{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8 Common-Base Approximations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1 Page No 209" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of V_CB = 20.35 volts\n" ] } ], "source": [ "# given data\n", "V_EE= 10## V\n", "V_BE= 0.7## V\n", "R_E= 20*10**3## Ω\n", "V_CC= 25## V\n", "R_C= 10*10**3## Ω\n", "# The emitter current\n", "I_E= (V_EE-V_BE)/R_E## A\n", "I_C= I_E## A\n", "# The collector to base voltage,\n", "V_CB= V_CC-I_C*R_C## V\n", "print \"The value of V_CB = %.2f volts\"%V_CB" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2 Page No 209" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of V_CB = 1.28 volts\n" ] } ], "source": [ "# given data\n", "V_EE= 12## V\n", "V_BE= 0.7## V\n", "R_E= 5.6*10**3## Ω\n", "V_CC= 15## V\n", "R_C= 6.8*10**3## Ω\n", "# The emitter current,\n", "I_E= (V_EE-V_BE)/R_E## A\n", "I_C= I_E## A\n", "# The collector to base voltage\n", "V_CB= V_CC-I_C*R_C## V\n", "print \"The value of V_CB = %.2f volts\"%V_CB\n", "\n", "# Note : The answer in the book is not accurate." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3 Page No 211" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The output voltage = 390.00 mV\n" ] } ], "source": [ "# given data\n", "V_EE= 15## V\n", "V_BE= 0.7## V\n", "R_E= 22*10**3## Ω\n", "Vin= 2*10**-3## V\n", "V= 25*10**-3## V\n", "R1= 10*10**3## Ω\n", "R2= 30*10**3## Ω\n", "I_E= (V_EE-V_BE)/R_E## A\n", "# The ac resistance of emitter diode,\n", "r_desh_e= V/I_E## Ω\n", "r_L= R1*R2/(R1+R2)## Ω\n", "# The voltage gain\n", "A= r_L/r_desh_e#\n", "# The output voltage \n", "Vout= A*Vin## V\n", "Vout= Vout*10**3## mV\n", "print \"The output voltage = %.2f mV\"%Vout" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4 Page No 212" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The output voltage = 8.72 mV\n" ] } ], "source": [ "# given data\n", "V_EE= 10## V\n", "V_BE= 0.7## V\n", "R_E= 6.8*10**3## Ω\n", "Rs= 100## Ω\n", "R1= 3.3*10**3## Ω\n", "R2= 1.5*10**3## Ω\n", "V= 25*10**-3## V\n", "Vs= 1*10**-3## V\n", "I_E= (V_EE-V_BE)/R_E## A\n", "r_desh_e= V/I_E## Ω\n", "Zin= r_desh_e## Ω\n", "# The input voltage to the emitter,\n", "Vin= Zin*Vs/(Rs+Zin)## V\n", "r_L= R1*R2/(R1+R2)## Ω\n", "# The voltage gain,\n", "A= r_L/r_desh_e#\n", "# The output voltage \n", "Vout= A*Vin## V\n", "Vout= Vout*10**3## mV\n", "print \"The output voltage = %.2f mV\"%Vout" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }