{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4 Diode Applications" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.1 Page No 83" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The dc voltage across the load resistor = 17.99 volts\n", "The peak inverse voltage across the diode = 56.58 volts\n", "The dc current through the diode = 0.90 A\n" ] } ], "source": [ "# given data\n", "V2rms= 40.0## V\n", "R_L= 20.0## Ω\n", "V2peak= V2rms/0.707## V\n", "Vout_peak= V2peak## V\n", "# The dc voltage across the load resistor \n", "Vdc=0.318*Vout_peak## V\n", "#The peak inverse voltage across the diode \n", "PIV= V2peak## V\n", "Idc= Vdc/R_L## A\n", "# The dc current through the diode \n", "I_diode= Idc## A\n", "print \"The dc voltage across the load resistor = %.2f volts\"%Vdc\n", "print \"The peak inverse voltage across the diode = %.2f volts\"%PIV\n", "print \"The dc current through the diode = %.2f A\"%I_diode" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.2 Page No 86" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The dc load voltage = 17.99 volts\n", "The peak inverse voltage across each diode = 56.58 volts\n", "The dc current through each diode = 0.45 A\n" ] } ], "source": [ "# given data\n", "Vrms= 40.0## V\n", "R_L= 20.0## Ω\n", "V2peak= Vrms/0.707## V\n", "Vout_peak= V2peak/2## V\n", "# The dc load voltage \n", "Vdc=0.636*Vout_peak## V\n", "# The peak inverse voltage across each diode \n", "PIV= V2peak## V\n", "Idc= Vdc/R_L## A\n", "# The dc current through each diode \n", "I_diode= Idc/2## A\n", "print \"The dc load voltage = %.2f volts\"%Vdc\n", "print \"The peak inverse voltage across each diode = %.2f volts\"%PIV\n", "print \"The dc current through each diode = %.2f A\"%I_diode" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.3 Page No 88" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The dc load voltage = 35.98 volts\n", "The peak inverse voltage across each diode = 56.58 volts\n", "The dc current through each diode = 0.90 A\n" ] } ], "source": [ "# given data\n", "Vrms= 40.0## V\n", "R_L= 20.0## Ω\n", "V2peak= Vrms/0.707## V\n", "Vout_peak= V2peak## V\n", "# The value of Vdc \n", "Vdc=0.636*Vout_peak## V\n", "# The value of PIV \n", "PIV= V2peak## V\n", "Idc= Vdc/R_L## A\n", "#The value of I_diode\n", "I_diode= Idc/2## A\n", "print \"The dc load voltage = %.2f volts\"%Vdc\n", "print \"The peak inverse voltage across each diode = %.2f volts\"%PIV\n", "print \"The dc current through each diode = %.2f A\"%I_diode" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6 Page No 94" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The peak-to-peak ripple = 4.72 volts\n", "The dc load voltage = 54.24 volts\n" ] } ], "source": [ "# given data\n", "Vdc= 56.6## V\n", "R_L= 100.0## Ω\n", "f=120.0## Hz\n", "C= 1000.0## µF\n", "C= C*10**-6## F\n", "V2peak= Vdc## V\n", "Idc= Vdc/R_L## A\n", "# The peak-to-peak ripple \n", "Vrip= Idc/(f*C)## V\n", "# The dc load voltage \n", "Vdc= V2peak-Vrip/2## V\n", "print \"The peak-to-peak ripple = %.2f volts\"%Vrip\n", "print \"The dc load voltage = %.2f volts\"%Vdc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.8 Page No 98" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The zener current = 5.36 mA\n" ] } ], "source": [ "# given data\n", "V2rms= 12.6## V\n", "V_Z= 6.8## V\n", "V2peak= V2rms/0.707## V\n", "Vin= V2peak## V\n", "Vout= V_Z## V\n", "R_L= 1.2## kΩ\n", "R_L= R_L*10**3##in Ω\n", "Rs= 1## kΩ\n", "Rs= Rs*10**3## Ω\n", "Is= (Vin-Vout)/Rs## A\n", "I_L= Vout/R_L## A\n", "# The zener current \n", "Iz= Is-I_L## A\n", "Iz= Iz*10**3## mA\n", "print \"The zener current = %.2f mA\"%Iz\n", "# Note: The calculation = %.2f the book is not accurate.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.9 Page No 98" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The ripple across the load resistance = 4.56 mV\n" ] } ], "source": [ "# given data\n", "C= 100.0##in µF\n", "C= C*10**-6## F\n", "Rz= 5.0##in Ω\n", "Rs= 1.0*10**3##in Ω\n", "Idc= 11.0*10**-3##in A\n", "f=120.0##in Hz\n", "Vin_rip= Idc/(f*C)## V\n", "# The ripple across the load resistance \n", "Vout_rip= Rz*Vin_rip/(Rs+Rz)##in A\n", "Vout_rip= Vout_rip*10**3## mV\n", "print \"The ripple across the load resistance = %.2f mV\"%Vout_rip" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }