old \n", "I1=tau[0,0]+tau[1,1]+tau[2,2]\n", "I2=tau[0,0]*tau[1,1]+tau[1,1]*tau[2,2]+tau[2,2]*tau[0,0]-(tau[0,1]**2+tau[1,2]**2+tau[2,0]**2)\n", "I3=tau[0,0]*tau[1,1]*tau[2,2]+2*tau[0,1]*tau[1,2]*tau[2,0]-(tau[0,0]*tau[1,2]**2+tau[1,1]*tau[2,0]**2+tau[2,2]*tau[0,1]**2)\n", "\n", "## stress invariants :new\n", "I11=tau_new1[0,0]+tau_new1[0,0]+tau_new1[1,1]\n", "I22=tau_new1[0,0]*tau_new1[1,1]+tau_new1[1,1]*tau_new1[2,2]+tau_new1[1,1]*tau_new1[0,0]-[tau_new1[0,1]**2+tau_new1[1,2]**2+tau_new1[1,0]**2]\n", "I33=tau_new1[0,0]*tau_new1[1,1]*tau_new1[2,2]+2*tau_new1[0,1]*tau_new1[1,2]*tau_new1[2,0]-[tau_new1[0,0]*tau_new1[1,2]**2+tau_new1[1,1]*tau_new1[2,0]**2+tau_new1[2,2]*tau_new1[0,1]**2]\n", "\n", "## Results\n", "print'%s %.2f %s %.2f %s %.2f %s %.2f %s %.2f %s %.2f' %('The invariants of old stress tensor are I1=',I1,' I2=',I2,' I3=',I3,' \\n and that of the new stress tensor are I1=',I11,' I2=',I22,' I3=',I33)\n", "\n", "print('\\n Hence the same stress tensor invariants')\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The invariants of old stress tensor are I1= 700.00 I2= 90000.00 I3= -5000000.00 \n", " and that of the new stress tensor are I1= 336.60 I2= 11698.73 I3= -5000000.00\n", "\n", " Hence the same stress tensor invariants\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "## initialization of variables\n", "#find the value of sigma 1 and sigma2 at biaxial yeilding and unaxial\n", "sigma_3=0. ## kgf/cm**2\n", "tau_oct=1500. ## kgf/cm**2\n", "n=2 ## given that sigma_1=n*sigma_2\n", "## calculations\n", "sigma_2=1500.*3./(math.sqrt(2*n**2-2*n+2)) ## ## kgf/cm**2\n", "sigma_1=n*sigma_2 ## kgf/cm**2 \n", "sigma_0=4500./math.sqrt(2.) ## kgf/cm**2\n", "## Results\n", "print'%s %.2f %s %.2f %s %.2f %s '%('The necessary stresses sigma_1, sigma_2 for biaxial yielding are \\n ',sigma_2,' kgf/cm^2' '',sigma_1,' kgf/cm^2' and 'for uniaxial yielding sigma_0 ',sigma_0,'kgf/cm^2.')\n", " \n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The necessary stresses sigma_1, sigma_2 for biaxial yielding are \n", " 1837.12 kgf/cm^2 3674.23 for uniaxial yielding sigma_0 3181.98 kgf/cm^2. \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of variables\n", "#find the magnitude and direction of principal stress for the a b c\n", "## part (a)\n", "tau_xx=300 ## kgf/cm**2\n", "tau_yy=0 ## kgf/cm**2\n", "tau_xy=600 ## kgf/cm**2\n", "##calculations\n", "sigma_1=(tau_xx+tau_yy)/2.+math.sqrt((1./2.*(tau_xx-tau_yy))**2+tau_xy**2)\n", "sigma_2=(tau_xx+tau_yy)/2-math.sqrt((1/2.*(tau_xx-tau_yy))**2+tau_xy**2)\n", "Beta=math.atan(2*tau_xy/(tau_xx-tau_yy))\n", "Beta=Beta*180/math.pi\n", "##Results\n", "print'%s %.2f%s %.2f %s %.2f %s'%('\\n Part (a) \\n The magnitude of principal stresses are',sigma_1,''and '',sigma_2,'kgf/cm^2' and' \\n the direction is given by 2*beta=',Beta,'')\n", "\n", "\n", "##part (b)\n", "tau_xx=1000 ## kgf/cm**2\n", "tau_yy=150 ## kgf/cm**2\n", "tau_xy=450 ## kgf/cm**2\n", "## calculations\n", "sigma_1=(tau_xx+tau_yy)/2+math.sqrt((1/2*(tau_xx-tau_yy))**2+tau_xy**2)\n", "sigma_2=(tau_xx+tau_yy)/2-math.sqrt((1/2*(tau_xx-tau_yy))**2+tau_xy**2)\n", "Beta=math.atan(2*tau_xy/(tau_xx-tau_yy))\n", "Beta1=Beta*180./math.pi\n", "## Results\n", "print'%s %.2f %s %.2f %s %.2f %s '%('\\n Part (b) \\n The magnitude of principal stresses are',sigma_1,''and '',sigma_2,'kgf/cm^2' and' \\n the direction is given by 2*beta=',Beta1,'')\n", "\n", "## part (c)\n", "tau_xx=-850 ## kgf/cm**2\n", "tau_yy=350 ## kgf/cm**2\n", "tau_xy=700 ## kgf/cm**2\n", "## calculations\n", "sigma_1=(tau_xx+tau_yy)/2+math.sqrt((1/2*(tau_xx-tau_yy))**2+tau_xy**2)\n", "sigma_2=(tau_xx+tau_yy)/2-math.sqrt((1/2*(tau_xx-tau_yy))**2+tau_xy**2)\n", "Beta=math.atan(2*tau_xy/(tau_xx-tau_yy))\n", "Beta=Beta*57.3\n", "## Results\n", "print'%s %.2f %s %.2f %s %.2f %s '%('\\n Part (c) \\n The magnitude of principal stresses are',sigma_1,''and '',sigma_2,'kgf/cm^2' and' \\n the direction is given by 2*beta=',-Beta,'')\n", " \n", "\n", "## wrong answers were given in textbook for part (b) (c)\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Part (a) \n", " The magnitude of principal stresses are 768.47 -468.47 \n", " the direction is given by 2*beta= 75.96 \n", "\n", " Part (b) \n", " The magnitude of principal stresses are 1025.00 125.00 \n", " the direction is given by 2*beta= 45.00 \n", "\n", " Part (c) \n", " The magnitude of principal stresses are 450.00 -950.00 \n", " the direction is given by 2*beta= 63.44 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# initialization of variables\n", "#find the intensity of diagonal tension\n", "tau_xx= -1 # kgf/cm^2\n", "tau_yy= 0 # kgf/cm^2\n", "tau_xy= 7 # kgf/cm^2\n", "# calculations \n", "sigma_1=(tau_xx+tau_yy)/2.+math.sqrt((1/2.*(tau_xx-tau_yy))**2+tau_xy**2)\n", "sigma_2=(tau_xx+tau_yy)/2.-math.sqrt((1/2.*(tau_xx-tau_yy))**2+tau_xy**2)\n", "x=sigma_1 # positive one is tension\n", "if(sigma_2>sigma_1):\n", " x=sigma_2\n", "\n", "# Results\n", "print'%s %.2f %s'%('The diagonal tension is ',x,' kgf/cm^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diagonal tension is 6.52 kgf/cm^2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# initialization of variables\n", "#find the state of stress at the joint\n", "d=2 # m\n", "l=10 # m\n", "t=1 # cm\n", "p=15 # kgf/cm^2\n", "pitch= 2*math.pi #m\n", "##calculations\n", "w=2*math.pi*d/2. # m\n", "theta=math.atan(w/(2*math.pi))\n", "sigma_z=p*d*100./(4.*t)\n", "sigma_th=p*d*100./(2.*t)\n", "sigma_th_new=(sigma_th+sigma_z)/2.+(sigma_th-sigma_z)/2.*math.cos(2*theta)\n", "tau_thz=(sigma_z-sigma_th)*math.sin(2.*theta)/2\n", "# results\n", "print'%s %.2f %s %.2f %s '%('At the junction, the normal and shear stresses are',sigma_th_new,'' and '',-tau_thz,' kgf/cm^2 \\n respectively, and the rivets must be designed for this')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At the junction, the normal and shear stresses are 1125.00 375.00 kgf/cm^2 \n", " respectively, and the rivets must be designed for this \n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }