{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6 Common-Emitter Approximations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.2 Page No 153" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The total voltage across the 10 Ω resistance = 9.99 mV is :\n" ] } ], "source": [ "# given data\n", "R1= 10.0## Ω\n", "R2= 10010## Ω\n", "V1= 10## V\n", "# The total voltage across the 10 Ω resistance \n", "V= R1/R2*V1## V\n", "V= V*10**3## mV\n", "print \"The total voltage across the 10 Ω resistance = %.2f mV is :\"%V" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.3 Page No 156" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The total current through diode = 57.20 µA\n" ] } ], "source": [ "# given data\n", "R= 10*10**3## Ω\n", "V_CC= 15## V\n", "V_BE= 0.7## V\n", "Vt= 25*10**-3## V\n", "Vp= 1*10**-3## V\n", "I= (V_CC-V_BE)/R## A\n", "r_ac= Vt/I## Ω\n", "# The total current through diode \n", "Ip= Vp/r_ac## A\n", "Ip= Ip*10**6## µA\n", "print \"The total current through diode = %.2f µA\"%Ip" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.4 Page No 162" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The output voltage = 381.26 mV\n", "The input impedance of amplifier = 4.14 kΩ\n" ] } ], "source": [ "# given data\n", "R1= 47*10**3## Ω\n", "R2= 15*10**3## Ω\n", "R_E= 8.2*10**3## Ω\n", "R_C= 10*10**3## Ω\n", "R3= 3.3*10**3## Ω\n", "bita= 200#\n", "V_CC= 30## V\n", "V_BE= 0.7## V\n", "Vin= 5*10**-3##in V\n", "Vt= 25*10**-3## V\n", "V2= R2*V_CC/(R1+R2)## V\n", "# DC voltage across emitter\n", "V_E= V2-V_BE## V\n", "# Emitter current\n", "I_E= V_E/R_E## A\n", "r_desh_e= Vt/I_E## Ω\n", "r_L= R_C*R3/(R_C+R3)##in Ω\n", "A= r_L/r_desh_e#\n", "# The output voltage \n", "Vout= A*Vin## V\n", "Zin_base= bita*r_desh_e## Ω\n", "# The input impedance of amplifier \n", "Zin= R1*R2*Zin_base/(R2*Zin_base+R1*Zin_base+R1*R2)## Ω\n", "Vout= Vout*10**3## mV\n", "Zin= Zin*10**-3## k ohm\n", "print \"The output voltage = %.2f mV\"%Vout\n", "print \"The input impedance of amplifier = %.2f kΩ\"%Zin" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.5 Page No 163" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The base voltage = 1.80 V\n", "The collector voltage = 6.04 V\n" ] } ], "source": [ "# given data\n", "R1= 10*10**3## Ω\n", "R2= 2.2*10**3## Ω\n", "R_C= 3.6*10**3## Ω\n", "V_CC= 10## V\n", "I_C= 1.1*10**-3## A\n", "# The base voltage \n", "V_B= R2*V_CC/(R1+R2)## V\n", "# The collector voltage \n", "V_C= V_CC-I_C*R_C## V\n", "print \"The base voltage = %.2f V\"%V_B\n", "print \"The collector voltage = %.2f V\"%V_C" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.6 Page No 164" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The output voltage = 158.40 mV\n" ] } ], "source": [ "# given data\n", "V2= 1.1## V\n", "Vin= 1*10**-3## V\n", "Vt= 25*10**-3## V\n", "R2= 1*10**3## Ω\n", "R_C= 3.6*10**3## Ω\n", "I_E= V2/R2## A\n", "# Emitter diode ac resistance\n", "r_desh_e= Vt/I_E## Ω\n", "A= R_C/r_desh_e#\n", "# The output voltage \n", "Vout= A*Vin## V\n", "Vout= Vout*10**3## mV\n", "print \"The output voltage = %.2f mV\"%Vout" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.7 Page No 167" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The minimum voltage gain = 89.00\n", "The maximum voltage gain = 178.00\n" ] } ], "source": [ "# given data\n", "R_C= 10*10**3## Ω\n", "R_L= 82*10**3## Ω\n", "r_E= 1*10**3## Ω\n", "r_desh_e_min= 50## Ω\n", "r_desh_e_max= 100## Ω\n", "r_L= R_C*R_L/(R_C+R_L)## Ω\n", "# The minimum voltage gain \n", "A_min= r_L/r_desh_e_max#\n", "# The maximum voltage gain \n", "A_max= r_L/r_desh_e_min#\n", "print \"The minimum voltage gain = %.2f\"%A_min\n", "print \"The maximum voltage gain = %.2f\"%A_max" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.8 Page No 169" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The input impedance of the amplifier = 10.79 kΩ\n" ] } ], "source": [ "# given data\n", "bita= 200#\n", "R1= 47*10**3## Ω\n", "R2= 15*10**3## Ω\n", "r_E= 1*10**3## Ω\n", "r_desh_e= 50## Ω\n", "Zin_base= bita*(r_E+r_desh_e)## Ω\n", "# The input impedance of the amplifier \n", "Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base)## Ω\n", "Zin= Zin*10**-3## k ohm\n", "print \"The input impedance of the amplifier = %.2f kΩ\"%Zin" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.9 Page No 171" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The input impedance of each stage = 1.18 kΩ\n" ] } ], "source": [ "# given data\n", "bita= 150#\n", "R1= 10*10**3## Ω\n", "R2= 2.2*10**3## Ω\n", "R_E= 1*10**3## Ω\n", "V_CC= 10## V\n", "V_BE= 0.7## V\n", "Vt= 25*10**-3## V\n", "V_B= R2*V_CC/(R1+R2)## V\n", "V_E= V_B-V_BE## V\n", "# The emitter current,\n", "I_E= V_E/R_E## A\n", "r_desh_e= Vt/I_E## Ω\n", "Zin_base= bita*r_desh_e## Ω\n", "# The input impedance of each stage \n", "Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base)## Ω\n", "Zin= Zin*10**-3## k ohm\n", "print \"The input impedance of each stage = %.2f kΩ\"%Zin" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.10 Page No 172" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The ac output voltage across the final load resistor = 0.99 volts\n" ] } ], "source": [ "# given data\n", "bita= 150#\n", "R1= 10*10**3## Ω\n", "R2= 2.2*10**3## Ω\n", "R_E= 1*10**3## Ω\n", "Rs= 1*10**3## Ω\n", "R_C= 3.6*10**3## Ω\n", "R_L= 1.5*10**3## Ω\n", "V_CC= 10## V\n", "V_BE= 0.7## V\n", "Vt= 25*10**-3## V\n", "Vin= 1*10**-3## V\n", "V_B= R2*V_CC/(R1+R2)## V\n", "V_E= V_B-V_BE## V\n", "I_E= V_E/R_E## A\n", "r_desh_e= Vt/I_E## Ω\n", "Zin_base= bita*r_desh_e## Ω\n", "Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base)## Ω\n", "Vb1= Zin*Vin/(Rs+Zin)## V\n", "r_L= R_C*Zin/(R_C+Zin)## Ω\n", "V_B= R2*V_CC/(R1+R2)## V\n", "V_E= V_B-V_BE## V\n", "I_E= V_E/R_E## A\n", "r_desh_e= Vt/I_E## Ω\n", "A1= r_L/r_desh_e#\n", "Vb2= A1*Vb1## V\n", "r_L= R_C*R_L/(R_C+R_L)## Ω\n", "A2= r_L/r_desh_e#\n", "# The ac output voltage across the final load resistor \n", "Vout= A2*Vb2## V\n", "A= A1*A2#\n", "Vout= A*Vb1## V\n", "print \"The ac output voltage across the final load resistor = %.2f volts\"%Vout" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6.11 Page No 173" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The ac voltage at the final output = 18.77 mV\n" ] } ], "source": [ "# given data\n", "bita= 150#\n", "R1= 10*10**3## Ω\n", "R2= 2.2*10**3## Ω\n", "R_C= 3.6*10**3## Ω\n", "Rs= 1*10**3## Ω\n", "R_L= 1.5*10**3## Ω\n", "r_E= 180## Ω\n", "R_E= 1*10**3## Ω\n", "V_CC= 10## V\n", "V_BE= 0.7## V\n", "Vt= 25*10**-3## V\n", "Vin= 1*10**-3## V\n", "V_B= R2*V_CC/(R1+R2)## V\n", "V_E= V_B-V_BE## V\n", "I_E= V_E/R_E## A\n", "r_desh_e= Vt/I_E## Ω\n", "Zin_base= bita*(r_desh_e+r_E)## Ω\n", "Zin= R1*R2*Zin_base/(R1*R2+R1*Zin_base+R2*Zin_base)## Ω\n", "r_L= R_C*Zin/(R_C+Zin)## Ω\n", "A1= r_L/(r_E+r_desh_e)#\n", "r_L= R_C*R_L/(R_C+R_L)## Ω\n", "A2= r_L/(r_desh_e+r_E)#\n", "A= A1*A2#\n", "Vb1= Zin*Vin/(Rs+Zin)## V\n", "# The ac voltage at the final output \n", "Vout= A*Vb1## V\n", "Vout= Vout*10**3## mV\n", "print \"The ac voltage at the final output = %.2f mV\"%Vout" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }