{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 9 Class A Power Amplifiers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1 Page No 220" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XeYFFXWx/HvDxAFUTFgDmBaV0XEwGJAx/AaMK6YI0ZE\nFBMG2FVZXXPGHDDAKiKioqIYGdRdRMkImHEVs4IsKArIef+4NdIOE3pmqro6nM/z9EOH6rpnhltz\n62aZGc4550pXo7QDcM45ly4vCJxzrsR5QeCccyXOCwLnnCtxXhA451yJ84LAOedKnBcEeU5SV0lv\nJHTuxZI2rOazckknR8+PkfRiEjG40iTpIUlXJHDeMkmf1/D573le0l2S/h53DIXIC4IYSfpU0s+S\n/idptqR/S+omSZWO6yDp+eiYHySNkdQ1pbCrY9EDM3vEzPZOOR6XB6IbhFmSmlbx2dGSxkqaK+nL\nKI/vVM2pfs9faTGz7mb2zzRjyBdeEMTLgP3NbEVgfeAa4CKgf8UBknYAXgVGAhuZ2apAd2Cf3Ifr\nXPYktQY6AN8CB1b67DzgZuCfwOrAesAdlY+rfMok4nR15wVBQsxsrpk9CxwBnCBp8+ij64GHzOx6\nM5sVHTvezI7M5rySdpT0jqQfJb0dFSwVn50oaVpUI/lY0mmVvntBdKc2U9JJ2f4slZunoup1N0kf\nRLWa2ysdf1IUxyxJIyStn21aLq8dD7wCDAROqHhT0krAP4AzzOxpM5tvZr+Z2XAzuyibE0s6VdKH\nUQ15mKS1Mj67VdJnkuZENY6dMz5rFjUzzZI0Fdg+2x8ms3kqalKaKek8Sd9E10nXjGOXlXSDpP9K\n+jpqVlou27TynRcECTOzd4CZQCdJzYGOwBP1OZekVYDhwC3AKsBNwPDofYBvgP2iGsmJwM2S2kff\n3Qc4H9gT2DT6tyH2A7YDtgIOl7R3lM5BQG/gr8BqwBvAoAam5fLD8cBg4HFgb0mtovd3AJYDnqrP\nSSXtDlwFHAasBfwXeCzjkLeBdsDKwKPAkIymqcuANsCGwN6EAirbJqfKzVNrACsCawMnA3dEhRyE\n2v3GURwbA+sAl2b9Q+Y5Lwhy40vCH+6VCb/zr+p5nv2A96M2+8Vm9hjwHnAAgJk9b2YzouevAy8B\nnaLvHg48YGbTzOxnwgXUENeY2f/M7HNCM1e76P3TgavN7H0zWwxcDWwtab0GpudSFN2FrwM8Y2Yf\nAtOAY6KPVwW+j/6/66Lij/AxQH8zm2hmCwg3EjtU1CSj/D47yvM3AcsCf4q+exhwpZn9aGYzgVup\nW5NT5rELgcuj2swLwDzgT1Ef36nAeVE68wj5OqtafCHwgiA31gVmRY/FhLue+lgb+KzSe/+N3kfS\nvpLeiqrXs4HOhIuUKM3M0RSVz1NXX2c8/xloET3fALg1ajKaDfwQvb9OA9Nz6ToBeMnM5kavh7Ck\neegHYDVJ9f17UlELAMDMforOuQ6ApF5RU+OPUZ5aiVDbhJD348rXP1QqzCrydSugOTAuI1+/kBFD\nwfOCIGGStidk1jfNbD4wGji0nqf7gvCHNtMGwBeSlgWGAtcBq5vZysDzLLnj+YrQgV0hqXb7z4DT\nzGzljMfyZvZWQum5hElqRqhR7i7pK0lfEZoZ20naipCnfyU0B9bHl0DrjPSWJ9zAfCGpE3ABcJiZ\ntYzy9Rziy9fZNCN9D8wHNs/I0y2jJtii4AVB/AQgaUVJ+xPaxwea2dTo8wuBrtFdzqrRse0kZdOO\n/gKwqaSjJDWRdASwGfAc0DR6fA8slrQvsFfGdx+P0v1z1FfR0KahTGLJhXk30Keic1zSSpIOizEt\nl3sHA4uAPxOaANtFz98AjjezOYT28jskHSSpuaRlohrqtdWcMzPPDAJOjK6DZQn9BW+Z2WfAClHa\n30tqKulSQjt+hceB3pJaSloXOKsOP1dmDNWKagn3AbdU9ItIWkfSXjV/s3B4QRC/ZyX9j3Bn3Bu4\nkdBxC4CZjQZ2jx4fS/oBuIfQCVyVzPH8PwD7E+7Gvgd6EYarzoqq7D0JF8Ys4ChgWEa6IwidzK8B\nHxCGsNa3U63y9zJjfBq4FnhM0hxgCqETzxWu4wn9SzPN7Nvo8Q1wO3C0pEZR2/15wN8Jw0s/A86g\n+g7kzDzzKnAJoUb7JaHzt6L9fUT0+AD4lHBnntn88w9Cs9KM6LgB1JyvK+fjmvJ1pouAj4C3onz9\nMmHQRVFQkhvTRB2EAwjjig2418z6VTqmjPAH65PoraE+ycMVC0ktgfuBLQjXwEneTObyTZOEz78Q\nONfMJkpqQehsednMplc6bpSZ1TTxxLlCdSvwvJkdKqkJsHzaATlXWaJNQ2b2tZlNjJ7PA6YTjXCp\nxGcYuqITjUHvZGYPAJjZoqg93bm8krM+AoXp6e2BMZU+MmBHSZMU1ibZvPJ3nStQbYDvJD0oabyk\n+6KOeufySk4KgqhZ6Ang7KhmkGk8sJ6ZtQNuA57ORUzO5UATYBvgTjPbBvgJuDjdkJxbWqKdxQCS\nliEMb3zBzG7J4vgZwLYV6/BkvJ/qSoWu+JlZrE2UktYERptZm+j1zsDFZrZ/xjGer13iasvbidYI\noqnZ/YFp1RUCktaIjkNSB0LhNKuqY80s54/LLrsslXTTTLvU0jVL5m+xmX0NfC6pYpjhnsDUKo4r\nmN9lIZ23kGJN8rzZSHrU0E7AscBkSROi9/oQzf4zs3sIs2y7S1pEmNJdNOt3OEeY4PRItEjax2TM\nKXEuXyRaEJjZm9RS6zCzOwjrljtXdMxsEnVYGtm5NPjM4lqUlZWVXNqllm4xSup3WUjnLaRYkzxv\nNhLvLI6LJCuUWF3hkYTF3FmcZbqer12issnbXiNwzrkS5wWBc86VOC8InEuZtwy5tHlB4FzKHn00\n7QhcqfPOYudIt7N4zTWNadNg5ZVznborBd5Z7FwBOOQQ6N077ShcKfMagXOkWyOYPdvYfHMYOhR2\n2CHXEbhi5zUC5wpAy5Zw443QrRssXJh2NK4UeUHgXB448khYc03o16/2Y52LmzcNOUd+zCz+6CPo\n2BHGj4f11891JK5YedOQcwVk443h7LOhZ8+0I3GlxgsC5/LIhRfC9OkwbFjakbhS4k1DzpEfTUMV\nRo6EE06AadOgRYtcR+SKTTZ52wsC58ivggDg+ONhjTXg+utzHZErNl4QOJelfCsIvv0WttwSXn4Z\n2rXLdVSumHhnsXMFavXV4cor4fTTYfHitKNxxc4LAufy1MkngwT33Zd2JK7YedOQc+Rf01CFyZNh\njz3g3XdDn4FzdeV9BM5lKV8LAghDSr/6CgYOzFFQrqh4QeBclvK5IPjpJ9hiC+jfP9QOnKsL7yx2\nrggsvzzcdht07w6//JJ2NK4YeUHgXAE44IBQK7j22rQjccXIm4acI7+bhip8/jm0bw+jR8MmmyQc\nmCsaRdc0NGdO2hE4l5711oM+feCMM3zDexevgioITjjBJ9e40tazJ3z3HQwalHYkrpgUVEHw7bdw\nzTVpR+Fcepo0gXvugfPPh9mz047GFYuC6iOYOdPYfnt46CHYa6+0I3LFJMk+AkmfAv8DfgMWmlmH\njM/q1ffVvXv49667YgnRFbGinEcwahQcfjiMGQOtW6cdlSsWCRcEM4BtzWxWFZ/VqyD48UfYfHN4\n8smwq5lz1Sm6zmKAXXeFiy6CLl18TLUrKLEWMi1bwg03hEXpFi2K88yuFBVcQQBw7rlh+FyPHj56\nwhUEA16RNFbSqXGd9KijoFUr3/DeNVzBNQ1VmDcvVIl79oTTTksxMFcUEm4aWsvMvpLUCngZOMvM\n3og+a9D8mA8/hB12gAkTwvBS5yrLJm83yVUwcWvRIrSP7rwzbL01dOhQ+3ecS4OZfRX9+52kp4AO\nwBsVn/ft2/f3Y8vKyigrK8v63JtsAmedFW6InnoqrohdISsvL6e8vLxO3ynYGkGFp58OF8G4caGa\n7Fx9JFUjkNQcaGxmcyUtD7wE/MPMXoo+b/CM+V9/ha22CttaHnhgw2N2xaUoRw1VpU+fMIroxRfD\nOGvn6irBgqANUHGv3gR4xMyuzvg8lqVTXn01bGQzdWpYpM65CqkXBJLWAwYAqxM6zO41s6W6tiT1\nA/YFfga6mtmEKo6p9oL57TfYZx/YZhtflMvVTyGsNVSbY4+FtdeG666L5XSuSORDQbAmsKaZTZTU\nAhgHHGxm0zOO6QycaWadJf0FuNXMlhoZXdsF8/33sN12cOONYWipc3VRDAXBN99A27ahdtC2bSyn\ndEUg9XkEZva1mU2Mns8DpgNrVzrsQODh6JgxQEtJdd6Ub7XV4Iknwrjq995rYODOFaA11oArroBu\n3XxNLlc3OZtHIKk10B4YU+mjdYDPM17PBNatTxrbbRfWIvrrX2Hu3PqcwbnCduqpYW5N//5pR+IK\nSU66VqNmoSeAs6OawVKHVHpdZV05m2F2J58cOo5PPBGGDAHlvLLvCkF9htgVgkaN4O674f/+Dw46\nCFZfPe2IXCFIfNSQpGWA54AXzOyWKj6/Gyg3s8ei1+8Bu5rZN5WOy7ot9ddfoVMnOOwwuOCCBv8I\nrgQUQx9Bpl69wmq9AwbEfmpXYFLvI5AkoD8wrapCIPIMcHx0fEfgx8qFQF0tuywMHQo33QSvvdaQ\nMzlXmPr2hVGjYOTItCNxhSDpUUM7A68Dk1nS3NMHWB/AzO6Jjrsd2Af4CTjRzMZXca463zm9+moY\nUvf22z793tWs2GoEAMOGwYUXwuTJ4ebIlabUh4/Gqb4XzLXXhqUoXn/dLwZXvWIsCAAOPhi23RYu\nuSSxJFye84KAMIKiS5fQaXb33QkE5opCsRYEn30WJlr6hvelK/U+gnwghR3NysvDv86VkvXXh969\nfcl2V7OiLwgAVlwxNA9dcAGMX6r3wbni1rNnmHU8eHDakbh8VfRNQ5mGDAmdZ2PHwqqrxhSYKwrF\n2jRUYfTo0EQ6bVrY3cyVDu8jqEKvXvDuuzB8ODRuHENgrigUe0EAYfmVxo3hjjtykpzLE14QVGHR\nojDrcuedw7oszkFpFASzZ4cN74cN842cSol3FlehSZPQVvrww/DMM2lH41zurLxy2PC+Wzff8N79\nUckVBBCGkj7+OJxyStjz1blScfTRsMoqcNttaUfi8knJNQ1luusuuPNOeOst39Wp1JVC01CF99+H\nnXbyDe9LhfcR1MIsrFK6YAE88oivVFrKSqkggLAW0ZQpYU0uV9y8j6AWUqgVvPce9FtqA03nitfF\nF4eC4Lnn0o7E5YOSrhFUmDEDOnYMO5x16pRIEi7PlVqNAOCVV0I/mW94X9y8RpClNm3CKKIjj4Qv\nv0w7GudyY889Q1/B5ZenHYlLm9cIMlxxBbz4YtjDoGnTRJNyeaYUawQAX38dNrp/7TXf8L5YeWdx\nHS1eHLb3a9PG+wxKTakWBBBW5f3Xv8JS7Y28jaDoeNNQHTVqBAMHwvPPw6OPph2Nc7lx2mlhgtkD\nD6QdiUuL1wiqMHky7LFH2OFsq61ykqRLWSnXCAAmTQpLr0ydCq1apR2Ni5PXCOppq63gllvgkEPg\nxx/Tjsa55LVrB8cdFxZldKXHawQ16NkzDC0dNszbTotdqdcIAObNC4vSPfww7LZb2tG4uHiNoIFu\nuCGs2HjllWlH4lzyWrQIgyS6d4dff007GpdLXhDUoGnTsJnN3XfDiBFpR+Nc8g46CDbdFK6/Pu1I\nXC5501AW3nwz7O701lthaKkrPkk2DUlqDIwFZprZAZU+y5umoQr//S9su23I7xtvnHY0rqG8aSgm\nO+8MffqEzuP589OOxhWgs4FpQH79xa/GBhvARRf5hvelxAuCLPXsGTrSunf3i8NlT9K6QGfgfqBg\n1rc95xz46quwb4crfl4QZEmCe++F8eNDn4FzWboZuABYnHYgdbHMMiGfn3cezJmTdjQuaU3SDqCQ\nLL88PPkk7LgjbL017LBD2hG5fCZpf+BbM5sgqay64/r27fv787KyMsrKqj00p3bcEfbbD/72N7j9\n9rSjcdkqLy+nvLy8Tt/xzuJ6ePZZOOMMGDsW1lgj7WhcHJLoLJZ0FXAcsAhYDlgRGGpmx2cckzf5\nuiqzZsEWW4T9vbffPu1oXH34onMJuvTSsEjXK69AE69XFbykJ5RJ2hXoVQijhiobOBBuvhneftvz\neiFKbNSQpGaSDqtfWMXhsstgueXC6ArnspTff/Grceyx0LIl3HFH2pG4pGRdI4jGQu8DHAX8H/Cm\nmXVJMLbK6efdndMPP8B228G118Lhh6cdjWsIX2KiZhUb3k+cCOuum3Y0ri4a3DQkScCuhD/+nYEx\nQCegjZn9HGOstcrXC2b8eNh7bxg1KgwvdYXJC4LaXXopTJsWtnR1hSOOpqHPgT7ASGAzMzsU+DnX\nhUA+22abMB3/r3+F//0v7WicS06fPqFGMHx42pG4uNVWEDwBbAwcARwgybe4rkLXrmG1xq5dfbKZ\nK17LLQd33QVnngk/+61gUam1j0BSI6CM0Dy0L9ASOBkYbmbzkg4wI468rkL/+ivsumuoGXgHcuHx\npqHsHX10WIbi6qvTjsRlI/bho5KaAnsTCoW9zWzVhoWYvUK4YGbOhA4dwnC7PfZIOxpXF14QZK9i\nw/uRI2HLLdOOxtUm0XkEkpqZWa1LsEl6ANiPMMOybRWflwHDgE+it4aa2T+rOK4gLpiRI+Goo8KY\n6/XXTzsaly0vCOrmzjth0KAwSMI3bcpvsc0jkHSApAmSZkuaK2ku8E2WcTxIGHZak1Fm1j56LFUI\nFJLddoPzzw/LVv/yS9rROJeMbt1gwQJ46KG0I3FxyLYsvwU4AVjVzFaIHitm80UzewOYXcthBbMq\nYzZ69YLWrcOKpc4Vo8aNw6J0vXvDd9+lHY1rqGwLgpnAVDNLYgVFA3aUNEnS85IKfjS+BA88EDa0\n6d8/7WicS0b79nDMMXDhhWlH4hoqqz4CSR2BywnzCRZEb5uZ3ZRVIlJr4Nlq+ghWAH4zs58l7Qvc\namabVnFcwbWlvvce7LILPP98mIHs8pf3EdTP3LlhUbqBA8OoOZd/ssnb2S4hdQUwl7CCYtOGBpbJ\nzOZmPH9B0p2SVjGzWZWPzdflequz2Wah+nzooWGl0tVWSzsiV6E+S/VWkLQ+cISZlfzOviusALfe\nCqefDpMmhX2+XeHJtkbwrpnVe6BYLTWCNQgjikxSB+BxM2tdxXEFe+d08cUwbhyMGBHaVl3+qe2u\nSdLqwGGEodNrA0+Z2fkxpFuw+bqCGRx4YNifo0+ftKNxlcU2fFTSdcCrZvZiPYIYRFivaDXCSKPL\ngGUAzOweST2A7oQ1238GzjOzt6o4T8FeMIsWhfWI/vIXuOqqtKNxVanqYpG0InAI4Y//xsDTwJFm\ntk6M6RZsvs706aeh+XPMGNhoo7SjcZniLAjmAc0J/QMLo7ct25FDcSj0C+a778KFcuutcPDBaUfj\nKqumIJgPvAxcVXFzImmGmbWJMd2CzteZrrsuzKN5/vkwYMLlh9jmEZhZCzNrZGbL1XX4qAtatYIh\nQ+C00+CDD9KOxmWpN7AGcKekiyX5vW4Nzj03zK4fMiTtSFxd+Q5lOXbvvaFWMGYMtGiRdjSuQk13\nTVEBcGT02ITQvPmUmTW4SC+WfF3h3/8Oe3NMmwYrrZR2NA58q8q8ZAYnnxxWbxw0yKvQ+SLb4aOS\n2hL6DI4wswbXEIolX2c69VRo1gz69Us7EgfxbEzTxsxmxB5ZPRTTBTN/Puy8c9gC8Nxz047GQZYX\nS+g8bkI0E97Mfogh3aLJ1xV++CHMLXjuOZ8/kw/i6CN4IjrRa7FF5WjWDJ58MmxxOWpU2tG42kjq\nJulrYAowDhgLvJNuVPlr1VVDx3G3bvDbb2lH47JRW41gIjCEMLzzJv64JlDWM4vjUIx3Ti+9FDaz\neecdWCe2AYmuPmrpI/gI6Ghm3yeQbtHlawhNoLvvHvbn8DW30hVHjeBI4DegMbAC0CLjsUIcQZay\nvfYKuz0demhYydHlrU+AWpdcd0tIYTezyy+HL75IOxpXm2znEexrZi/kIJ6aYijKO6fFi+GQQ0KN\n4I470o6mdNVSI9gGeAgYzR/X2mrwvW6x5usKl1wS1tzyIaXpiWUegaTNgAWSWlR6v7Y9BlwWGjWC\nhx+Gl1+GAQPSjsZV417gFeAtQv/AuOjhatGnD0yYECaZufxVWx9BT6AHMB1oD5xtZk9Hn00ws/Y5\niZLiv3N6992wqc3LL8PWW6cdTemppUaQWF4v9nwN8OKL0L17yOPNm6cdTemJo0ZwGrCtmR1MWC/o\n75LOiStAt8SWW8Jtt4WdzWYtte6qS9kL0cihtSStUvFIO6hCsffeYS/vfxb03oPFrbYawVQz2yLj\ndQtgKDAN2M3McnbvWgp3ThDmFbz/fhiD7XvB5k4tNYJPCRsoZTIz2zCGdEsiX3/1FWy1FZSXhzkG\nLnfiqBF8K+n3P/ZmNg/YH1gV2KrhIbrKrrsOfvopjLZw+cHMWptZm0qPBhcCpWSttaBv39BEtDiJ\nfQ5dg9RWEBwPfJ35hpktJOxfvEtSQZWyZZaBwYPh/vth+PC0o3EuPqefHmbVP/xw2pG4ynytoTz1\nn/+E5apHj/b13XMhqa0qJS0HjAKWJezuN8zMemd8XlL5evx42HdfmDrVd+zLldiWoa7m5H6/mqAd\nd4RLLw1zDH7+Oe1oXH2Z2S8s6U/bCthN0s4ph5WabbaBo47yDe/zTb1rBJLWNrMvY46npvRK6s4J\nwjT9444LszQHDPCVSpOUxVaV6wCtCbPsRegsfr2OaTQn1A5OMLNp0Xsll6/nzoXNN4dHHoFdvIE5\ncYksQy1pY6CZmU1pSHB1VYoXDITawA47hKV9zzwz7WiKVy2jhq4FjiCMlvt9GTUzOyDLczcCxgMb\nAXeZ2YUZn5Vkvh46NMw6njjRN7xPWjYFQZM6nvBvhMy8WNKyZnZcQwJ0tWvePKxUusMO0L497LRT\n2hGVpL8CfzKzX+vzZTNbDGwtaSXgRUllZlZe8Xnfvn1/P7asrIyysrIGBVsIDjkEHnwQbrwReveu\n/XiXvfLycsrLy+v0ndrmEZwN3G5mv0WvB5vZEdHzyWaWsyGkpXrnVGH48LCs79ixsOaaaUdTfGqp\nEbwAHG5mc2NI5xJgvpndEL0u2Xw9YwZsvz28/TZs6INxExNHZ/EPhDuYA6PXL0saIell4MU4gnTZ\n2W8/OOWUsA3gwoVpR1Ny5gMTJd0r6bbokdX+W5JWk9Qyet4M+D9gQoKxFow2baBXr9DkWaJlYd6o\ntY8gyry9gA7AJcAHQFMz+zH58P4QR8neOVVYvBgOOAA23RRuvjntaIpLLTWCrlW8bWZW64j4aGvL\nhwk3XY2AgWZ2fcbnJZ2vFy4MTZ59+4bl2F38YukslrQlsBD4H1Ax3/USM/u6+m/Fr9QvmAqzZ4ft\n/668Eo48Mu1oikdS8wiySLfk8/Wbb4a8PG0arLhi2tEUnzj2LH6YsP56c+BLM7tAUntCgfCOmeVs\nIQS/YJaYNAn23BNGjgyL1bmGq+pikTTEzA6TVNUIOYujj8zzdXDKKbD88nDrrWlHUnziKAgmmVk7\nSQLGZy7FK+kgMxsWX7g18wvmjwYMCKs5vvMOrLRS2tEUvmoKgrXN7EtJrav6jpl9GkO6nq9ZsuH9\n8OGw7bZpR1Nc4igIriXsQ7AM8Hxm22au+QWztB49wjaATz7pK5U2lDcNpe+hh+D222HMGGjcOO1o\nikdcfQQrAYvjGDrXEH7BLG3BAigrg/33DztBufrzgiB9ZmFzpkMP9cmTcUpkZnFa/IKp2hdfhLHY\nDz0Ee+2VdjSFywuC/DB9elh2YtIkWHvttKMpDokuOufywzrrwKBBcPzx8OmnaUdTXCStLmmpbVQk\nbSGpVRoxFbs//zlMnDz33LQjKS1eEBSBXXeFiy4K21zOn592NEXlNqCqxZJXBXx8S0L+9rcwg37E\niLQjKR1ZNw1J2szM3pP0ZzObnnBcVaXvVegamIXlfZs3h/79faXSuqpm1NA4M6tyDEvlbVwbkK7n\n6yqMGBEGQ7z7LjRrlnY0hS3upqFHK/3r8ogUdjUbMwbuuy/taIrGCjV8tkzOoihB++yzZOKkS15d\nCgK/x8xzLVqEoaR//3tYyMs12EeS9qv8pqTOwMcpxFNSbr4Z7rkndCC7ZNWlaWiCmbWv+DfhuKpK\n36vQWXr6aTj77NDO2sq7NLNSTdPQpsBzwH+AcYSboW2BHYH9zez9GNL1fF2D22+HIUOgvNybO+vL\nRw2VqIMPhmOOCeu3LFqUdjSFy8w+IGwv+Tphd7INCDuMtY2jEHC16949bM7kG94ny2sEReq330I7\n6zbbwLXXph1N/mvIPAJJo81sh3p+1/N1LcaNg86dw6J0q66adjSFJ6kaQZ0uFkkPSPqmmoW7Ko7p\nJ+lDSZOiRe1cAzVuHOYXDB4ctgV0iVou7QCK2bbbhtrtRRelHUnxqktBULHNdKc6pvEgsE91H0Yd\nbxub2SbAacBddTy/q8Zqq4VC4PTTvcPNFbYrrghDSt94I+1IilPWBUHFWkN1XXPIzN4AZtdwyIGE\njTswszFAS0lr1CUNV71ttw1NQ4ccAnNTXS3KufpbcUW45ZbQZ7BgQdrRFJ986CxeB/g84/VMYN2U\nYilKJ50EnTrBiSf6loCucHXpAuuvDzfdlHYkxScfCgJYut/B/1zF7Lbb4LPP4IYb0o6kKB2fdgCl\nQII77gh5eMaMtKMpLk1q+lDS6kArM5ta6f0tgG/N7LsYYvgCWC/j9brRe0vp27fv78/LysooKyuL\nIfnSsOyy8MQT0KFDaC7affe0I0pXeXk55eXlNR4jaR7V35SYma0YPal2IISLV5s2cP75YZnq557z\nuQVxqW1jmsHAnWY2qtL7uwCnm9nRWSUSdnh61szaVvFZZ+BMM+ssqSNwi5l1rOI4H2YXg1dfhWOP\nDTOP11uv9uNLhS9DXTgWLAgb3l9+eWgucjWLY4eyBi+6JWkQsCthFcdvgMuI1mkxs3uiY24njCz6\nCTjRzMYy5DYOAAAW/UlEQVRXcR6/YGJy7bVhKYrXXw81BecFQaF5/fUwaXLaNFihphWhXCwFwQdm\ntmldP0uCXzDxMQt3UquvDnffnXY0+cELgsJz0klLRhO56sUxocwX3SpCUtjRrLwcHnww7Wicq5/r\nrguTJscv1X7g6qq2GkHii25ly++c4jdtWtjU5sUXw1IUpcxrBIXpwQfhzjvhrbd8w/vqNLhG4Itu\nFbfNNw8XUZcu8MMPaUfjXN117Ro2rvEmzoaJZfP6hiy6VYc0/M4pIb16hZ2ghg8v3bsqrxEUroqa\n7eTJsNZaaUeTf3K5DLUvulXArrkGfv0VMqZpOFcwNt8cTj3VN7xviHyZWexS1KRJWKX04YfhmWfS\njsa5uqvYle/FF9OOpDB5QeCAMJT08cfhlFPgww/TjqZ4SFpP0khJUyW9K6ln2jEVo+bNw25mPXrA\n/PlpR1N4vCBwv+vYEf7xj7BS6U8/pR1N0VgInBtNvuwI9JD055RjKkqdO4cZx1ddlXYkhSeuzuK2\nSa+34p1quWEWVildsAAeeaR01nLJVWexpKeB28zs1ei15+sYffEFtGsHb74Jm22WdjT5IY6ZxVkt\nupULfsHkzvz5sOOOYWje2WenHU1u5KIgiNbcGgVsYWbzovc8X8esX7+whMrIkaVzI1OTbPJ2jauP\nmlmLeENyhaBZs3AhdewYJpp1quuedG4pkloATwBnVxQCFXxV3Xj16AEDBsDAgXB8CS4Qns3KupXF\n0jSUC37nlHsvvBA6j8eOLf7x2UnWCCQtQ5ih/4KZ3VLpM8/XCRg7FvbfH6ZO9Q3vG9w0lE/8gknH\n5ZfDSy/Ba69B06ZpR5OcpAoCSSJsxfqDmS010t3zdXJ69gzNnPfdl3Yk6fKCwDXY4sVw0EFhQ5B+\n/dKOJjkJFgQ7E5ZomcyS/rbeZjYi+tzzdULmzAmTzR5/HHbaKe1o0uMFgYvFjz/CdtuFoaXHHJN2\nNMnwJSaK0+OPwxVXhBVKl1km7WjSkcslJlwRa9kydB6fc05Yz8W5QnHYYbDuunDzzWlHkt+8RuCy\n9sgjcNlloSOuZcu0o4mX1wiK1yefhL26x46F1q3Tjib3vGnIxa5nT5gxA4YNg0ZFVJ/0gqC4XXUV\n/Oc/8OyzpTe3wJuGXOxuuAFmz4Z//jPtSJzLXq9eoWbw9NNpR5KfvEbg6uyrr0Ln8f33w777ph1N\nPLxGUPxGjYJjjy29De+9acgl5s03w85mo0fDhhumHU3DeUFQGk48EVZeGW66Ke1IcscLApeofv3C\nnrH//ndYBriQeUFQGr7/HrbYAkaMCCuVlgIvCFyizEJVu0kTeOihwu6E84KgdDzwQNjjePTo0tia\n1TuLXaIkuPdemDDBNw93haNrV1h2WbjnnrQjyR9eI3AN9tFHYdnqZ54JK5YWIq8RlJapU6GsDKZM\ngTXXTDuaZHmNwOXExhtD//5hFuc336QdjXO122KLsLLueeelHUl+8BqBi80ll4TRRC+/HPoNConX\nCErPzz+HAuGee2CvvdKOJjleI3A51bdvaHu9+OK0I3Guds2bwx13wBln+Ib3XhC42DRuHNYjGjoU\nhgxJOxrnate5M2y9NVx9ddqRpMubhlzsxo+HvfcOMzk33zztaLLjTUOlq9g3vPemIZeKbbaB66+H\nv/41bA7iXD5bZ53Qv3XGGWFuTCnygsAlomtX2H338G+pXlyucPToETZg+te/0o4kHd405BLz66+w\n666hZnDRRWlHUzNvGnLvvAMHHBAWpVtllbSjiY8vMeFSN3MmbL89DBwIe+6ZdjTV84LAAZx5JixY\nEGbMFwsvCFxeeO01OPpoGDMGNtgg7Wiq5gWBgyUb3g8ZEmbLFwPvLHZ5Yffd4fzz4dBD4Zdf0o7G\nueqttFJYovr002HhwrSjyZ3ECwJJ+0h6T9KHkpZqKZZUJmmOpAnR4+9Jx+Ryr1evsF/sWWelHYlz\nNTv8cFhrLbjllrQjyZ1Em4YkNQbeB/YEvgDeAY4ys+kZx5QB55nZgbWcy6vQBW7uXPjLX8L6Lqec\nknY0f+RNQy7Txx+HvDpuXP42Z2YrH5qGOgAfmdmnZrYQeAw4qIrjCngle5etFVaAJ5+E3r1h7Ni0\no3GuehttBOecE2qwpVBOJ10QrAN8nvF6ZvReJgN2lDRJ0vOSCmQuqquPzTYLexd06RJ2i3IuX11w\nAXz4IQwblnYkyUt6jchsytLxwHpm9rOkfYGngU2rOrBv376/Py8rK6OsrCyGEF2udekCb78NRx0V\ntgxMY5eo8vJyysvLc5+wKxjLLgt33QXHHx+GPrdokXZEyUm6j6Aj0NfM9ole9wYWm9m1NXxnBrCt\nmc2q9L63pRaRRYvCekR/+QtcdVXa0XgfgaveCSfAaqvBjTemHUn95EMfwVhgE0mtJTUFjgCeyTxA\n0hpS2O1WUgdC4TRr6VO5YtKkCTz2WJjS//TTaUfjXPVuuCFMiJw4Me1IkpNoQWBmi4AzgReBacBg\nM5suqZukbtFhhwJTJE0EbgGOTDImlz9atYInnoDTToMPPkg7mmRIekDSN5KmpB2Lq59WrUKt9fTT\n4bff0o4mGT6z2KXu3nvh1lvDzOO02mGTahqS1AmYBwwws7ZVfO75ugAsXgy77ALHHhsKhELiS0y4\ngmAW5hXMmxeai5TCYOIk+wgktQae9YKgsE2ZEmbJF9qG9/nQR+BcraSwZeDHH8PNN6cdjXNVa9sW\nTjopLJdSbLwgcHlhueXCFpfXXRd2NnMuH116Kfz73/DKK2lHEq+k5xE4l7UNNoABA8L8gnfeCTtH\nlQKfH1M4ll8ebr897GY2eXK4gck39Zkj430ELu9cdRU8+2yoGTRtmps0vY/A1UWXLqGpKKMMz1ve\nWewK0uLFcMghoUZwxx25STPBUUODgF2BVYFvgUvN7MGMzz1fF6CZM2HrrUMz0Z/+lHY0NfOCwBWs\nOXPCzmZ/+1uY2Zk0n1ns6uqWW0LN9ZVX0hnpli0fNeQK1korhZVKe/Uq7hmdrnCdeSbMmgWPPpp2\nJA3nNQKX1wYPhj59QudxkhuKe43A1cfbb8NBB4UN71deOe1oquZNQ64onHcevPcePPccNEqoDusF\ngauvHj3C0hN33512JFXzgsAVhYULYY89YLfd4B//SCYNLwhcff34Y9jwfuhQ2GGHtKNZmvcRuKKw\nzDLw+OPQvz8MH552NM79UcuWYcP7bt0Kd8N7LwhcQVhzzVAYnHhiWIrCuXxyxBEhj/brl3Yk9eNN\nQ66g3H473H8//Oc/0Lx5fOf1piHXUB99BB07wvjxsP76aUezhPcRuKJjBscdF8ZtDxgQ3/htLwhc\nHK64AsaNy6/NlryPwBUdKexfMGVK7mYdO5etCy8MI9wKbcN7rxG4gvTJJ2GExpNPwk47Nfx8XiNw\ncRk5MsyGnzYtPza89xqBK1obbggPPhg66b7+Ou1onFtit92grCy5oc5J8BqBK2h9+8Jrr8Grr4Zh\npvXlNQIXp2+/hS23hJdfhnbt0o3FO4td0Vu8GA44ADbdtGG7m3lB4OJ2333wwANhhdKkZsRnw5uG\nXNFr1AgGDoRnnoFBg9KOxrklTj455M/77ks7ktp5jcAVhUmTYM89Q0fdllvW/fteI3BJmDIlLI8y\nZQqssUY6MXiNwJWMdu3gxhvDhjZz5qQdjXNB27bQtWv+b3jvNQJXVHr0CLtHPfVU3dplvUbgkvLT\nT7DFFmGtrD32yH36XiNwJefmm+G77+Caa9KOxLlg+eXhttuge3f45Ze0o6maFwSuqDRtCkOGhDWJ\nXnop7WicCw44INQKrr027Uiq5k1DriiNGhUmm731FrRuXfvx3jTkkvb559C+PYweDZtskrt0vWnI\nlaxddw3rvnTpAvPnpx2Nc7DeemHb1e7dw+KJ+cQLAle0zj033HmdeWb+XXiuNPXsCd9/n39zXrxp\nyBW1efPCGvE9e8Jpp1V/nDcNuVwZMwYOPjh3G977EhPOAR98ADvvDM89Bx06VH2MFwQul7p3D//e\ndVfyaXlB4Fxk2LBQKxg7Flq1WvpzLwhcLlVseP/kk6HGmiTvLHYuctBBcOyxcOSRsGhR2tG4Utey\nJdxwA5x+en7kRy8IXMm4/HJo3DiM3HAubUcdFWqn+bDhvTcNuZLy/few3XZhXaIuXZa8701DLg0f\nfhh22pswIQwvTUJeNA1J2kfSe5I+lHRRNcf0iz6fJKl90jG50rXaavDEE6FKPn168ullk/9d6dpk\nEzjrrNB/laZECwJJjYHbgX2AzYGjJP250jGdgY3NbBPgNCAH/ejZKy8vL7m0iz3d7bYLaxEdcgjM\nnZtcOtnk/6Qk9bsspPMWSqwXXxyGkl55ZbznrYukawQdgI/M7FMzWwg8BhxU6ZgDgYcBzGwM0FJS\nSit3L80LguJM9+SToVMnOPHERCebZZP/E1EofwSTPG+hxLrssmEY6fXXl/PTT7GeOmtJFwTrAJ9n\nvJ4ZvVfbMesmHJdz9OsH//1v6C9ISDb53zl23x3WXz+9De+TLgiyvdeq3JHhvWcuccstB0OHJloQ\neD52WdtrL3joIZg8OfdpJzpqSFJHoK+Z7RO97g0sNrNrM465Gyg3s8ei1+8Bu5rZN5XO5ReVS1Tc\no4ayzP+er13iasvbTRJOfyywiaTWwJfAEcBRlY55BjgTeCy6cH6sXAhA/BepczlQa/73fO3yQaIF\ngZktknQm8CLQGOhvZtMldYs+v8fMnpfUWdJHwE/AiUnG5FyuVJf/Uw7LuaUUzIQy55xzycj7JSbS\nmpAjaT1JIyVNlfSupJxO+ZDUWNIESc/mON2Wkp6QNF3StKi5Lhfp9o5+11MkPSpp2YTSeUDSN5Km\nZLy3iqSXJX0g6SVJLZNIu4pYYs/bVf18MZ039utB0nKSxkiaGOW1q+OINeP8sV9Dkj6VNDk679sx\nnTP2a07Sn6IYKx5zavw/M7O8fRCq0x8BrYFlgInAn3OU9prA1tHzFsD7uUo7SvM84BHgmRz/zh8G\nToqeNwFWykGarYFPgGWj14OBExJKqxPQHpiS8d51wIXR84uAa3LwMyeSt6v6+WKKN5HrAWiekdfe\nAnaOMebYryFgBrBKzL/bRK85wg3/V8B61R2T7zWC1CbkmNnXZjYxej4PmA6snYu0Ja0LdAbuZ+mh\ntUmmuxLQycwegNDGbWZzcpD0/4CFQHNJTYDmwBdJJGRmbwCzK739+6TG6N+Dk0i7kkTydjU/X4Ml\ndT2Y2c/R06aEwnFWQ88JiV9DsZ0vR9fcnsDHZvZ5dQfke0GQFxNyolEf7YExOUryZuACYHGO0qvQ\nBvhO0oOSxku6T1LzpBM1s1nAjcBnhNE1P5rZK0mnm2ENWzJS7RsgFzPb8yJv10ec14OkRpImEn7v\nI81sWkPPGUnqGjLgFUljJZ0aw/lycc0dCTxa0wH5XhCk3pMtqQXwBHB2dCeUdHr7A9+a2QRyWBuI\nNAG2Ae40s20Io7guTjpRSRsB5xCaSdYGWkg6Jul0q2KhLp2LfJd63q6PuK8HM1tsZlsTVhPYRVJZ\nQ8+Z8DW0k5m1B/YFekjq1MDzJXrNSWoKHAAMqem4fC8IvgAyF2ddj3DnlBOSlgGGAv8ys6dzlOyO\nwIGSZgCDgN0lDchR2jOBmWb2TvT6CUImTdp2wH/M7AczWwQ8Sfg95Mo3ktYEkLQW8G0O0kw1b9dH\nktdD1BwynJAXGiqxa8jMvor+/Q54itDE1xBJX3P7AuOieKuV7wXB7xNyopLtCMIEtMRJEtAfmGZm\nt+QiTQAz62Nm65lZG0KV7jUzOz5HaX8NfC5p0+itPYGpOUj6PaCjpGbR731PIK4mgmw8A5wQPT8B\nyEWhn1rero8krgdJq1WM0JLUDPg/YEJDz5vUNSSpuaQVoufLA3sBDRqdlYNr7ihCYVhrIHn9IJRo\n7xNGWPTOYbo7E9oXJxIy5wRgnxz/7LuS+1FD7YB3gEmEO/PERw1F6V5IuACmEDpsl0konUGEfogF\nhDb6E4FVgFeAD4CXgJY5+pljz9sZP9+vFT9fTOeN/XoA2gLjo3NOBi5I4Hcc2zVEaM+fGD3ejfH/\nLJFrDlge+B5YobZjfUKZc86VuHxvGnLOOZcwLwicc67EeUHgnHMlzgsC55wrcV4QOOdcifOCwDnn\nSpwXBM45V+K8IMiCpNck7VXpvXMk3VnDdzaV9Hy0xv04SYMlrS6pLFobPHOt8N0bGF+XaI341yWt\nEr23kaTHavjOI9Fa+FMk9Y9W/URSU0mvRHEd1sC4yiVtEz3v05BzufyRxvUgabikFZP4eaLzPySp\nS8bP0iyptPKRFwTZGUSYqp7pCKpZ0U/ScsBzwB1mtqmZbQvcCbQiLDb2upm1z3i81sD4ziSs0XIP\ncHT03hXA32r4zr/MbDMzaws0A06J3t+GsPZaezOrcaGqLGTOVuzdwHO5/JHz68HM9jOz/8X6U1RK\ngiX59WzCUuglwwuC7AwF9su4a24NrG1mb1Zz/NGERdSGV7xhZqPMbCrJrCi6GFiOMKV8QbQi4ldm\n9nF1XzCzFzJevgOsI6kV8C9g++jObMOKAyRtJmlMxuvWkiZHz/eIltCdHNUummacW5KuAZpF5xwY\nrdkyXGFnqimSDo/jl+ByJufXg8LOYKtE+W66pHujWvCLUUGTeexKkj7NeL28pM8UdizbWtJbkiZJ\nelJ/3I1Oks4irIA7UtKrCstkPxTl08mSzskm3kLjBUEWLKyX/zZhowsId0ODa/jKFsC4Gj7vVKkq\n3KbyAZIeq3RMxePYKs53NWGtnP0IG5z8nVAjqJXCipLHAiMsrFB4MvBGdGf2ScVxZvYe0DS66CHc\nAT4WXYQPAoeb2VaEZXW7ZyRhZnYxMD8653GENXa+MLOtoxrJiGxidfkhjeuBP9YuNwZuN7MtgR+B\nLpXimwNM1JIlrfcn5O/fgAGENY3aEda1uuyPX7XbCGs1lZnZHoR9F9Y2s7ZR/n6whp+jYHlBkL3M\n6vAR1L6iX013OhV/aCseMyofYGZHVjqm4vGvKo59xcy2M7ODCLtrDQc2kzQkunOqqb3zTmCUmf07\ni7gfJ/zsAIcTLv4/ATPM7KPo/YeBXWo4B4QFxv5P0jWSdk64yu+SkdProZIZZjY5ej6OsI9FZYNZ\nklePBAYr7Aa2koVd3CC7vPoxsKGkfpL2JuymV3S8IMjeM8AektoT9lmtabncqcC2DUks6kyrqkZw\nXA3faU5YRvlOoC9wPPAmUOUmL5IuA1Y1s/OyDGswcLikTQh3T1U1PdVa1TezD4n21QX+KemSLNN3\n+SOn10Mlv2Y8/41QC63sWWAfSSsT+r2q6ofLJq/+CGwFlAOnE7a+LDpV/QJdFcxsnqSRhKphjdu+\nRZ/3ltTZzJ4HkLQL8EMd0jui9qOWcgFwq5ktyqgFGKEz+A8knUJYT32POsT0iaTfgEsITVAQllFu\nLWmjqGA4jnDRVLZQUpMotrWA2Wb2iKQ5hOYoV0ByfT3UM753gH7AsxaWWZ4jaXZUC32T6vPqXGBF\nYJakVYGFZvakpA+AgUnFnCavEdTNIMIa6jVWg83sF0K75FkKw+WmEu4mviP8Ya7cJnpIQwOTtDaw\nvZlVbG5yG6ET+DSiCzXqoF0z+vwuYHVgdBTD3yvCp+ZtFAcTahiPZ/ysJwJDos7jRcDdVXzvXmCy\npIGE3+EYSRMIhUpW/Rku7+TyerBqnlf1usJgQkd1Zv/FCcD1kiYR7vQvr+J79wIjJL1K2Ed6ZJRX\nB5KDrVvT4PsROOdcifMagXPOlTjvI2gASW0Jw9Ey/WJmO6QRj3Np8uuhcHnTkHPOlThvGnLOuRLn\nBYFzzpU4Lwicc67EeUHgnHMlzgsC55wrcf8POf/W21JRHsEAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "DC and AC load line shown in figure.\n" ] } ], "source": [ "from numpy import arange\n", "%matplotlib inline\n", "from matplotlib.pyplot import plot,xlabel,ylabel,show,title,subplot\n", "# given data\n", "V_CC= 10## V\n", "V_BE= 0.7## V\n", "R1= 2.2## kΩ\n", "R2= 10## kΩ\n", "R_E= 1## kΩ\n", "R_C= 3.6## kΩ\n", "R= 1.5## kΩ\n", "# The base voltage\n", "V_B= R1*V_CC/(R1+R2)## V\n", "# The emitter current,\n", "I_E= (V_B-V_BE)/R_E## mA\n", "# The collector current,\n", "I_CQ= I_E## mA\n", "# The collector emitter voltage,\n", "V_CE= V_CC-I_E*(R_C+R_E)## V\n", "V_CEQ= V_CE## V\n", "# The saturation current,\n", "I_Csat= V_CC/(R_C+R_E)## mA\n", "V_CEcutoff= V_CC## V\n", "V_CE= arange(0,0.1+V_CEcutoff,0.1) # V\n", "I_C= (V_CC-V_CE)/(R_C+R_E)## mA\n", "# The dc and ac load line\n", "subplot(121)\n", "plot(V_CE,I_C)\n", "xlabel(\"V_CE in volts\")\n", "ylabel(\"I_C in mA\")\n", "title(\"DC load line\")\n", "r_L= R_C*R/(R_C+R)## kΩ\n", "I_Csat= I_CQ+V_CEQ/r_L## mA\n", "Vce_cutoff= V_CEQ+I_CQ*r_L## V\n", "x=[0,Vce_cutoff]#\n", "y=[I_Csat, 0]\n", "subplot(122)\n", "plot(x,y)\n", "xlabel(\"V_CE in volts\")\n", "ylabel(\"I_C in mA\")\n", "title(\"AC load line\")\n", "show()\n", "print \"DC and AC load line shown in figure.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2 Page No 221" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The cut off value of V_CE = 18.66 volts\n" ] } ], "source": [ "# given data\n", "V_BE= 0.7## V\n", "V_CC= 30## V\n", "R_E= 8.2## Ω\n", "R1= 22## Ω\n", "R2= 47## Ω\n", "R_C= 10## Ω\n", "R_L= 30##in Ω\n", "# The base to ground voltage,\n", "V_B= R1*V_CC/(R1+R2)## V\n", "# The emitter current,\n", "I_E= (V_B-V_BE)/R_E## A\n", "# The collector current,\n", "I_CQ= I_E## A\n", "# The collector emitter voltage,\n", "V_CEQ= V_CC-I_E*(R_E+R_C)## V\n", "# The load resistance,\n", "r_L= R_C*R_L/(R_C+R_L)## Ω\n", "I_Csat= I_E+V_CEQ/r_L## A\n", "Vce_cutoff= V_CEQ+I_CQ*r_L## V\n", "print \"The cut off value of V_CE = %.2f volts\"%Vce_cutoff" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.3 Page No 223" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The cut off value of V_CE = 15.35 volts\n" ] } ], "source": [ "# given data\n", "V_BE= 0.7## V\n", "V_CC= 20## V\n", "V_B= 10## V\n", "R_E= 50## Ω\n", "# The collector current,\n", "I_CQ= (V_B-V_BE)/R_E## A\n", "# The collector emitter voltage,\n", "V_CEQ= V_CC-I_CQ*R_E## V\n", "R1= 50## Ω\n", "R2= 50## Ω\n", "# The load resistance,\n", "r_L= R1*R2/(R1+R2)## Ω\n", "I_Csat= I_CQ+V_CEQ/r_L## A\n", "Vce_cutoff= V_CEQ+I_CQ*r_L## V\n", "print \"The cut off value of V_CE = %.2f volts\"%Vce_cutoff" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.4 Page No 227" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The ac compliance = 5.71 volts\n" ] } ], "source": [ "# given data\n", "V_E= 1.0## V\n", "R_E=1*10**3## Ω\n", "V_CC= 10.0## V\n", "R_C= 4.0*10**3## Ω\n", "R_L= 10.0*10**3## Ω\n", "# The collector current,\n", "I_CQ= V_E/R_E## A\n", "I_C= I_CQ## A\n", "# The collector emitter voltage,\n", "V_CEQ= V_CC-I_C*(R_C+R_E)## V\n", "# The load resistance,\n", "r_L= R_L*R_C/(R_L+R_C)## Ω\n", "#The ac compliance,\n", "PP= 2*I_CQ*r_L## V\n", "print \"The ac compliance = %.2f volts\"%PP" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.5 Page No 227" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "When R_L = 1 MΩ, the value of 2I_CQrL = 7.97 volts\n", "When R_L = 100 kΩ, the value of 2I_CQrL = 7.69 volts\n", "When R_L = 10 kΩ, the value of 2I_CQrL = 5.71 volts\n", "When R_L = 1 kΩ, the value of 2I_CQrL = 1.60 volts\n", "When R_L = 100 Ω, the value of 2I_CQrL = 0.20 volts\n" ] } ], "source": [ "# given data\n", "V_E= 1.0## V\n", "R_E=1*10**3## Ω\n", "R_C= 4.0*10**3## Ω\n", "V_CC= 10.0## V\n", "I_CQ= V_E/R_E## A\n", "I_C= I_CQ## A\n", "V_CEQ= V_CC-I_C*(R_C+R_E)## V\n", "# (i) when R_L = 1 MΩ, the value of 2I_CQrL\n", "R_L= 1*10**6## Ω\n", "r_L= R_L*R_C/(R_L+R_C)## Ω\n", "I_CQrL= I_CQ*r_L##in A\n", "print \"When R_L = 1 MΩ, the value of 2I_CQrL = %.2f volts\"%(2*I_CQrL)\n", "# (ii) when R_L = 100 kΩ, the value of 2I_CQrL\n", "R_L= 100*10**3## Ω\n", "r_L= R_L*R_C/(R_L+R_C)## Ω\n", "I_CQrL= I_CQ*r_L##in A\n", "print \"When R_L = 100 kΩ, the value of 2I_CQrL = %.2f volts\"%(2*I_CQrL)\n", "# (iii) when R_L = 10 kΩ, the value of 2I_CQrL\n", "R_L= 10*10**3## Ω\n", "r_L= R_L*R_C/(R_L+R_C)## Ω\n", "I_CQrL= I_CQ*r_L##in A\n", "print \"When R_L = 10 kΩ, the value of 2I_CQrL = %.2f volts\"%(2*I_CQrL)\n", "# (iv) when R_L = 1 kΩ, the value of 2I_CQrL\n", "R_L= 1*10**3## Ω\n", "r_L= R_L*R_C/(R_L+R_C)## Ω\n", "I_CQrL= I_CQ*r_L##in A\n", "print \"When R_L = 1 kΩ, the value of 2I_CQrL = %.2f volts\"%(2*I_CQrL)\n", "# (v) when R_L = 100 Ω, the value of 2I_CQrL\n", "R_L= 100## Ω\n", "r_L= R_L*R_C/(R_L+R_C)## Ω\n", "I_CQrL= I_CQ*r_L##in A\n", "print \"When R_L = 100 Ω, the value of 2I_CQrL = %.2f volts\"%(2*I_CQrL)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.6 Page No 230" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of R1 is : 40.40 kΩ (standard value : 39 kΩ)\n", "The value of R2 is : 7.60 kΩ (standard value : 7.5 kΩ)\n", "The value of R_E is : 240.00 Ω (standard value : 240 Ω)\n", "The value of R_C is : 0.96 kΩ (standard value : 1 kΩ)\n" ] } ], "source": [ "# given data\n", "V_CC= 12## V\n", "V_BE= 0.7## V\n", "I_CQ= 5*10**-3## A\n", "bita= 200## unit less\n", "# The emitter voltage,\n", "V_E= 0.1*V_CC## V\n", "# The emitter current,\n", "I_E= I_CQ## A\n", "# The emitter resistance,\n", "R_E= V_E/I_E## Ω\n", "# The collector resistance,\n", "R_C= 4*R_E## Ω\n", "# The base voltage,\n", "V_B= V_E+V_BE## V\n", "I_C= I_CQ## A\n", "I_B= I_C/bita## A\n", "R= V_CC/(10*I_B)## Ω\n", "R2= V_B/(10*I_B)## Ω\n", "R1= R-R2## Ω\n", "R1= R1*10**-3## k ohm\n", "R2= R2*10**-3## k ohm\n", "R_C= R_C*10**-3## k ohm\n", "print \"The value of R1 is : %.2f\"%(R1),\" kΩ (standard value : 39 kΩ)\"\n", "print \"The value of R2 is : %.2f\"%(R2),\" kΩ (standard value : 7.5 kΩ)\"\n", "print \"The value of R_E is : %.2f\"%(R_E),\" Ω (standard value : 240 Ω)\"\n", "print \"The value of R_C is : %.2f\"%(R_C),\" kΩ (standard value : 1 kΩ)\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.7 Page No 231" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The ac compliance = 5.15 volts\n" ] } ], "source": [ "# given data\n", "I_CQ= 5*10**-3## A\n", "R_C= 1*10**3## Ω\n", "R_L= 1*10**3## Ω\n", "# The load resistance\n", "r_L= R_C*R_L/(R_C+R_L)## Ω\n", "# The ac compliance,\n", "PP= 2*I_CQ*r_L## V\n", "I_CQ= 5.15*10**-3## A\n", "PP= 2*I_CQ*r_L## V\n", "print \"The ac compliance = %.2f volts\"%PP" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.9 Page No 234" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of R1 is : 27.97 kΩ (standard value : 39 kΩ)\n", "The value of R2 is : 6.83 kΩ (standard value : 7.5 kΩ)\n", "The value of R_E is : 240.00 Ω (standard value : 240 Ω)\n", "The value of R_C is : 1.00 kΩ (standard value : 1 kΩ)\n" ] } ], "source": [ "# given data\n", "V_CC= 12.0## V\n", "V_BE= 0.7## V\n", "R_C= 1*10**3## Ω\n", "R_E= 240.0## Ω\n", "r_L= 500.0## Ω\n", "bita= 200.0## unit less\n", "# The required collector current,\n", "I_CQ= V_CC/(R_C+R_E+r_L)## A\n", "# The emitter voltage,\n", "V_E= I_CQ*R_E## V\n", "# The base voltage,\n", "V_B= V_E+V_BE## V\n", "I_C= I_CQ## A\n", "I_B= I_C/bita## A\n", "# The total resistance of the voltage divider,\n", "R= V_CC/(10*I_B)## Ω\n", "R2= V_B/(10*I_B)## Ω\n", "R1= R-R2## Ω\n", "R1= R1*10**-3## k ohm\n", "R2= R2*10**-3## k ohm\n", "R_C= R_C*10**-3## k ohm\n", "print \"The value of R1 is : %.2f\"%(R1),\" kΩ (standard value : 39 kΩ)\"\n", "print \"The value of R2 is : %.2f\"%(R2),\" kΩ (standard value : 7.5 kΩ)\"\n", "print \"The value of R_E is : %.2f\"%(R_E),\" Ω (standard value : 240 Ω)\"\n", "print \"The value of R_C is : %.2f\"%(R_C),\" kΩ (standard value : 1 kΩ)\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.10 Page No 236" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The maximum ac load power = 0.45 mW\n" ] } ], "source": [ "# given data\n", "R_C= 3.6## kΩ\n", "R_L= 1.5## kΩ\n", "V_CEQ= 4.94## V\n", "I_CQ= 1.1## mA\n", "# The quiescent power dissipation of the transistor,\n", "P_DQ= V_CEQ*I_CQ## mW\n", "r_L= R_C*R_L/(R_C+R_L)## kΩ\n", "PP= 2*I_CQ*r_L## V\n", "# The maximum ac load power,\n", "P_Lmax= PP**2/(8*R_L)## mW\n", "print \"The maximum ac load power = %.2f mW\"%P_Lmax" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.11 Page No 240" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The efficiency = 5.58 %\n" ] } ], "source": [ "# given data\n", "V_E= 1.71## V\n", "R_E= 240## Ω\n", "V_CC= 12## V\n", "R_C= 1*10**3## Ω\n", "R_L= 1*10**3## Ω\n", "I= 0.355*10**-3## A\n", "I_CQ= V_E/R_E## A\n", "I_C= I_CQ## A\n", "# The collector emitter voltage,\n", "V_CEQ= V_CC-I_C*(R_C+R_E)## V\n", "r_L= R_C*R_L/(R_C+R_L)## Ω\n", "PP= 2*V_CEQ## V\n", "# The maximum ac load power,\n", "P_Lmax= PP**2/(8*R_L)## W\n", "I_CC= I_C+I## A\n", "P_CC= V_CC*I_CC## W\n", "# The efficiency \n", "Eta= P_Lmax/P_CC*100## %\n", "print \"The efficiency = %.2f %%\"%Eta" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.12 Page No 244" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The case temperature = 130.00 °C\n", "The power rating = 60.00 watt\n" ] } ], "source": [ "# given data\n", "Ta= 70## ambient temperature = %.2f °C\n", "P= 30## power dissipation = %.2f W\n", "theta_CS= 0.5## °C/W\n", "theta_SA= 1.5## °C/W\n", "# The case temperature\n", "Tc= Ta+P*(theta_CS+theta_SA)## °C\n", "# The power rating\n", "P_Dmax= 60## W\n", "print \"The case temperature = %.2f °C\"%Tc\n", "print \"The power rating = %.2f watt\"%P_Dmax" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }