{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# Chapter 1: Introduction\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem1, pg 25" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "true length= 327.4905\n" ] } ], "source": [ "\n", "\n", "l=20; #chain length\n", "e=0.03; #error\n", "l1=l+e; #L'\n", "ml=327; #measured length\n", "truel=(l1/l)*(ml) #true length\n", "print (\"true length=\",truel)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem2, pg 25" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "amount of error= 0.20083682008368697\n" ] } ], "source": [ "\n", "\n", "l1=20; #chain 1 length\n", "e=0.05; #error\n", "l11=l1+e; \n", "ml1=1200; #measured lenght\n", "tl=(l11/l1)*ml1; #true lenght of line\n", "\n", "l2=30; #chain 2 length\n", "ml2=1195; #measured length\n", "\n", "l21=(tl/ml2)*l2; \n", "ae=l21-l2; #amount of error\n", "print('amount of error=',ae)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem3, pg 25" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "true length1= 901.35\n", "true length 2= 678.3750000000001\n", "true distance= 1579.7250000000001\n" ] } ], "source": [ "\n", "\n", "l1=20\n", "e=(0.06/2) #consider mean elongation\n", "l11=l1+e;\n", "ml=900;\n", "tl=(l11/l1)*ml;\n", "print('true length1=',tl)\n", "l2=20;\n", "e2=(0.06+0.14)/2;\n", "l21=20+e2;\n", "ml2=1575-ml;\n", "\n", "tl2=(l21/l2)*ml2;\n", "print('true length 2=',tl2)\n", "td=tl+tl2;\n", "print('true distance=',td)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem4, pg26" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "distance between stations on map= 35.0 centimeters\n", "true distance on ground = 1750.0 meters\n" ] } ], "source": [ "\n", "\n", "s=100;\n", "dsm=3500;\n", "adsm=dsm/s;\n", "\n", "print('distance between stations on map=',adsm,'centimeters')\n", "\n", "actuals=50;\n", "td=adsm*actuals;\n", "\n", "print('true distance on ground =',td,'meters')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 5, pg 26" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "actual area present= 132.01840894148586 square cm\n", "true area= 212286.9217619987 square meters\n" ] } ], "source": [ "\n", "\n", "present=19.5\n", "actual=20;\n", "cm1=actual/present;\n", "cm12=(actual*actual)/(present*present);\n", "pm=125.5;\n", "apm=pm*cm12;\n", "print('actual area present=',apm,'square cm');\n", "\n", "cm=40;\n", "cm2=cm*cm;\n", "\n", "area=cm2*apm;\n", "scale=(20.05*20.05)/(20*20);\n", "ta=scale*area;\n", "print('true area=',ta,'square meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 6, pg 27" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " for n=1\n", "the temperature correction is 0.00396 meters\n", "the pull corretion is 0.002380952380952381 meters\n", "the sag correction is -0.0026680499999999995 meters\n", "the total correction is 0.0036729023809523816 meters\n", "the true length is 780.0954954619046\n", " for n=2\n", "the temperature correction is 0.00396 meters\n", "the pull corretion is 0.002380952380952381 meters\n", "the sag correction is -0.0006670124999999999 meters\n", "the total correction is 0.005673939880952382 meters\n", "the true length is 780.1475224369049\n" ] } ], "source": [ "\n", "\n", "from __future__ import division\n", "\n", "L=30;\n", "t0=20;\n", "p0=10;\n", "pm=15;\n", "tm=32;\n", "a=0.03;\n", "al=11/(1000000);\n", "E=2.1*(1000000);\n", "w=0.693;\n", "ml=780;\n", "n=1;\n", "print(' for n=1')\n", "ct=al*L*(tm-t0);\n", "print('the temperature correction is',ct,'meters');\n", "\n", "cp=(pm-p0)*L/(a*E);\n", "print('the pull corretion is ',cp,' meters');\n", "\n", "cs=-L*w*w/(24*pm*pm*n*n);\n", "print('the sag correction is ',cs,'meters');\n", "\n", "e=ct+cp+cs;\n", "print('the total correction is ',e,'meters');\n", "\n", "l1=L+e;\n", "\n", "truelength=(l1/L)*ml;\n", "print('the true length is ',truelength);\n", "\n", "n=2;\n", "\n", "print(' for n=2')\n", "ct=al*L*(tm-t0);\n", "print('the temperature correction is',ct,'meters');\n", "\n", "cp=(pm-p0)*L/(a*E);\n", "print('the pull corretion is ',cp,' meters');\n", "\n", "cs=-L*w*w/(24*pm*pm*n*n);\n", "print('the sag correction is ',cs,'meters');\n", "\n", "e=ct+cp+cs;\n", "print('the total correction is ',e,'meters');\n", "\n", "l1=L+e;\n", "\n", "truelength=(l1/L)*ml;\n", "print('the true length is ',truelength);\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 7, pg 28" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the temperature correction is 0.0021999999999999997 meters\n", "the pull corretion is -0.002380952380952381 meters\n", "the sag correction is -0.0013333333333333335 meters\n", "the total correction is -0.001514285714285715 meters\n", "the horizontal distance is 19.998485714285714\n" ] } ], "source": [ "\n", "from __future__ import division\n", "\n", "L=20;\n", "t0=20;\n", "p0=15;\n", "p=10;\n", "tm=30;\n", "a=0.02;\n", "al=11/(1000000);\n", "E=2.1*(1000000);\n", "w=0.4;\n", "\n", "n=1;\n", "ct=al*L*(tm-t0);\n", "print('the temperature correction is',ct,'meters');\n", "\n", "cp=(p-p0)*L/(a*E);\n", "print('the pull corretion is ',cp,' meters');\n", "\n", "cs=-L*w*w/(24*p*p*n*n);\n", "print('the sag correction is ',cs,'meters');\n", "\n", "e=ct+cp+cs;\n", "print('the total correction is ',e,'meters');\n", "\n", "hd=L+e;\n", "\n", "print('the horizontal distance is ',hd);\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 8, pg 29" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "for p=5 case\n", "the temperature correction is 0.00165 meters\n", "the pull corretion is 0.0 meters\n", "the sag correction is -0.02178 meters\n", "the total correction is -0.020130000000000002 meters\n", "the horizontal distance is 29.97987\n", "for p=11 case\n", "the temperature correction is 0.00165 meters\n", "the pull corretion is 0.004285714285714286 meters\n", "the sag correction is -0.0045000000000000005 meters\n", "the total correction is 0.001435714285714285 meters\n", "the horizontal distance is 30.001435714285716\n" ] } ], "source": [ "\n", "from __future__ import division\n", "\n", "L=30;\n", "t0=20;\n", "p0=5;\n", "tm=25;\n", "a=0.02;\n", "al=11/(1000000);\n", "E=2.1*(1000000);\n", "float(E);\n", "float(al);\n", "w1=22;\n", "w=0.66;\n", "n=1;\n", "\n", "p=5;\n", "print('for p=5 case');\n", "\n", "ct=al*L*(tm-t0);\n", "float(ct);\n", "print('the temperature correction is',ct,'meters');\n", "\n", "cp=(p-p0)*L/(a*E);\n", "print('the pull corretion is ',cp,' meters');\n", "\n", "cs=-L*w*w/(24*p*p*n*n);\n", "print('the sag correction is ',cs,'meters');\n", "\n", "e=ct+cp+cs;\n", "print('the total correction is ',e,'meters');\n", "\n", "hd=L+e;\n", "\n", "print('the horizontal distance is ',hd);\n", "\n", "p=11;\n", "print('for p=11 case');\n", "\n", "ct=al*L*(tm-t0);\n", "print('the temperature correction is',ct,'meters');\n", "\n", "cp=(p-p0)*L/(a*E);\n", "print('the pull corretion is ',cp,' meters');\n", "\n", "cs=-L*w*w/(24*p*p*n*n);\n", "print('the sag correction is ',cs,'meters');\n", "\n", "e=ct+cp+cs;\n", "print('the total correction is ',e,'meters');\n", "\n", "hd=L+e;\n", "\n", "print('the horizontal distance is ',hd);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 9, pg 30" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the temperature correction is 0.00264 meters\n", "the pull corretion is 0.003492063492063492 meters\n", "the sag correction is -0.001171875 meters\n", "the total correction is 0.004960188492063492 meters\n", "the true length is 680.1686464087301\n" ] } ], "source": [ "\n", "from __future__ import division\n", "\n", "L=20;\n", "t0=20;\n", "p0=5;\n", "pm=16;\n", "tm=32;\n", "a=0.03;\n", "al=11/(1000000);\n", "E=2.1*(1000000);\n", "w=0.6;\n", "ml=680;\n", "n=1;\n", "\n", "\n", "ct=al*L*(tm-t0);\n", "print('the temperature correction is',ct,'meters');\n", "\n", "cp=(pm-p0)*L/(a*E);\n", "print('the pull corretion is ',cp,' meters');\n", "\n", "cs=-L*w*w/(24*pm*pm*n*n);\n", "print('the sag correction is ',cs,'meters');\n", "\n", "e=ct+cp+cs;\n", "print('the total correction is ',e,'meters');\n", "\n", "l1=L+e;\n", "\n", "truelength=(l1/L)*ml;\n", "print('the true length is ',truelength);\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 10, pg 31" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the temperature correction is 0.0061600000000000005 meters\n", "the pull corretion is -0.0033333333333333335 meters\n", "the sag correction is -0.008979994074074075 meters\n", "the total correction is -0.006153327407407408 meters\n", "the correctt distance is 679.8505620486773\n" ] } ], "source": [ "\n", "\n", "\n", "L=28;\n", "t0=20;\n", "p0=10;\n", "pm=5;\n", "tm=40;\n", "a=0.02;\n", "al=11/(1000000);\n", "E=2.1*(1000000);\n", "w1=470;\n", "ml=680;\n", "n=1;\n", "\n", "w=(470*28)/30;\n", "w=w/1000;\n", "\n", "ct=al*L*(tm-t0);\n", "print('the temperature correction is',ct,'meters');\n", "\n", "cp=(pm-p0)*L/(a*E);\n", "print('the pull corretion is ',cp,' meters');\n", "\n", "cs=-L*w*w/(24*pm*pm*n*n);\n", "print('the sag correction is ',cs,'meters');\n", "\n", "e=ct+cp+cs;\n", "print('the total correction is ',e,'meters');\n", "\n", "l1=L+e;\n", "\n", "dis=(l1/L)*ml;\n", "print('the correctt distance is ',dis);\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 11, pg32" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "from fig p.1.1\n", "87\n", " the value of EF is 135.34797293685585 meters\n", " the value of DF is 103.68256255569626 meters\n", " the value of EG is 205.85953773426738 meters\n" ] } ], "source": [ "#ch-1, problems on obstacles in chaining, page-32,pb-1\n", "\n", "from __future__ import division\n", "\n", "import math;\n", "\n", "print('from fig p.1.1')\n", "DE=87;\n", "print(DE);\n", "EF=float(87/(math.cos(50*(math.pi/180))))\n", "\n", "DF=87*(math.tan(50*(math.pi/180)))\n", "\n", "EG=87/(math.cos(65*(math.pi/180)))\n", "\n", "\n", "print(' the value of EF is ',EF,'meters');\n", "\n", "print(' the value of DF is ',DF,'meters');\n", "\n", "print(' the value of EG is ',EG,'meters'); \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 12, pg 33" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "width of river is 227.23577649516116 meters\n" ] } ], "source": [ "#ch-1 page-33, pb-2\n", "import math\n", "\n", "\n", "x=(380.0285/2.5754);\n", "\n", "PA=x;\n", "AQ=367-x;\n", "al=180-(36.45+86.55);\n", "bt=86.35-40-35;\n", "\n", "TA=AQ*math.tan(46*(math.pi/180));\n", "\n", "print('width of river is ',TA,'meters');\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Problem 13, pg 34" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "width of river is 316.63370603933663 meters\n" ] } ], "source": [ "# cha-1 page-34 pb-3\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "x=(849.224)/2.6196\n", "\n", "\n", "\n", "PA=x;\n", "AQ=517-x;\n", "al=78-33.67;\n", "bt=180-(43.333+78);\n", "\n", "TA=AQ*math.tan(58.66*(math.pi/180));\n", "\n", "print('width of river is ',TA,'meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 14, pg35" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "chainage of C is 277.08203230275507 meters\n" ] } ], "source": [ "# cha-1 page-34,35 pb-4\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "al=288.5-(48.5+180);\n", "bt=90-48.5;\n", "BAC=360-41.5;\n", "\n", "AC=40*(math.tan(60*(math.pi/180)));\n", "\n", "A=207.8;\n", "\n", "C=A+AC;\n", "\n", "print('chainage of C is',C,'meters');\n", " \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "### Problem 15, pg36" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "width of the river is 74.99999999999999 meters\n" ] } ], "source": [ "\n", "\n", "import math\n", "BB=287.25;\n", "MC=62.25;\n", "al=(BB-180)-MC;\n", "BM=75;\n", "BC=BM*(math.tan(45*(math.pi/180)))\n", "\n", "print('width of the river is ',BC,'meters')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "### Problem 16, pg 36" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "AB= 241.8677324489565\n" ] } ], "source": [ "#CH-1 PAGE-36 PB-6;\n", "\n", "from __future__ import division\n", "import math\n", "\n", "\n", "AC=250;\n", "AD=300;\n", "DB=150;\n", "BC=100;\n", "DC=DB+BC;\n", "\n", "cosal=(AD*AD+DC*DC-(AC*AC))/(2*AD*DC);\n", "\n", "AB=math.sqrt((AD*AD+DB*DB)-2*(AD*DB*cosal));\n", "\n", "print('AB=',AB);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 17, pg37" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "al 63.43494882292201\n", "bt= 26.56505117707799\n", "k= 0.5\n", "chinage of c is 375.5 meters\n" ] } ], "source": [ "# ch-1 page-36,37 pb-7\n", "\n", "from __future__ import division\n", "\n", "\n", "import math\n", "\n", "BE=50;\n", "AB=25;\n", "AEC=157.5-67.5;\n", "\n", "al=math.atan2(BE,AB);\n", "al=al*(180/math.pi);\n", "\n", "print('al',al)\n", "\n", "bt=90-al;\n", "print('bt=',bt);\n", "k=(math.tan(bt*math.pi/180))\n", "\n", "print('k=',k)\n", "BC=BE/k;\n", "C=275.5+BC;\n", "print('chinage of c is',C,'meters')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 18, pg38" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "measured length is 79.71623152917896 meters\n", "true length is 79.61658623976749 meters\n" ] } ], "source": [ "#ch-1 page -37,38 pb-1\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "\n", "a=17.5;\n", "b=19.3;\n", "c=17.8;\n", "d=13.6;\n", "e=12.9;\n", "\n", "da=2.35;\n", "db=4.20;\n", "dc=2.95;\n", "dd=1.65;\n", "de=3.25;\n", "\n", "AB=math.sqrt((a*a)-(da*da));\n", "BC=math.sqrt((b*b)-(db*db));\n", "CD=math.sqrt((c*c)-(dc*dc));\n", "DE=math.sqrt((d*d)-(dd*dd));\n", "EF=math.sqrt((e*e)-(de*de));\n", "\n", "total=AB+BC+CD+DE+EF;\n", "print('measured length is ',total,'meters');\n", "\n", "e=0.025;\n", "l=20;\n", "l1=l-e;\n", "ml=total;\n", "\n", "tl=(l1/l)*ml;\n", "\n", "print('true length is ',tl,'meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 19, pg 38" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "measured length is 531.2592044589876 meters\n", "true length is 532.587352470135 meters\n" ] } ], "source": [ "#ch-1 page -38 pb-2\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "ab=550;\n", "AB=ab*(math.cos(15*(math.pi/180)));\n", "\n", "l=20;\n", "e=0.05;\n", "l1=l+e;\n", "ml=AB;\n", "print('measured length is ',ml,'meters');\n", "\n", "tl=(l1/l)*ml;\n", "\n", "print('true length is ',tl,'meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 20, pg39" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "horizontal distance 1 is 275.74617084341827 meters\n", "horizontal distance 2 is 278.61041325879694 meters\n", "horizontal distance 3 is 279.8856909525744 meters\n" ] } ], "source": [ "#ch-1 page -38,39 pb-3\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "ab=280;\n", "\n", "AB1=ab*(math.cos(10*(math.pi/180)));\n", "\n", "print('horizontal distance 1 is ',AB1,'meters');\n", "\n", "cosal=(10/(math.sqrt(101)));\n", "\n", "AB2=ab*cosal;\n", "\n", "print('horizontal distance 2 is ',AB2,'meters');\n", "\n", "bb=8;\n", "AB3=math.sqrt(ab*ab-(bb*bb));\n", "\n", "print('horizontal distance 3 is ',AB3,'meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 21, pg40" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "measured length is 101.35201880331583 meters\n", "true horizontal distance is 101.26755878764641 meters\n" ] } ], "source": [ "#ch-1 page -39,40 pb-4\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "a=28.7;\n", "b=23.4;\n", "c=20.9;\n", "d=29.6;\n", "\n", "ag=5;\n", "bg=7;\n", "cg=10;\n", "dg=12;\n", "\n", "AB=a*(math.cos(ag*(math.pi/180)));\n", "\n", "BC=b*(math.cos(bg*(math.pi/180)));\n", "\n", "CD=c*(math.cos(cg*(math.pi/180)));\n", "\n", "DE=d*(math.cos(dg*(math.pi/180)));\n", "\n", "total=AB+BC+CD+DE;\n", "\n", "ml=total;\n", "\n", "print('measured length is ',ml,'meters');\n", "\n", "l=30;\n", "e=0.025;\n", "l1=l-e;\n", "\n", "tl=(l1/l)*ml;\n", "\n", "print('true horizontal distance is ',tl,'meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 22, pg 40" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "theta1= 30.009552668941378\n", "theta2= 106 degrees 32.534711618974654 minutes\n" ] } ], "source": [ "#ch-1 page -40 pb-1\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "\n", "a=23;\n", "b=16.5;\n", "c=12;\n", "\n", "\n", "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n", "t1=t1*(180/math.pi);\n", "\n", "print('theta1=',t1);\n", "\n", "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n", "t2=t2*(180/math.pi);\n", "dg=int(t2)\n", "mi=t2-int(t2)\n", "mi=(mi*60);\n", "print('theta2=',dg,'degrees',mi,'minutes');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 23, pg 41" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "theta1= 5 degrees 46.94403663966165 minutes\n", "theta2= 165 degrees 26.421472313304548 minutes\n" ] } ], "source": [ "#ch-1 page -40,41 pb-2\n", "\n", "from __future__ import division\n", "\n", "import math\n", "\n", "\n", "a=257;\n", "b=156;\n", "c=103;\n", "\n", "\n", "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n", "t1=t1*(180/math.pi);\n", "\n", "dg1=int(t1)\n", "mi1=t1-int(t1)\n", "mi1=(mi1*60);\n", "print('theta1=',dg1,'degrees',mi1,'minutes');\n", "\n", "\n", "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n", "t2=t2*(180/math.pi);\n", "dg=int(t2)\n", "mi=t2-int(t2)\n", "mi=(mi*60);\n", "print('theta2=',dg,'degrees',mi,'minutes');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 24, pg 42" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RF is 0.025\n", "length of scale is 15.000000000000002 meters\n" ] } ], "source": [ "#CH-1 PAGE-42 PB-1;\n", "\n", "from __future__ import division\n", "import math\n", "\n", "\n", "sc=100;\n", "a=2.5;\n", "m=6;\n", "\n", "RF=(a/sc);\n", "\n", "print('RF is ',RF);\n", "\n", "length=RF*m*sc;\n", "\n", "print('length of scale is ',length,'meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 25, pg 42" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RF= 0.0002\n", "length of final scale is 700.0\n" ] } ], "source": [ "#CH-1 PAGE-42,43 PB-2;\n", "\n", "from __future__ import division\n", "import math\n", "\n", "\n", "sc=100;\n", "area=93750;\n", "l=6.0;\n", "b=6.25;\n", "\n", "cm2=(area)/(l*b);\n", "\n", "cm=math.sqrt(cm2);\n", "RF=1/(sc*cm);\n", "\n", "print('RF=',RF);\n", "\n", "leng=14;\n", "leng=leng*cm;\n", "\n", "print('length of final scale is ',leng);\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Problem 26, pg 43" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "RF= 0.00025\n", "length of scale is 600.0 meters\n" ] } ], "source": [ "#CH-1 PAGE-43 PB-3;\n", "\n", "from __future__ import division\n", "import math\n", "\n", "l=1.2;\n", "al=30;\n", "al=al/100;\n", "sc=1000;\n", "\n", "\n", "RF=(al)/(sc*l);\n", "print('RF=',RF);\n", "\n", "\n", "cm1=(1/RF)/(100);\n", "\n", "lsc=15;\n", "cm15=lsc*cm1;\n", "\n", "print('length of scale is ',cm15,'meters');\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "### Problem 27, pg44" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1cm= 30.0\n", "RF= 0.03333333333333333\n", "length of scale is 13.333333333333334 CENTIMETERS\n" ] } ], "source": [ "#CH-1 PAGE-44 PB-4;\n", "\n", "from __future__ import division\n", "import math\n", "\n", "\n", "sc=100;\n", "hect=10000;\n", "area=0.45*hect;\n", "\n", "cm1=(area)/5;\n", "cm=math.sqrt(cm1);\n", "\n", "print('1cm=',cm);\n", "RF=1/(cm);\n", "print('RF=',RF);\n", "\n", "\n", "maxl=400;\n", "\n", "los=(RF*maxl);\n", "\n", "print('length of scale is',los,'CENTIMETERS');\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }