{ "metadata": { "name": "", "signature": "sha256:89b26be9b34fcc4abdf434215c6ed45e9bed850a39f0e736d3ded9e4d9969c4c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "\n", "Chapter2:ELECTRONS IN SEMICONDUCTORS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.1:pg-55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h=1.05*10**-34\n", "mo = 9.1*10**-31\n", "E = 0.1*1.6*10**(-19)\n", "m=0.067*mo\n", "k = sqrt(2*m*E)/h\n", "print\"The k-value for an electron in the conduction band of GaAs is ,k = \",\"{:.1e}\".format(k),\"m**-1\"\n", "ko = 1.625*10**9\n", "print\"the two value are quite difference since the k value represent effective momentum\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The k-value for an electron in the conduction band of GaAs is ,k = 4.2e+08 m**-1\n", "the two value are quite difference since the k value represent effective momentum\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.2:pg-56" ] }, { "cell_type": "code", "collapsed": false, "input": [ "mo = 9.1*10**-31\n", "ml = 0.98*mo\n", "mt = 0.19*mo\n", "mhh =0.49*mo\n", "mlh = 0.16*mo\n", "mdos = (((6)**(2.0/3))*((ml)*((mt)**2))**(1.0/3))\n", "print\"The conduction band density of states mass is ,mdos* =\",\"{:.2e}\".format(mdos),\"kg\"\n", "mdos1 = (((mhh)**(3/2)+(mlh)**(3/2))**(2.0/3))\n", "print\"The Valence band density of states mass is ,mdos1*=\",\"{:.2e}\".format(mdos1),\"kg\"\n", "# In the book ,the answer is given in the form of mo\n", " \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conduction band density of states mass is ,mdos* = 9.86e-31 kg\n", "The Valence band density of states mass is ,mdos1*= 7.05e-21 kg\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.3:pg-59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "h=1.05*10**-34\n", "mo = 9.1*10**-31\n", "mhh =0.5*mo\n", "k = 0.1*10**10\n", "Ev = 0\n", "e = 1.6*10**-19\n", "#(we have assumed the valence band energy Ev=0eV as it is not provided in the book)\n", "Ee= Ev-(((h**2)*(k**2))/(2*mhh))\n", "print\"The electron energy in the valence band is ,Ee=\",\"{:.2e}\".format(Ee),\"J\"\n", "Ee1= Ee/e\n", "print\"The electron energy in the valence band is ,Ee= Ee/e=\",\"{:.2e}\".format(Ee1),\"eV\"\n", "Eh= Ev+((((h**2)*(k**2))/(2*mhh))/e)\n", "print\"The hole energy in the valence band is ,Eh=\",\"{:.2e}\".format(Eh),\"eV\"\n", "\n", " \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electron energy in the valence band is ,Ee= -1.21e-20 J\n", "The electron energy in the valence band is ,Ee= Ee/e= -7.57e-02 eV\n", "The hole energy in the valence band is ,Eh= 7.57e-02 eV\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.4:pg-62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "h=1.06*10**-34\n", "mo = 9.1*10**-31\n", "m = 0.067*mo\n", "print\"m = \",\"{:.2e}\".format(m),\"kg\"\n", "E = 0.5*1.6*10**-19\n", "print\"E = \",\"{:.2e}\".format(E),\"J\" #initializing value of electron energy measured from the bandedge\n", "# Effective momentum of electron in the conduction band of GaAs\n", "hk = sqrt(2*m*E)\n", "print\"The effetive momentum of an electron in the conduction band of GaAs is ,hk = \"\"{:.2e}\".format(hk),\"m**-1\"#calculation\n", "k = hk/h\n", "print\"the corresponding wavevector is,k = \",\"{:.1e}\".format(k),\"m**-1\"\n", "#Effective momentum of free electron in the space with same energy\n", "p = sqrt(2*mo*E)\n", "print\"The effetive momentum of an electron in the space is ,p = \",\"{:.1e}\".format(p),\"kgms**-1\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "m = 6.10e-32 kg\n", "E = 8.00e-20 J\n", "The effetive momentum of an electron in the conduction band of GaAs is ,hk = 9.88e-26 m**-1\n", "the corresponding wavevector is,k = 9.3e+08 m**-1\n", "The effetive momentum of an electron in the space is ,p = 3.8e-25 kgms**-1\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.5:pg-63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n", "mo = 9.1*10**-31 #initializing value of mass of electron\n", "ml = 0.98*mo #initializing value of longitudinal mass\n", "mt = 0.19*mo #initializing value of transverse mass\n", "a = 5.43*10**-10 #initializing value of latice constant\n", "kx = ((2*math.pi*0.95)/a) #initializing value of given k-value in x direction \n", "ky = ((2*math.pi*0.1)/a) #initializing value of given k-value in y direction \n", "kz = ((2*math.pi*0.0)/a) #initializing value of given k-value in z direction \n", "kxo = ((2*math.pi*0.85)/a) #initializing value of k-value for Si occupies the (100) valley in x direction \n", "kyo = ((2*math.pi*0.0)/a) #initializing value of k-value for Si occupies the (100) valley in y direction \n", "kzo = ((2*math.pi*0.0)/a) #initializing value of k-value for Si occupies the (100) valley in z direction \n", "kl = kx-kxo\n", "print\"the change in k vector in x direction is,kl = kx-kxo = \",\"{:.3e}\".format(kl),\"m**-1\"\n", "kt = ky-kyo\n", "print\"the change in k vector in y direction is,kt = ky-kyo = \",\"{:.3e}\".format(kt),\"m**-1\"\n", "E= (((h**2)*(kl**2))/(2*ml))+(((h**2)*(kt**2))/(2*mt))\n", "print\"The electron energy measured from the conduction bandege is ,E= \",\"{:.3e}\".format(E),\"J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the change in k vector in x direction is,kl = kx-kxo = 1.157e+09 m**-1\n", "the change in k vector in y direction is,kt = ky-kyo = 1.157e+09 m**-1\n", "The electron energy measured from the conduction bandege is ,E= 5.097e-20 J\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.9:pg-70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "h=1.05*10**-34 #initializing value of reduced plancks constant or dirac constant or h-bar\n", "mo = 9.1*10**-31 #initializing value of mass of electron\n", "me = 0.067*mo #initializing value of effective mass of GaAs\n", "kbT = 4.16*10**-21 #initializing value of kbT at 300K\n", "Nc=2*(((me*kbT)/(2*math.pi*(h**2)))**(3/2))\n", "print\"for GaAs conduction band case effective density of states is ,Nc= \",\"{:.2e}\".format(Nc),\"m**-3\"\n", "ml = 0.98*mo #initializing value of longitudinal mass\n", "mt = 0.19*mo #initializing value of transverse mass\n", "mdos = (((6)**(2.0/3))*((ml)*((mt)**2))**(1.0/3))\n", "Nc1 = 2*((mdos*kbT)/(2*(math.pi)*(h**2)))**(3/2)\n", "print\"for silicon conduction band case effective density of states is ,Nc = \",\"{:.2e}\".format(Nc1),\"m**-3\"\n", "\n", "# Note : due to different precisions taken by me and the author ... my answer differ \n", "\n", "print\"for silicon\"\n", "mhh =0.5*mo #initializing value of heavy hole mass for silicon\n", "mlh = 0.15*mo #initializing value of light hole mass for silicon\n", "Nv1 =((kbT/(2*(math.pi)*(h**2)))**(3/2))*2*(mhh**(3/2)+mlh**(3/2))\n", "print\"for silicon valence band case effective density of states is ,Nv = \",\"{:.2e}\".format(Nv1),\"m**-3\"\n", "print\"for GaAs \"\n", "mhh1 =0.45*mo #initializing value of heavy hole mass\n", "mlh1 = 0.08*mo #initializing value of light hole mass\n", "Nv = 2*(mhh1**(3/2)+mlh1**(3/2))*((kbT/(2*(math.pi)*(h**2)))**(3/2))\n", "print\"for GaAs valence band case effective density of states is ,Nv= \",\"{:.2e}\".format(Nv),\"m**-3\"\n", "\n", "# Answer given in the book for valence band case is wrong\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for GaAs conduction band case effective density of states is ,Nc= 7.32e+15 m**-3\n", "for silicon conduction band case effective density of states is ,Nc = 1.18e+17 m**-3\n", "for silicon\n", "for silicon valence band case effective density of states is ,Nv = 7.10e+16 m**-3\n", "for GaAs \n", "for GaAs valence band case effective density of states is ,Nv= 5.79e+16 m**-3\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.10:pg-70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "mo = 9.1*10**-31 #initializing value of mass of electron\n", "me = 0.067*mo #initializing value of effective mass of GaAs\n", "kbT = 0.026 #initializing value of kbT at 300K\n", "ml = 0.98*mo #initializing value of longitudinal mass\n", "mt = 0.19*mo #initializing value of transverse mass\n", "mh = 0.55*mo #initializing value of density of state mass for the valence band \n", "#let\n", "Eg = 0.0 #initializing value of valence bandedge energy\n", "mdos = (((6)**(2/3))*((ml)*((mt)**2))**(1.0/3))\n", "print\"The desity of states of effective mass of the combined six valleys of silicon is mdos* = \",\"{:.2e}\".format(mdos),\"kg\"\n", "Efi = (Eg/2)+((3.0/4)*kbT*log(mh/mdos))\n", "print\"The intrinsic fermi level is given by Efi= \",\"{:.2e}\".format(Efi),\"eV\"\n", "# -ve sign show that fermi level is below the centre of mid-bandgap\n", "# In this question the answer is provided in the book is in terms of Eg and i have assumed value of Eg = 0 V \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The desity of states of effective mass of the combined six valleys of silicon is mdos* = 2.99e-31 kg\n", "The intrinsic fermi level is given by Efi= 1.01e-02 eV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.11:pg-71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "mo = 9.1*10**-31 #initializing value of mass of electron\n", "me = 0.027*mo #initializing value of effective mass of GaAs\n", "kbT = 0.026 #initializing value of kbT at 300K\n", "mh = 0.4*mo #initializing value of longitudinal mass\n", "h=1.05*10**-34 #initializing value of plank constant.\n", "Eg = 0.35 #initializing value of valence bandedge energy\n", "ni =2*(((kbT*1.6*10**-19)/(2*(math.pi)*h**2))**(3/2))*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))\n", "print\"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= \",\"{:.2e}\".format(ni),\"m**-3\"\n", "kbT = 0.05175\n", "print\"kbT = \",\"{:.2e}\".format(kbT),\"eV\" #initializing value of kbT at 600K\n", "ni =2*(((kbT*1.6*10**-19)/(2*(math.pi)*h**2))**(3/2))*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))\n", "print\"ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= \",\"{:.2e}\".format(ni),\"m**-3\"\n", "#Note: In the textbook wrong answer is given for intrinsic carrier concentration at 600K\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= 1.43e+44 m**-3\n", "kbT = 5.17e-02 eV\n", "ni =2*(kbT/(2*(math.pi)*h**2))**(3/2)*((me*mh)**(3/4))*(exp(-Eg/(2*kbT)))= 8.13e+45 m**-3\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.12:pg-75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "mo = 9.1*10**-31 #initializing value of mass of electron\n", "m_star=0.067*mo #initializing value of appropriate mass in the conduction band for GaAs\n", "apsilen = 13.2*8.85*10**-14 #initializing value of relative permitivity for GaAs\n", "apsilen_not = 8.85*10**-14 #initializing value of permitivity\n", "ml = 0.98*mo #initializing value of longitudinal mass\n", "mt = 0.2*mo #initializing value of transverse mass\n", "m_sigma_star = (3)/((1.0/ml)+(2.0/mt))\n", "print\"The conductivity mass for silicon is ,m_sigma_star = (3*mo)/((1/ml)+(2/mt))= \",\"{:.2e}\".format(m_sigma_star),\"Kg\"\n", "print\"The shallow level energies are given by,Ed = Ec-(13.6(eV)*((m_star/mo)/(apsilen/apsilen_not)**2))\"\n", "#Let Ec = 0 V and taking positive answer, \n", "Ed_GaAs = (13.6*((m_star/mo)/(apsilen/apsilen_not)**2))\n", "print\"The donor level energy in GaAs is ,Ed_GaAs = Ed= \",\"{:.2e}\".format(Ed_GaAs),\"eV\"\n", "m_dot_GaAs=0.45*mo\n", "print\"m_dot_GaAs=0.45*mo = \",\"{:.2e}\".format(m_dot_GaAs),\"kg\" #initializing value of heavy hole mass for GaAs\n", "Ea_GaAs = (13.6*((m_dot_GaAs/mo)/(apsilen/apsilen_not)**2))\n", "print\"The acceptor level energy in GaAs is ,Ea_GaAs = \",\"{:.2e}\".format(Ea_GaAs),\"eV\"\n", "apsilen = 11.9*8.85*10**-14 #initializing value of relative permitivity for GaAs\n", "m_dot_Si=0.5*mo #initializing value of heavy hole mass for GaAs\n", "Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))\n", "print\"The acceptor level energy in Si is ,Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))= \",\"{:.2e}\".format(Ea_Si),\"eV\"\n", "Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))\n", "print\"The donor level energy in Si is ,Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))= \",\"{:.2e}\".format(Ed_Si),\"eV\"\n", "# Note : due to different precisions taken by me and the author ... my answer differ \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity mass for silicon is ,m_sigma_star = (3*mo)/((1/ml)+(2/mt))= 2.48e-31 Kg\n", "The shallow level energies are given by,Ed = Ec-(13.6(eV)*((m_star/mo)/(apsilen/apsilen_not)**2))\n", "The donor level energy in GaAs is ,Ed_GaAs = Ed= 5.23e-03 eV\n", "m_dot_GaAs=0.45*mo = 4.10e-31 kg\n", "The acceptor level energy in GaAs is ,Ea_GaAs = 3.51e-02 eV\n", "The acceptor level energy in Si is ,Ea_Si = (13.6*((m_dot_Si/mo)/(apsilen/apsilen_not)**2))= 4.80e-02 eV\n", "The donor level energy in Si is ,Ed_Si = (13.6*((m_sigma_star/mo)/(apsilen/apsilen_not)**2))= 2.61e-02 eV\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.13:pg-77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "n = 10**17 #initializing value of free density of electron of GaAs\n", "kBT=0.026 #initializing value of multiplication of boltzmann constant and temperature \n", "Nc = 4.45*10**17 #initializing value of effective density of electron\n", "#(we have assumed the valence band energy Ev=0eV as it is not provided in the book)\n", "E1= kBT*((log(n/Nc)))\n", "print\"Ef(B)=\",\"{:.1e}\".format(E1),\"eV\"\n", "E2= kBT*((log(n/Nc))+(1/sqrt(8))*(n/Nc))\n", "print\"E(J)=\",\"{:.1e}\".format(E2),\"eV\"\n", "#for Boltzmann approximation the carrier concentration and fermi level are related as : Ef = Ec+E1\n", "#for joyce dixon approximation the carrier concentration and fermi level are related as : Ef = Ec+E2\n", "e=E1-E2\n", "print\"The error produced by using boltzmann approx. is e=\"\"{:.2e}\".format(e),\"eV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ef(B)= -3.9e-02 eV\n", "E(J)= -3.7e-02 eV\n", "The error produced by using boltzmann approx. is e=-2.07e-03 eV\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.14:pg-77" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print\"In the Boltzmann approximation, the carrier density is simply\"\n", "print\"n = Nc = 2.78*10**19 cm**-3\"\n", "N=2.78*10**19 #initializing value of carrier density\n", "#In joyce dixon approximation the carrier density is obtained from the solution of the equation\n", "print\"Ef = 0 = kBT *(log(n/Nc)+(n/(sqrt8*Nc)))\"\n", "#solving by trial and error , we get\n", "#n/Nc= 0.76\n", "n=0.76*N\n", "print\"electron carrier concentration is n=0.76*Nc= \",\"{:.2e}\".format(n),\" cm**-3\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "In the Boltzmann approximation, the carrier density is simply\n", "n = Nc = 2.78*10**19 cm**-3\n", "Ef = 0 = kBT *(log(n/Nc)+(n/(sqrt8*Nc)))\n", "electron carrier concentration is n=0.76*Nc= 2.11e+19 cm**-3\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.16:pg-80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "Nc = 2.8*10**19 #initializing value of effective density of electron\n", "Nd = 10**16 #initializing value of donor atom\n", "Ec_minus_Ed = 45*10**-3 #initializing value of donor binding energy\n", "kBT=0.026 #initializing value of multiplication of boltzmann constant and temperature \n", "\n", "#let fraction of ionised donor are represented as Fd = (nd/(n+nd))\n", "Fd= (1/(((Nc/(2*Nd))*exp(-(Ec_minus_Ed/kBT)))+1))*100\n", "print\"fraction of ionised donor is Fd=\",round(Fd,2),\"%\"\n", "Nd = 10**18\n", "print\"Nd = \",\"{:.2e}\".format(Nd),\"cm**-3\"\n", "Fd= (1.0/(((Nc/(2*Nd))*exp(-(Ec_minus_Ed/kBT)))+1))*100\n", "print\"fraction of ionised donor is Fd=\",round(Fd,2),\"%\"\n", "# Note : due to different precisions taken by me and the author ... my answer differ \n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fraction of ionised donor is Fd= 0.4 %\n", "Nd = 1.00e+18 cm**-3\n", "fraction of ionised donor is Fd= 28.74 %\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.17:pg-80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "Nc_Si = 2.78*10**19 #initializing value of effective density of electron for silicon\n", "Nc_GaAs = 4.45*10**17 #initializing value of effective density of electron for GaAs\n", "print\"for joyce dixon approximation the carrier concentration and fermi level are related as : Ef -Ec = kBT*(log(n/Nc)+(n/(sqrt8*Nc))\"\n", "print(\"using Ef-Ec = 3* kBT\") \n", "print(\"solving above equation by hit and trial method for n/Nc,we get n/Nc = 4.4\") \n", "n_by_Nc = 4.4\n", "n_Si = n_by_Nc*Nc_Si\n", "print\"carrier density for silicon is n=\"\"{:.2e}\".format(n_Si),\"cm**-3\"\n", "n_GaAs = n_by_Nc*Nc_GaAs\n", "print\"carrier density for GaAs is n=\",\"{:.2e}\".format(n_GaAs),\"cm**-3\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "for joyce dixon approximation the carrier concentration and fermi level are related as : Ef -Ec = kBT*(log(n/Nc)+(n/(sqrt8*Nc))\n", "using Ef-Ec = 3* kBT\n", "solving above equation by hit and trial method for n/Nc,we get n/Nc = 4.4\n", "carrier density for silicon is n=1.22e+20 cm**-3\n", "carrier density for GaAs is n= 1.96e+18 cm**-3\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }