{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3 Special Diodes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.1 Page No 53" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The LED current = 21.28 mA\n" ] } ], "source": [ "# given data\n", "Vin= 12.0## V\n", "V_LED= 2## V\n", "Rs= 470## Ω\n", "Vs= Vin-V_LED## V\n", "# The LED current \n", "I= Vs/Rs## A\n", "I= I*10**3## mA\n", "print \"The LED current = %.2f mA\"%I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.2 Page No 53" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "When supply voltage is 5 V, the LED current = 6.38 mA\n", "When supply voltage is 10 V, the LED current = 17.02 mA\n", "When supply voltage is 15 V, the LED current = 27.66 mA\n", "When supply voltage is 20 V, the LED current = 38.30 mA\n" ] } ], "source": [ "# given data\n", "Vin= 5.0## V\n", "V_LED= 2.0## V\n", "Rs= 470.0## Ω\n", "Vs= Vin-V_LED## V\n", "# When supply voltage is 5 V, the LED current\n", "I= Vs/Rs## A\n", "I= I*10**3## mA\n", "print \"When supply voltage is 5 V, the LED current = %.2f mA\"%I\n", "Vin= 10## V\n", "Vs= Vin-V_LED## V\n", "# When supply voltage is 10 V, the LED current\n", "I= Vs/Rs## A\n", "I= I*10**3## mA\n", "print \"When supply voltage is 10 V, the LED current = %.2f mA\"%I\n", "Vin= 15## V\n", "Vs= Vin-V_LED## V\n", "# When supply voltage is 15 V, the LED current\n", "I= Vs/Rs## A\n", "I= I*10**3## mA\n", "print \"When supply voltage is 15 V, the LED current = %.2f mA\"%I\n", "Vin= 20## V\n", "Vs= Vin-V_LED## V\n", "# When supply voltage is 20 V, the LED current\n", "I= Vs/Rs## A\n", "I= I*10**3## mA\n", "print \"When supply voltage is 20 V, the LED current = %.2f mA\"%I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.4 Page No 61" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The tuning range = 18.67\n" ] } ], "source": [ "# given data\n", "C1= 560.0##transistor capacitance at 1V = %.2f pF\n", "C2= 30##transistor capacitance at 10V = %.2f pF\n", "# The tuning range \n", "tuningRange= C1/C2#\n", "print \"The tuning range = %.2f\"%tuningRange" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.5 Page No 68" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The minimum zener current = 12.20 mA\n", "The maximum zener current = 36.59 mA\n", "The output voltage = 10.00 V\n" ] } ], "source": [ "# given data\n", "Vin_min= 20.0## V\n", "Vin_max= 40.0## V\n", "Vz= 10.0## V\n", "Rs= 820.0## Ω\n", "# The minimum zener current,\n", "Iz_min= (Vin_min-Vz)/Rs## A\n", "# The maximum zener current, \n", "Iz_max= (Vin_max-Vz)/Rs## A\n", "# The output voltage,\n", "Vout= Vz## V\n", "Iz_min= Iz_min*10**3## mA\n", "Iz_max= Iz_max*10**3## mA\n", "print \"The minimum zener current = %.2f mA\"%Iz_min\n", "print \"The maximum zener current = %.2f mA\"%Iz_max\n", "print \"The output voltage = %.2f V\"%Vout" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.6 Page No 70" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The minimum zener current = 11.95 mA\n", "The maximum zener current = 35.84 mA\n", "The minimum output voltage = 10.20 V\n", "The maximum output voltage = 10.61 V\n" ] } ], "source": [ "# given data\n", "Rs= 820.0## Ω\n", "Rz= 17.0## Ω\n", "R_T= Rs+Rz## Ω\n", "Vz= 10.0## V\n", "Vin_min= 20.0## V\n", "Vin_max= 40.0## V\n", "# The minimum zener current \n", "Iz_min= (Vin_min-Vz)/R_T## A\n", "# The maximum zener current \n", "Iz_max= (Vin_max-Vz)/R_T## A\n", "# The minimum output voltage \n", "Vout_min= Vz+Iz_min*Rz## V\n", "# The maximum output voltage \n", "Vout_max= Vz+Iz_max*Rz## V\n", "Iz_min= Iz_min*10**3## mA\n", "Iz_max= Iz_max*10**3## mA\n", "print \"The minimum zener current = %.2f mA\"%Iz_min\n", "print \"The maximum zener current = %.2f mA\"%Iz_max\n", "print \"The minimum output voltage = %.2f V\"%Vout_min\n", "print \"The maximum output voltage = %.2f V\"%Vout_max" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.7 Page No 72" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The maximum current rating = 16.13 mA\n" ] } ], "source": [ "# given data\n", "P= 100.0## power rating = %.2f mW\n", "V= 6.2## V\n", "# The maximum current rating \n", "I_ZM= P/V## mA\n", "print \"The maximum current rating = %.2f mA\"%I_ZM" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.8 Page No 73" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of I_S = 72.22 mA\n", "The value of I_L = 60.00 mA\n", "The value of I_Z = 12.22 mA\n" ] } ], "source": [ "# given data\n", "Vz= 12.0## V\n", "Vout= Vz## V\n", "Vin= 25.0## V\n", "R_S= 180.0## Ω\n", "R_L= 200.0## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vout)/R_S## A\n", "# The value of I_L \n", "I_L= Vout/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.9 Page No 73" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(i) For 200 Ω load resistance\n", "The value of I_S = 72.22 mA\n", "The value of I_L = 60.00 mA\n", "The value of I_Z = 12.22 mA\n", "(ii) For 400 Ω load resistance\n", "The value of I_S = 72.22 mA\n", "The value of I_L = 30.00 mA\n", "The value of I_Z = 42.22 mA\n", "(iii) For 600 Ω load resistance\n", "The value of I_S = 72.22 mA\n", "The value of I_L = 20.00 mA\n", "The value of I_Z = 52.22 mA\n", "(iv) For 800 Ω load resistance\n", "The value of I_S = 72.22 mA\n", "The value of I_L = 15.00 mA\n", "The value of I_Z = 57.22 mA\n", "(v) For 1 kΩ load resistance\n", "The value of I_S = 72.22 mA\n", "The value of I_L = 12.00 mA\n", "The value of I_Z = 60.22 mA\n" ] } ], "source": [ "# given data\n", "print \"(i) For 200 Ω load resistance\"\n", "R_L= 200.0## Ω\n", "Vz= 12.0## V\n", "Vout= Vz## V\n", "Vin= 25.0## V\n", "R_S= 180.0## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vout)/R_S## A\n", "# The value of I_L \n", "I_L= Vout/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(ii) For 400 Ω load resistance\"\n", "R_L= 400## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vout)/R_S## A\n", "# The value of I_L \n", "I_L= Vout/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(iii) For 600 Ω load resistance\"\n", "R_L= 600## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vout)/R_S## A\n", "# The value of I_L \n", "I_L= Vout/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(iv) For 800 Ω load resistance\"\n", "R_L= 800## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vout)/R_S## A\n", "# The value of I_L \n", "I_L= Vout/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(v) For 1 kΩ load resistance\"\n", "R_L= 1*10**3## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vout)/R_S## A\n", "# The value of I_L \n", "I_L= Vout/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.10 Page No 73" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The output voltage = 12.34 V\n" ] } ], "source": [ "# given data\n", "R_Z= 7.0## Ω\n", "I_Z1=12.2## mA\n", "I_Z2=60.2## mA\n", "deltaV_Z=(I_Z2-I_Z1)*R_Z## mV\n", "deltaV_Z= deltaV_Z*10**-3## V\n", "Vz= 12## V\n", "# The output voltage,\n", "Vout= Vz+deltaV_Z## V\n", "print \"The output voltage = %.2f V\"%Vout" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.11 Page No 74" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of I_S = 15.00 mA\n", "The value of I_L = 12.00 mA\n", "The value of I_Z = 3.00 mA\n" ] } ], "source": [ "# given data\n", "Vz= 12.0## V\n", "Vin= 15.0## V\n", "R_S= 200.0## Ω\n", "R_L= 1*10**3## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vz)/R_S## A\n", "# The value of I_L \n", "I_L= Vz/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.12 Page No 75" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(i) For 15 V input voltage\n", "The value of I_S = 15.00 mA\n", "The value of I_L = 12.00 mA\n", "The value of I_Z = 3.00 mA\n", "(ii) For 20 V input voltage\n", "The value of I_S = 40.00 mA\n", "The value of I_L = 12.00 mA\n", "The value of I_Z = 28.00 mA\n", "(iii) For 25 V input voltage\n", "The value of I_S = 65.00 mA\n", "The value of I_L = 12.00 mA\n", "The value of I_Z = 53.00 mA\n", "(iv) For 30 V input voltage\n", "The value of I_S = 90.00 mA\n", "The value of I_L = 12.00 mA\n", "The value of I_Z = 78.00 mA\n", "(v) For 35 V input voltage\n", "The value of I_S = 115.00 mA\n", "The value of I_L = 12.00 mA\n", "The value of I_Z = 103.00 mA\n" ] } ], "source": [ "# given data\n", "print \"(i) For 15 V input voltage\"\n", "Vin= 15.0## V\n", "Vz= 12.0## V\n", "R_S= 200.0## Ω\n", "R_L= 1*10**3## Ω\n", "# The value of I_S \n", "I_S= (Vin-Vz)/R_S## A\n", "# The value of I_L \n", "I_L= Vz/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(ii) For 20 V input voltage\"\n", "Vin= 20## V\n", "# The value of I_S \n", "I_S= (Vin-Vz)/R_S## A\n", "# The value of I_L \n", "I_L= Vz/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(iii) For 25 V input voltage\"\n", "Vin= 25## V\n", "# The value of I_S \n", "I_S= (Vin-Vz)/R_S## A\n", "# The value of I_L \n", "I_L= Vz/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(iv) For 30 V input voltage\"\n", "Vin= 30## V\n", "# The value of I_S \n", "I_S= (Vin-Vz)/R_S## A\n", "# The value of I_L \n", "I_L= Vz/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z\n", "print \"(v) For 35 V input voltage\"\n", "Vin= 35## V\n", "# The value of I_S \n", "I_S= (Vin-Vz)/R_S## A\n", "# The value of I_L \n", "I_L= Vz/R_L## A\n", "# The value of I_Z \n", "I_Z= I_S-I_L## A\n", "I_S= I_S*10**3## mA\n", "I_L= I_L*10**3## mA\n", "I_Z= I_Z*10**3## mA\n", "print \"The value of I_S = %.2f mA\"%I_S\n", "print \"The value of I_L = %.2f mA\"%I_L\n", "print \"The value of I_Z = %.2f mA\"%I_Z" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }