{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Photonic Devices" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1 Page 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "T=.25*10**-4;#thickness\n", "E=3.00;#energy\n", "P=10;#power\n", "a=4*10**4#absorption coefficient\n", "Eg=1.12;\n", "q=1.6*10**-19;#charge\n", "\n", "#calculation\n", "Es=10**-2*(1-exp(-a*T));#energy absorbed per second\n", "Ee=(E-Eg)/E;#photons energy converted to heat\n", "L=Ee*Es;#energy to lattice\n", "Ps=(Es-L)/(q*Eg);#photons per second\n", "\n", "#result\n", "print\"energy absorbed per second is\",round(Es*1000,1),\"mW\"\n", "print\"portion of photons energy converted to heat is\",round(Ee*100,2),\"%\"\n", "print\"number of photons per second is\",round(Ps,2),\"photons/sec\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy absorbed per second is 6.3 mW\n", "portion of photons energy converted to heat is 62.67 %\n", "number of photons per second is 1.31691783089e+16 photons/sec\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2 Page 297" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "t=500*10**-12;#time\n", "\n", "#calculation\n", "f=1/(2*pi*t);#bandwidth\n", "\n", "#result\n", "print\"modulation bandwidth is\",round(f/10**6,0),\"MHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "modulation bandwidth is 318.0 MHz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 Page 302" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "n=3.6;#constant\n", "\n", "#calculation\n", "R=((n-1)/(n+1))**2;#reflectivity\n", "\n", "#result\n", "print\"reflected light is\",round(R*100,0),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "reflected light is 32.0 %\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 Page 303" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "l=.94;#wavelength\n", "n=3.6;\n", "L=300;#length\n", "\n", "#calculation\n", "A=l**2/(2*n*L);#mode spacing\n", "\n", "#result\n", "print\"mode spacing is\",round(A*10**4,0),\"angstron\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mode spacing is 4.0 angstron\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5 Page 306" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "R1=.44;#front reflectivity\n", "R2=.99;#rear reflectivity\n", "L=300*10**-4;#length\n", "W=5*10**-4;#width\n", "a=100;#alpha\n", "b=.1;#beta\n", "g=100;\n", "T=.9;#constant\n", "\n", "#calculation\n", "J=g*T/b+1/b*(a+1/(2*L)*log(1/(R1*R2)));#current density\n", "I=J*L*W;#current\n", "\n", "#result\n", "print\"current density is\",round(J,2),\"A/cm^2\"\n", "print\"threshold current is\",round(I*1000,2),\"mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current density is 2038.51 A/cm^2\n", "threshold current is 30.58 mA\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6 Page 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "T1=27;#temperature\n", "l=110;\n", "\n", "#calculation\n", "T=T1+l*log(2);#temperature\n", "\n", "#result\n", "print\"temperature is\",round(T,0),\"deg.Celsius\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "temperature is 103.0 deg.Celsius\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7 Page 313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "N=5*10**12;#photons/s\n", "n=.8;#constant\n", "l=5*10**-10;#lifetime\n", "u=2500;\n", "E=5000;#V/cm\n", "L=10*10**-4;#length\n", "q=1.6*10**-19;#charge\n", "\n", "#calculation\n", "I=q*n*N*u*l*E/L;#photocurrent\n", "G=u*l*E/L;#gain\n", "\n", "#result\n", "print\"photocurrent is\",round(I*10**6,2),\"microAmp\"\n", "print\"gain is\",round(G,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "photocurrent is 4.0 microAmp\n", "gain is 6.25\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8 Page 315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "a=10**4;#cm^-1\n", "R=.1;\n", "\n", "#calculation\n", "X=-1/a*log(1/(2*(1-R)));#depth\n", "\n", "#result\n", "print\"dpeth for half power absorbed is\",round(X,2),\"micro-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dpeth for half power absorbed is 0.59 micro-m\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9 Page 319 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "s=1.118;#m\n", "h=1;#height\n", "\n", "#calculation\n", "M=(1+(s/h)**2)**.5;#air mass\n", "\n", "#result\n", "print\"air mass is\",round(M,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "air mass is 1.5\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.10 Page 322" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initialisation of variable\n", "from math import *\n", "Vs=.35;#voltage\n", "Is=1*10**-9;#current\n", "Il=.1;#A\n", "Vl=.026;#V\n", "\n", "#calculation\n", "Voc=Vl*log(Il/Is);#open-circuit voltage\n", "P=-Is*Vs*(exp(Vs/Vl)-1)-(-Il*Vs);#power\n", "\n", "#result\n", "print\"open-circuit voltage is\",round(Voc,2),\"V\"\n", "print\"output power is\",round(P,4),\"W\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "open-circuit voltage is 0.48 V\n", "output power is 0.0348 W\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }